JP3054181B2 - Main chain type thermotropic liquid crystalline polymer material - Google Patents

Main chain type thermotropic liquid crystalline polymer material

Info

Publication number
JP3054181B2
JP3054181B2 JP2244268A JP24426890A JP3054181B2 JP 3054181 B2 JP3054181 B2 JP 3054181B2 JP 2244268 A JP2244268 A JP 2244268A JP 24426890 A JP24426890 A JP 24426890A JP 3054181 B2 JP3054181 B2 JP 3054181B2
Authority
JP
Japan
Prior art keywords
main chain
polymer
diketone
liquid crystalline
chain type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2244268A
Other languages
Japanese (ja)
Other versions
JPH04122721A (en
Inventor
謙二 英
洋衛 谷村
俊樹 小山
汪芳 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2244268A priority Critical patent/JP3054181B2/en
Publication of JPH04122721A publication Critical patent/JPH04122721A/en
Application granted granted Critical
Publication of JP3054181B2 publication Critical patent/JP3054181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は新規な主鎖型サーモトロピック液晶性高分子
材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel main chain type thermotropic liquid crystalline polymer material.

<従来の技術> 高分子液晶材料はサーモトロピックとライオトロピッ
クに大別でき、化学構造上からは主鎖型と側鎖型に分類
できる。
<Prior Art> Polymer liquid crystal materials can be broadly classified into thermotropic and lyotropic, and can be classified into a main chain type and a side chain type in terms of chemical structure.

主鎖型高分子液晶材料のメソーゲン基を主鎖に有する
ものであるが、このメソーゲン基は一般にC、H、O、
N、ハロゲンからなる。
The main chain type polymer liquid crystal material has a mesogen group in the main chain, and this mesogen group is generally C, H, O,
Consists of N and halogen.

これに対し、メソーゲン基として機能する金属錯体を
有する液晶性高分子が実現すれば、液晶性高分子の分子
配列が生み出す特性と、金属錯体が持つ特異な性質とを
併せもつことになり、種々の用途が期待される。
On the other hand, if a liquid crystalline polymer having a metal complex that functions as a mesogen group is realized, the properties created by the molecular arrangement of the liquid crystalline polymer and the unique properties of the metal complex will be combined, and The use of is expected.

<発明が解決しようとする課題> 本発明の主たる目的は、金属錯体が有する特性と液晶
性高分子の生み出す特性を併せ持った新規な主鎖型の液
晶性高分子材料を提供することにある。
<Problem to be Solved by the Invention> A main object of the present invention is to provide a novel main chain type liquid crystal polymer material having both the properties of a metal complex and the properties of a liquid crystal polymer.

<課題を解決するための手段> このような目的は、下記(1)または(2)の本発明
によって達成される。
<Means for Solving the Problems> Such an object is achieved by the present invention described in the following (1) or (2).

(1)ポリエステル主鎖中に、β−ジケトンセグメント
を有することを特徴とする主鎖型サーモトロピック液晶
性高分子材料。
(1) A main chain type thermotropic liquid crystalline polymer material having a β-diketone segment in a polyester main chain.

(2)さらに金属イオンを含有し、この金属イオンに前
記β−ジケトンセグメントが配位している上記(1)に
記載の主鎖型サーモトロピック液晶性高分子材料。
(2) The main-chain thermotropic liquid crystalline polymer material according to (1), further comprising a metal ion, wherein the β-diketone segment is coordinated to the metal ion.

<作用> 本発明は、メソーゲン基を有する主鎖同士が、β−ジ
ケトンセグメントを介して金属錯体を形成することによ
り結合し、しかも液晶性が有効に発現する。
<Function> In the present invention, the main chains having a mesogen group are bonded to each other by forming a metal complex via a β-diketone segment, and liquid crystallinity is effectively exhibited.

<発明の具体的構成> 以下、本発明の具体的構成について詳細に説明する。<Specific Configuration of the Invention> Hereinafter, the specific configuration of the present invention will be described in detail.

本発明の高分子液晶材料は、金属に配位可能なβ−ジ
ケトンセグメントを含むポリエステル誘導体を主鎖とす
る。
The polymer liquid crystal material of the present invention has a polyester derivative containing a β-diketone segment capable of coordinating with a metal as a main chain.

主鎖のポリエステル誘導体としては、ジオールとジカ
ルボン酸とのそれぞれ1種を縮合するか、あるいはヒド
ロキシカルボン酸の1種以上を縮合するか、さらにはこ
れらの組み合わせを縮合するかして得られるものであ
る。
The main chain polyester derivative is obtained by condensing one kind of each of diol and dicarboxylic acid, condensing one or more kinds of hydroxycarboxylic acid, or condensing a combination of these. is there.

この場合、ジオールとしては、エチレングリコール、
ヘキサメチレンジオールなどの脂肪族ジオールや、ハイ
ドロキノン、ハロハイドロキノン、アルキルハイドロキ
ノン、ナフトキノンなどの芳香族ジオール等はいずれも
使用可能である。
In this case, as the diol, ethylene glycol,
Any of aliphatic diols such as hexamethylene diol and aromatic diols such as hydroquinone, halohydroquinone, alkylhydroquinone and naphthoquinone can be used.

また、テレフタル酸、P,P′−ジフェニルジカルボン
酸等の芳香族ジカルボン酸などが使用可能である。
Also, aromatic dicarboxylic acids such as terephthalic acid and P, P'-diphenyldicarboxylic acid can be used.

そして、ヒドロキシカルボン酸としては、ヒドロキシ
安息香酸、P,P′−ジフェニルヒドロキシカルボン酸等
の芳香族ヒドロキシカルボン酸などが使用可能である。
As the hydroxycarboxylic acid, an aromatic hydroxycarboxylic acid such as hydroxybenzoic acid and P, P'-diphenylhydroxycarboxylic acid can be used.

ただし、本発明ではβ−ジケトンセグメント−COCH2C
O−を主鎖中に導入するために、このβ−ジケトンセグ
メントを分子内に有するジオール、ジカルボン酸、ヒド
ロキシカルボン酸の1種以上を用いる。
However, in the present invention, β-diketone segment-COCH 2 C
In order to introduce O- into the main chain, at least one of diols, dicarboxylic acids, and hydroxycarboxylic acids having the β-diketone segment in the molecule is used.

このような化合物としては、 Y1−A1−COCH2CO−A2−Y2 (Y1およびY2は、それぞれ、ヒドロキシ基またはカルボ
キシ基、A1およびA2はそれぞれ芳香族残基である。)で
表わされる化合物、すなわち1,3−ビス(アリール)1,3
−プロパンジオンのジオール、ジカルボン酸あるいはヒ
ドロキシカルボン酸が好適である。
Examples of such compounds include Y 1 -A 1 -COCH 2 CO-A 2 -Y 2 (Y 1 and Y 2 are each a hydroxy or carboxy group, and A 1 and A 2 are each an aromatic residue. A), that is, 1,3-bis (aryl) 1,3
Diols of propanedione, dicarboxylic acids or hydroxycarboxylic acids are preferred.

そして、β−ジケトンセグメント中の酸素原子によっ
て、金属配位が行なわれる。
Then, metal coordination is performed by an oxygen atom in the β-diketone segment.

なお、ポリマー中のβ−ジケトンセグメントの含有率
は10〜50モル%とすればよく、また重合度は50〜1000程
度である。
The content of the β-diketone segment in the polymer may be 10 to 50 mol%, and the degree of polymerization is about 50 to 1000.

本発明の高分子液晶材料のポリエステル誘導体として
は、1,3−ビス(P−ヒドロキシフェニル)1,3−プロパ
ンジオン等を基本単位とする下記式(I)で示されるも
のが好ましい。
As the polyester derivative of the polymer liquid crystal material of the present invention, a polyester derivative represented by the following formula (I) having 1,3-bis (P-hydroxyphenyl) 1,3-propanedione or the like as a basic unit is preferable.

式(I) OL1OCOA3OL2OA4CO OA1COCH2COA2OCOA3OL2OA4CO 上記式(I)において、A1〜A4は、同一でも異なって
いてもよく、それぞれハロゲン、アルコキシ基等で置換
されていてもよいアリーレン基、特にフェニレン基を表
わす。
Formula (I) OL 1 OCOA 3 OL 2 OA 4 CO x OA 1 COCH 2 COA 2 OCOA 3 OL 2 OA 4 CO y In the above formula (I), A 1 to A 4 may be the same or different; Each represents an arylene group which may be substituted with a halogen, an alkoxy group or the like, particularly a phenylene group.

L1およびL2は、それぞれハロゲン、アルコキシ基等で
置換されていてもよいアルキレン基、アリーレン基、特
に炭素原子数2〜20のアルキレン基を表わす。
L 1 and L 2 each represent an alkylene group or an arylene group which may be substituted with a halogen, an alkoxy group or the like, particularly an alkylene group having 2 to 20 carbon atoms.

また、x+y=100モル%であり、yは5〜50モル%
程度が好ましい。
X + y = 100 mol%, and y is 5 to 50 mol%
The degree is preferred.

このような高分子材料に担持させる金属としてはβ−
ジケトンセグメントが配位可能なものであれば制限はな
く、Cu、Ni、Co、Fe、Zn等が挙げられ、特にCu、Niであ
ることが好ましい。
As a metal supported on such a polymer material, β-
There is no limitation as long as the diketone segment can coordinate, and examples thereof include Cu, Ni, Co, Fe, and Zn, and particularly preferably Cu and Ni.

このような場合、A1〜A4=フェニレン、L1=L2=(CH
2のときの金属担持ポリマーは下記式(II)で示さ
れることになる。
In such a case, A 1 to A 4 = phenylene, L 1 = L 2 = (CH
2 ) The metal-carrying polymer in the case of 6 is represented by the following formula (II).

上記式(II)において、Mtは四座配位可能な金属原子
を表わし二つのβ−ジケトンセグメントがMtを取り囲む
ように四つの酸素原子が配位子となる。
In the above formula (II), Mt represents a metal atom capable of tetradentate coordination, and four oxygen atoms become ligands so that two β-diketone segments surround Mt.

このような金属錯体担持液晶性高分子材料を得るに
は、まず下記スキーム1により主鎖のβ−ジケトンセグ
メントを含むポリエステル誘導体を得、その後スキーム
2によりその金属錯体を合成すればよい。
In order to obtain such a metal complex-supporting liquid crystalline polymer material, first, a polyester derivative containing a β-diketone segment of the main chain is obtained according to the following scheme 1, and then the metal complex is synthesized according to the scheme 2.

スキーム1においては、xモルのジオールとyモルの
ビスフェニルアルカンジオンおよび(x+y)モルのビ
スフェノキシアルカンをテトラクロロエタン中、窒素雰
囲気下で重縮合反応させることにより、ポリエステル誘
導体よりなる主鎖型高分子液晶材料を得る。このポリエ
ステル誘導体にスキーム2に示すように、金属塩化物の
メタノール溶液を反応させることにより目的の金属錯体
担持高分子液晶材料を得る。
In Scheme 1, x moles of diol, y moles of bisphenylalkanedione, and (x + y) moles of bisphenoxyalkane are subjected to a polycondensation reaction in tetrachloroethane under a nitrogen atmosphere, whereby a main chain type polyester derivative is formed. Obtain a molecular liquid crystal material. By reacting this polyester derivative with a methanol solution of a metal chloride as shown in Scheme 2, an intended metal complex-carrying polymer liquid crystal material is obtained.

ここで用いる金属塩化物の添加量を選択することによ
りxを適宜選択し得る。
X can be appropriately selected by selecting the addition amount of the metal chloride used here.

上記方法により合成した高分子液晶材料は、IRスペク
トル1H−NMRスペクトル、元素分析、原子吸光法分析等
により同定し得る。
The polymer liquid crystal material synthesized by the above method can be identified by IR spectrum, 1 H-NMR spectrum, elemental analysis, atomic absorption analysis, or the like.

また上記においては、金属としてCu、Niを使用する場
合の合成例を示したが、他の金属担持ポリマーや、他の
骨格を有する場合についてもこれに準じた方法で合成す
ることができる。
In the above description, a synthesis example in the case of using Cu and Ni as the metal has been described. However, in the case of having another metal-carrying polymer or another skeleton, synthesis can be performed by a method according to this.

<実施例> 以下、本発明を実施例によって具体的に説明する。<Example> Hereinafter, the present invention will be described specifically with reference to examples.

本実施例で化合物の同定に用いた各種測定機器は以下
の通りである。
Various measuring instruments used for identification of the compounds in this example are as follows.

赤外吸収スペクトル測定 赤外吸収スペクトル測定には、日本分光製A−320型
赤外分光光度計を用い、クロロホルムに可溶なものはフ
ィルム法で、不溶なものはKBrディスク法で測定を行な
った。
Infrared absorption spectrum measurement Infrared absorption spectrum measurement was carried out using a JASCO A-320 type infrared spectrophotometer. Those that were soluble in chloroform were measured by the film method, and those that were insoluble in chloroform were measured by the KBr disk method. Was.

元素分析 元素分析には、Perkin−Elmer社製240B型を用いた。Elemental analysis For elemental analysis, Model 240B manufactured by Perkin-Elmer was used.

原子吸光測定 原子吸光測定には、日立製Zeeman原子吸光光度計日立
170−70型を用いた。
Atomic absorption measurement For atomic absorption measurement, Hitachi Zeeman atomic absorption spectrometer Hitachi
Model 170-70 was used.

ESRスペクトル測定 ESRスペクトルは、XバンドVarian製ESRスペクトロメ
ーターを用いて測定した。
ESR spectrum measurement The ESR spectrum was measured using an X band Varian ESR spectrometer.

サンプルには、特に前処理などは施さず、そのままES
R用石英チューブに入れて測定した。
The sample is not subjected to any special pretreatment, etc.
The measurement was performed in a quartz tube for R.

実施例1 ポリエステル誘導体の合成 (1−1)x:y=4:1のポリマー1 3.78g(0.032mol)の1,6−ヘキサンジオールと2.05g
(0.008mol)の1,3ビス(P−ヒドロキシフェニル)1,3
−プロパンジオン(モル比4:1)に50mlのテトラクロロ
エタン(TCE)中で15.81g(0.040mol)の1,6−ビス(P
−クロロホルミルフェノキシ)ヘキサンを添加し、窒素
雰囲気下で48時間かけて140℃で加熱して重縮合反応に
より式(I)のポリマー1を得た。収量は18.1gであり
収率にして96%であった。
Example 1 Synthesis of polyester derivative (1-1) Polymer 1 of x: y = 4: 1 1.78 g (0.032 mol) of 1,6-hexanediol and 2.05 g
(0.008 mol) of 1,3 bis (P-hydroxyphenyl) 1,3
-Propanedione (molar ratio 4: 1) in 50 ml of tetrachloroethane (TCE) in 15.81 g (0.040 mol) of 1,6-bis (P
-Chloroformylphenoxy) hexane was added, and the mixture was heated at 140 ° C. for 48 hours under a nitrogen atmosphere to obtain a polymer 1 of the formula (I) by a polycondensation reaction. The yield was 18.1 g, which was 96%.

IR(KBr法) 1700cm-1 (β−ジケトンのν=0) 1705cm-1 (アルキルエステルのν=0) 1740cm-1 (アロマチックエステルのν=0) 元素分析 C(%) H(%) 理論値 71.32 6.80 実測値 69.48 6.77 (1−2)x:y=1:1のポリマー2 2.36g(0.020mol)の1,6−ヘキサンジオールと5.13g
(0.020mol)の1,3−ビス(p−ヒドロキシフェニル)
1,3−プロパンジオン(モル比1:1)に、50mlのTCE中で1
5.81g(0.040mol)の1,6ビス(p−クロロホルミルフェ
ノキシ)ヘキサンを添加し、窒素雰囲気下で48時間かけ
て140℃で加熱して重縮合反応により式(I)のポリマ
ー2を得た。収量は19.8gであり、収率にして97%であ
った。
IR (KBr method) 1700cm -1 (β- ν C = 0 of diketone) 1705cm -1C = 0 alkyl ester) 1740cm -1C = 0 of aromatic ester) Elemental analysis C (%) H (%) Theoretical 71.32 6.80 Found 69.48 6.77 (1-2) Polymer 2: x: y = 1: 1 2.36 g (0.020 mol) of 1,6-hexanediol and 5.13 g
(0.020 mol) of 1,3-bis (p-hydroxyphenyl)
1,3-propanedione (1: 1 molar ratio) was added in 50 ml TCE
5.81 g (0.040 mol) of 1,6 bis (p-chloroformylphenoxy) hexane was added, and the mixture was heated at 140 ° C. for 48 hours under a nitrogen atmosphere to obtain a polymer 2 of the formula (I) by a polycondensation reaction. Was. The yield was 19.8 g, 97% in yield.

IR(KBr法) 1700cm-1 (β−ジケトンのν=0) 1705cm-1 (アルキルエステルのν=0) 1740cm-1 (アロマチックエステルのν=0) 元素分析 C(%) H(%) 理論値 71.89 6.13 実測値 71.68 6.25 (1−3)x:y=1:0のポリマー3 4.73g(0.040mol)の1,6−ヘキサンジオールに、50ml
のTCE中で15.81g(0.040mol)の1,6ビス(P−クロロホ
ルミルフェノキシ)ヘキサンを添加し、窒素雰囲気下で
48時間かけて140℃で加熱して重縮合反応により式
(I)のポリマー3を得た。収量は16.4gであり、収率
にして93%であった。
IR (KBr method) 1700cm -1 (β- ν C = 0 of diketone) 1705cm -1C = 0 alkyl ester) 1740cm -1C = 0 of aromatic ester) Elemental analysis C (%) H (%) Theoretical value 71.89 6.13 Actual value 71.68 6.25 (1-3) Polymer 3 of x: y = 1: 0 50 ml was added to 4.73 g (0.040 mol) of 1,6-hexanediol.
15.81 g (0.040 mol) of 1,6 bis (P-chloroformylphenoxy) hexane was added in TCE under a nitrogen atmosphere.
The polymer 3 of the formula (I) was obtained by heating at 140 ° C. for 48 hours and performing a polycondensation reaction. The yield was 16.4 g, which was 93% in yield.

IR(KBr法) 1705cm-1 (アルキルエステルのν=0) 元素分析 C(%) H(%) 理論値 70.89 7.32 実測値 71.49 7.31 実施例2 銅錯体担持ポリマー(Cu−X)の合成 (2−1)[1−Cu−11]の合成 実施例1の(1−1)で合成した1.17g(β−ジケト
ン単位に換算して0.0005mol)のポリマー1の40mlTCE溶
液に2.5×10-3MのCuCl2・2H2Oのメタノール溶液10ml
(0.000025mol)を加え銅の2倍モルのトリエチルアミ
ンを加えて反応させ、式(II)の銅錯体[1−Cu−11]
を得た。収量は1.07gであった。
IR (KBr method) 1705 cm -1C = 0 of alkyl ester) Elemental analysis C (%) H (%) Theoretical value 70.89 7.32 Observed value 71.49 7.31 Example 2 Synthesis of Copper Complex-Supported Polymer (Cu-X) ( 2-1) Synthesis of [1-Cu-11] A solution of 1.17 g (0.0005 mol in terms of β-diketone unit) of polymer 1 synthesized in (1-1) of Example 1 in 40 ml TCE solution was 2.5 × 10 −. 10 ml of 3 M CuCl 2・ 2H 2 O methanol solution
(0.000025 mol), triethylamine twice as much as copper was added, and the mixture was allowed to react with the copper complex [1-Cu-11] of the formula (II).
I got The yield was 1.07 g.

(2−2)[1−Cu−24]の合成 実施例1の(1−1)で合成した1.17g(β−ジケト
ン単位に換算して0.0005mol)のポリマー1の40mlのTCE
溶液に5.0×10-3MのCuCl2・2H2Oのメタノール溶液10ml
(0.00005mol)を加え銅の2倍モルのトリエチルアミン
を加えて反応させ、式(II)の銅錯体[1−Cu−24]を
得た。収量は1.03gであった。
(2-2) Synthesis of [1-Cu-24] 40 ml of TCE of 1.17 g (0.0005 mol in terms of β-diketone unit) of polymer 1 synthesized in (1-1) of Example 1
10 ml of a solution of 5.0 × 10 -3 M CuCl 2・ 2H 2 O in methanol
(0.00005 mol), triethylamine twice as much as copper was added and reacted to obtain a copper complex [1-Cu-24] of the formula (II). The yield was 1.03 g.

(2−3)[1−Cu−59]の合成 実施例1の(1−1)で合成した1.17g(β−ジケト
ン単位に換算して0.0005mol)のポリマー1の40mlのTCE
溶液に2.5×10-3MのCuCl2・2H2Oのメタノール溶液10ml
(0.00025mol)を加え銅の2倍モルのトリエチルアミン
を加えて反応させ、式(II)の銅錯体[1−Cu−59]を
得た。収量は1.12gであった。
(2-3) Synthesis of [1-Cu-59] 40 ml of TCE of 1.17 g (0.0005 mol in terms of β-diketone unit) of polymer 1 synthesized in (1-1) of Example 1
2.5 × 10 -3 M CuCl 2・ 2H 2 O methanol solution 10 ml
(0.00025 mol), and triethylamine twice as much as copper was added and reacted to obtain a copper complex [1-Cu-59] of the formula (II). The yield was 1.12 g.

(2−4)[1−Cu−21]の合成 実施例1の(1−2)で合成した1.02g(β−ジケト
ン単位に換算して0.001mol)のポリマー1の40mlのTCE
溶液に1.0×10-2MのCuCl2・2H2Oのメタノール溶液20ml
(0.0002mol)を加え銅の2倍モルのトリエチルアミン
を加えて反応させ、式(II)の銅錯体[1−Cu−21]を
得た。収量は1.05gであった。
(2-4) Synthesis of [1-Cu-21] 40 ml of TCE of 1.02 g (0.001 mol in terms of β-diketone unit) of polymer 1 synthesized in (1-2) of Example 1
20 ml of 1.0 × 10 -2 M CuCl 2・ 2H 2 O methanol solution
(0.0002 mol) and triethylamine twice as much as copper were added and reacted to obtain a copper complex [1-Cu-21] of the formula (II). The yield was 1.05 g.

実施例3 ニッケル錯体担持ポリマー[Ni−X]の合成 (3−1)[1−Ni−14]の合成 実施例1の(1−1)で合成した1.17g(β−ジケト
ン単位に換算して0.0005mol)のポリマー1の40mlのTCE
溶液に2.5×10-3MのNiCl2・6H2Oのメタノール溶液10ml
(0.000025mol)を加え、ニッケルの2倍モルのトリエ
チルアミンを加えて反応させ式(II)のNi錯体(1−Ni
−14]を得た。収量は1.10gであった。
Example 3 Synthesis of Nickel Complex-Supported Polymer [Ni-X] (3-1) Synthesis of [1-Ni-14] 1.17 g (converted to β-diketone unit) synthesized in (1-1) of Example 1. 0.0005 mol) of polymer 1 in 40 ml of TCE
2.5 × 10 -3 M NiCl 2・ 6H 2 O methanol solution 10 ml
(0.000025 mol), triethylamine twice as much as nickel was added, and the mixture was reacted to produce a Ni complex of the formula (II) (1-Ni
-14]. The yield was 1.10 g.

実施例1〜3で得られた化合物に対して、(1)合成
ポリマーの粘度測定、(2)示差走査熱量測定、(3)
ESR測定、(4)X線回折測定を行なった。
(1) Viscosity of synthetic polymer, (2) Differential scanning calorimetry, (3)
ESR measurement and (4) X-ray diffraction measurement were performed.

(1)粘度測定 ポリマー1〜4の対数粘度ηをTCE:フェノール(4:
6)混合溶液中25℃で測定した。結果を表1に示す。
(1) Viscosity measurement The logarithmic viscosity η of Polymers 1 to 4 was measured using TCE: phenol (4:
6) Measured at 25 ° C in the mixed solution. Table 1 shows the results.

(2)示差走査熱量測定(DSC測定) DSC測定には、理学電気製高性能示差走査熱量計DSC−
10Aを用いた。測定は昇温速度10℃/min、測定雰囲気が
大気中、DSCレンジが1mcal/secの条件のもとで行なっ
た。また相転移エンタルピー(ΔH)は次式のように求
めた。
(2) Differential scanning calorimetry (DSC measurement) For DSC measurement, Rigaku Denki's high performance differential scanning calorimeter DSC-
10A was used. The measurement was performed under the conditions of a heating rate of 10 ° C./min, a measurement atmosphere in the air, and a DSC range of 1 mcal / sec. Further, the phase transition enthalpy (ΔH) was obtained as in the following equation.

ΔH=K・A/M A:ピーク面責(mcal゜) K:装置定数(mcal/mcal゜) M:試料の質量(mg) 表2に金属錯体担持ポリマーのΔHの値を示す。 ΔH = K · A / M A: peak surface area (mcal ゜) K: apparatus constant (mcal / mcal ゜) M: mass of sample (mg) Table 2 shows values of ΔH of the metal complex-carrying polymer.

表2に示されるように、金属に対する配位率xの増加
によりΔHは減少するが、これはポリマー鎖間に金属錯
体により橋架けが起こり、分子運動が抑制されることに
起因する。同様の現象は、β−ジケトンンセグメントの
含有量が増加しても派生する。これはポリマー鎖間の相
互作用が増大し、分子運動が抑制されることに起因す
る。
As shown in Table 2, ΔH decreases as the coordination ratio x to the metal increases, but this is due to the fact that a bridge occurs between the polymer chains by the metal complex and the molecular motion is suppressed. A similar phenomenon is derived even when the content of the β-diketone segment increases. This is because the interaction between polymer chains is increased and the molecular motion is suppressed.

(3)ESR測定 各化合物を転移直後の温度に保ち、ガラス棒あるいは
ピンセットを用いて延伸し溶融紡糸した。
(3) ESR measurement Each compound was kept at a temperature immediately after the transition, stretched using a glass rod or tweezers, and melt-spun.

上記溶融紡糸したサンプルを繊維軸を磁場の角度を変
化させてESR測定を行なった。
The melt-spun sample was subjected to ESR measurement by changing the angle of the magnetic field on the fiber axis.

第1図に実施例2(2−3)で合成した[1−Cu−5
9]のESR測定結果を示す。
FIG. 1 shows [1-Cu-5] synthesized in Example 2 (2-3).
9] shows the ESR measurement result.

繊維軸と磁場が平衡なな場合はg値の平行成分(g
)のピークが現われず、g値の垂直成分(g⊥)のピ
ークのみが現われた。従って本実施例と合成した銅錯体
は、第2図に示すように、錯体面が延伸方向である繊維
軸方向に平行に配向していることを示唆している。
When the fiber axis and the magnetic field are balanced, the parallel component of the g value (g
) Did not appear, but only the peak of the vertical component of the g value (g 値) appeared. Therefore, as shown in FIG. 2, the copper complex synthesized in this example suggests that the complex plane is oriented parallel to the fiber axis direction, which is the stretching direction.

なお、実施例3のニッケル錯体はESR測定に対し不活
性であるので低スピン状態で平面4配位構造をとってい
ることが示唆される。
Note that the nickel complex of Example 3 is inactive with respect to ESR measurement, suggesting that it has a planar four-coordinate structure in a low spin state.

(4)X線回折測定 測定には、理学電気製X線回折装置CN4056A型を用
い、平面カメラを取付け回折写真の撮影を行なった。そ
の時の管電流は25mA、管電圧は35KVでニッケル箔で濾過
したCuKα線を用いた。露光時間は1時間であった。
(4) X-ray diffraction measurement For the measurement, a flat camera was attached and a diffraction photograph was taken using an X-ray diffractometer CN4056A manufactured by Rigaku Denki. At that time, the tube current was 25 mA, the tube voltage was 35 KV, and CuKα rays filtered with a nickel foil were used. The exposure time was one hour.

得られた結果を第3図に示す。 The results obtained are shown in FIG.

X線回折の測定でも、DSC測定と同様にβ−ジケトン
と金属の含有量の違いにより、繊維軸に対しX線を垂直
あるいは平行に照射した場合に、顕著な違いが見られ
る。その配向具合いは、β−ジケトン成分を含まないホ
モポリマー3では、環状パターンしか観察されず配向し
ていない。β−ジケトン成分を含むポリマー1,2,4は、
スポット状のパターンが見られるので、β−ジケトンセ
グメントの導入により配向性は向上する。また金属の導
入も繊維の配向に影響を与える。例えば、第3図に示し
たように、1−Ni−14では、X線を繊維軸に平行にあて
た場合は環状のパターンしか見られないが、垂直にあて
た場合には強いスポット状のパターンが見られ、明らか
に配向している。また、1−Cu−11、1−Cu−24にも明
確なスポットパターンがみらち、配向性の良さが伺え
る。このことから金属の過度でない導入は、ポリマー鎖
間の橋架けを生み、その適度な橋架けによって高い配向
性が得られる。
Also in the measurement of X-ray diffraction, a remarkable difference is observed when X-rays are irradiated perpendicularly or parallel to the fiber axis due to the difference in the content of β-diketone and metal, as in the DSC measurement. In the orientation condition, in the homopolymer 3 containing no β-diketone component, only a cyclic pattern was observed and no orientation was observed. Polymers 1, 2, 4 containing a β-diketone component are:
Since a spot-like pattern is observed, the orientation is improved by introducing the β-diketone segment. The introduction of metal also affects the orientation of the fibers. For example, as shown in FIG. 3, in the case of 1-Ni-14, when an X-ray is directed parallel to the fiber axis, only an annular pattern can be seen. The pattern is visible and clearly oriented. In addition, clear spot patterns are seen in 1-Cu-11 and 1-Cu-24, indicating good orientation. This implies that non-excessive introduction of metal creates bridging between the polymer chains, and a high degree of orientation can be obtained by proper bridging.

<発明の効果> 本発明のポリエステル誘導体主鎖中にβ−ジケトンセ
グメントを含む液晶性高分子材料から形成される金属錯
体は、液晶挙動を示す。
<Effect of the Invention> The metal complex formed from a liquid crystalline polymer material containing a β-diketone segment in the main chain of the polyester derivative of the present invention exhibits liquid crystal behavior.

また、得られた化合物を溶融紡糸することにより、紡
糸方向に配向性が生じることが確認された。
Further, it was confirmed that orientation was generated in the spinning direction by melt-spinning the obtained compound.

さらに、主鎖にβ−ジケトンセグメントを含まないポ
リマーが一軸方向の配向性を示さないのに対し、β−ジ
ケトンセグメントを主鎖中に導入して、これを金属に配
位させると明らかに配向性が向上することが確認され
た。
Furthermore, while a polymer containing no β-diketone segment in the main chain does not exhibit uniaxial orientation, a β-diketone segment is introduced into the main chain and is coordinated to a metal to clearly orient. It was confirmed that the performance was improved.

すなわち、高分子液晶材料への金属錯体の導入は、液
晶としての挙動や配向性に新規な特異性を与え得る。
That is, the introduction of a metal complex into a polymer liquid crystal material can give a novel specificity to the behavior and orientation as a liquid crystal.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の主鎖型サーモトロピック液晶性高分
子材料の銅錯体のESR測定図であり、(a)は磁場が繊
維軸に垂直な場合を、(b)は磁場が繊維軸に平行な場
合を示す。 第2図は、本発明の主鎖型サーモトロピック液晶性高分
子材料の金属錯体が繊維軸方向に平行に配位している様
子を描いた模式図である。 第3図は、図面に代わる結晶構造を表わすX線写真であ
って、本発明の主鎖型サーモトロピック液晶性高分子材
料のニッケル錯体のX線回折パターン像写真であり、
(a)はX線を繊維軸に垂直に照射した場合を、(b)
はX線を繊維軸に平行に照射した場合を示す。
1A and 1B are ESR measurement diagrams of a copper complex of a main chain type thermotropic liquid crystalline polymer material of the present invention. FIG. 1A shows a case where a magnetic field is perpendicular to a fiber axis, and FIG. Shows the case parallel to. FIG. 2 is a schematic diagram illustrating a state where the metal complex of the main chain type thermotropic liquid crystalline polymer material of the present invention is coordinated in parallel with the fiber axis direction. FIG. 3 is an X-ray photograph showing a crystal structure replacing the drawing, and is an X-ray diffraction pattern image photograph of a nickel complex of the main chain type thermotropic liquid crystalline polymer material of the present invention;
(A) is a case where X-rays are irradiated perpendicular to the fiber axis, (b)
Indicates a case where X-rays are irradiated in parallel to the fiber axis.

フロントページの続き (72)発明者 白井 汪芳 長野県小県郡丸子町長瀬2496 (56)参考文献 特開 平4−114031(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 C09K 19/38 CA(STN)Continuation of the front page (72) Inventor Wang Yoshi Shirai 2496 Nagase, Maruko-cho, Nagano Prefecture, Japan (56) References JP-A-4-114031 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 63/00-63/91 C09K 19/38 CA (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエステル主鎖中に、β−ジケトンセグ
メントを有することを特徴とする主鎖型サーモトロピッ
ク液晶性高分子材料。
1. A main chain type thermotropic liquid crystalline polymer material having a β-diketone segment in a polyester main chain.
【請求項2】さらに金属イオンを含有し、この金属イオ
ンに前記β−ジケトンセグメントが配位している請求項
1に記載の主鎖型サーモトロピック液晶性高分子材料。
2. The main chain type thermotropic liquid crystalline polymer material according to claim 1, further comprising a metal ion, wherein the β-diketone segment is coordinated to the metal ion.
JP2244268A 1990-09-14 1990-09-14 Main chain type thermotropic liquid crystalline polymer material Expired - Fee Related JP3054181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244268A JP3054181B2 (en) 1990-09-14 1990-09-14 Main chain type thermotropic liquid crystalline polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244268A JP3054181B2 (en) 1990-09-14 1990-09-14 Main chain type thermotropic liquid crystalline polymer material

Publications (2)

Publication Number Publication Date
JPH04122721A JPH04122721A (en) 1992-04-23
JP3054181B2 true JP3054181B2 (en) 2000-06-19

Family

ID=17116224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244268A Expired - Fee Related JP3054181B2 (en) 1990-09-14 1990-09-14 Main chain type thermotropic liquid crystalline polymer material

Country Status (1)

Country Link
JP (1) JP3054181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150806B2 (en) * 2007-05-09 2013-02-27 国立大学法人北陸先端科学技術大学院大学 Polyester, polymer metal complex
KR101112625B1 (en) * 2011-06-30 2012-02-15 박순남 Guide fence
JP6270201B2 (en) * 2013-12-11 2018-01-31 国立大学法人 大分大学 Polymer metal complex having liquid crystallinity and method for producing polymer metal complex having liquid crystallinity

Also Published As

Publication number Publication date
JPH04122721A (en) 1992-04-23

Similar Documents

Publication Publication Date Title
KR19990071499A (en) Poly (9,9&#39;-spirobisfluorene), their preparation and their use
JP4499391B2 (en) Insulating film forming material and insulating film
JP3054181B2 (en) Main chain type thermotropic liquid crystalline polymer material
JP4766304B2 (en) Liquid crystalline monomer, liquid crystalline oligomer, liquid crystalline polymer and method for producing the same
JP3294930B2 (en) Novel dibenzoylnaphthalene derivative, polymer containing the same, and method for producing the same
Centore et al. Mesophase behaviour of some semiflexible trimeric compounds
JP7079494B2 (en) New compound and its synthesis method
KR20080037019A (en) Method of making aromatic dihydroxy diacid dihalides and precipitates resulting therefrom
CA2145457A1 (en) New stiff-chain polyesters and a method of preparing them
Yu et al. Synthesis, Molecular Structure and Mesomorphic Phase Behavior of ${\eta}^ 1$-Benzylideneaniline Palladium (II) Complexes
Hanabusa et al. Synthesis and properties of liquid‐crystalline side‐chain polymers containing β‐diketonato transition metal complexes
Choi et al. Synthesis, thermal and radiation sensitivities of fluorine containing methylene-bridged aromatic polyesters
JP3075807B2 (en) Liquid crystal material
Suzuki et al. Synthesis and characterization of polyamidoamine-based liquid crystalline dendrimers
JP3106664B2 (en) New metal complex liquid crystal
Hsiao et al. Synthesis and properties of polyamides based on a spirobichroman bis (ether‐carboxylic acid)
JPS6236392A (en) Organic phosphorus compound
JP2009185125A (en) Hyperbranched polymer, method for producing the same, monomer for synthesizing hyperbranched polymer, and precursor thereof
JP2608197B2 (en) Novel dicarboxylic acids, derivatives thereof and methods for producing them
Kricheldorf et al. New polymer syntheses, 57. Thermotropic polyesters based on 2‐(4‐carboxyphenyl) benzoxazole‐5‐carboxylic acid
EP0664818A1 (en) Partially-fluorinated polymers.
Kobayashi et al. Synthesis and characterization of optically active polyesters from chiral 1, 3-diols and aromatic dicarboxylic acid chlorides
JP3142283B2 (en) Side-chain type thermotropic polymer liquid crystal material
Vasanthi et al. Synthesis and Characterization of Certain Photocrosslinkablethermotropic Liquid Crystalline Random Copolyesters Containing Arylidene Moiety in the Main Chain
JP2615430B2 (en) Novel polyester and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees