JP3054146B1 - Panoramic image device - Google Patents

Panoramic image device

Info

Publication number
JP3054146B1
JP3054146B1 JP11219165A JP21916599A JP3054146B1 JP 3054146 B1 JP3054146 B1 JP 3054146B1 JP 11219165 A JP11219165 A JP 11219165A JP 21916599 A JP21916599 A JP 21916599A JP 3054146 B1 JP3054146 B1 JP 3054146B1
Authority
JP
Japan
Prior art keywords
image
coordinate system
panoramic
camera
convex mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11219165A
Other languages
Japanese (ja)
Other versions
JP2000206635A (en
Inventor
洪一平
黄鶴超
石勝文
陳祝嵩
Original Assignee
宜昇科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜昇科技股▲分▼有限公司 filed Critical 宜昇科技股▲分▼有限公司
Application granted granted Critical
Publication of JP3054146B1 publication Critical patent/JP3054146B1/en
Publication of JP2000206635A publication Critical patent/JP2000206635A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/04Context-preserving transformations, e.g. by using an importance map
    • G06T3/047Fisheye or wide-angle transformations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

【要約】 【課題】 360度の視野を有する像を都合良くかつ効
果的にとることができるパノラマ像装置を提供するこ
と。 【解決手段】 パノラマ像装置が開示されている。これ
は、360度の視野からカメラ(12)に像を反射する
ための双曲線凸面鏡(11)を用いる。双曲線凸面鏡
は、双曲線方程式(y2/B2)-(x2/A2)=lに従う曲面を有す
る。カメラは双曲線凸面鏡に相対するレンズを有する。
カメラは、その光学的中心が双曲線凸面鏡の焦点に対応
する焦点と一致する場所に配置されており、これによ
り、双曲線凸面鏡から反射された環状の像をとる。コン
ピュータ(13)が、環状の像を球面座標系、円柱座標
系または立方座標系に写像するために設けられており、
これにより、さらに、環状の像を特定の観察角に基づい
て表示される平面像に変える。
A panoramic image apparatus capable of conveniently and effectively taking an image having a 360-degree field of view. A panoramic image device is disclosed. It uses a hyperbolic convex mirror (11) to reflect an image from a 360 degree field of view to a camera (12). Hyperbolic convex mirror, hyperbolic equations (y 2 / B 2) - (x 2 / A 2) = have a curved surface according to l. The camera has a lens facing the hyperbolic convex mirror.
The camera is located where its optical center coincides with the focal point corresponding to that of the hyperbolic convex mirror, thereby taking an annular image reflected from the hyperbolic convex mirror. A computer (13) is provided for mapping the annular image to a spherical, cylindrical or cubic coordinate system;
Thereby, the annular image is further changed to a plane image displayed based on a specific observation angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はパノラマ像装置に関
し、より詳細には、360度の視野からカメラに像を反
射させるための双曲線凸面鏡を使用するパノラマ像シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a panoramic image apparatus, and more particularly, to a panoramic image system that uses a hyperbolic convex mirror to reflect an image from a 360 degree field of view to a camera.

【0002】[0002]

【従来の技術】パノラマ像装置は、通常、360度の視
野からユーザーに像を伝えるための監視システム、ビデ
オ会議または仮想現実で用いられている。従来のパノラ
マ像装置の一つでは、360度の像をとるための回転可
能のカメラが用いられている。他の例にあっては、視野
が重なり合うように像をとり、次にパノラマ像を形成す
べくこれらを統合するための複数のカメラを有する。し
かし、回転可能のカメラの使用は、一時に特定の視野か
ら瞬間的な像をとるだけのことしかできない。さらに、
前記回転可能のカメラを駆動するための回転機構はかな
りの動力源を要し、しかも前記機構および前記カメラの
重量のために簡単に壊れる。他方、複数のカメラの使用
は高価につく。さらに、パノラマ像を作るために異なる
カメラによりとられた像を統合することは難しい。結
局、360度の視野を有する像をとり、これによりパノ
ラマ像を形成する光学要素が考えられる。あいにく、光
学要素を用いてとられる像は、通常、不鮮明でありまた
歪んでいる。したがって、ここに、パノラマ像装置の改
良の必要性がある。
2. Description of the Related Art Panoramic imaging devices are commonly used in surveillance systems, video conferencing or virtual reality to convey images to a user from a 360 degree field of view. One of the conventional panoramic image devices uses a rotatable camera for taking a 360-degree image. In another example, there are multiple cameras that take images so that the fields of view overlap and then combine them to form a panoramic image. However, the use of a rotatable camera can only take an instantaneous image from a particular field of view at a time. further,
The rotating mechanism for driving the rotatable camera requires a significant power source and is easily broken due to the weight of the mechanism and the camera. On the other hand, the use of multiple cameras is expensive. Further, it is difficult to integrate images taken by different cameras to create a panoramic image. Eventually, optical elements that take an image with a 360 degree field of view and thereby form a panoramic image are possible. Unfortunately, images taken with optical elements are usually smeared and distorted. Therefore, there is a need here for an improved panoramic image device.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、36
0度の視野を有する像を都合良くかつ効果的にとること
ができるパノラマ像装置を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to
An object of the present invention is to provide a panoramic image apparatus which can conveniently and effectively take an image having a 0 degree field of view.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明のパノラマ像装置は、双曲線凸面鏡、カメラ
およびコンピュータを備える。前記双曲線凸面鏡は、双
曲線方程式(y2/B2)-(x2/A2)=1に従う曲面を有する。前
記カメラは前記双曲線凸面鏡に相対するレンズを有す
る。前記カメラは、その光学的中心が、前記双曲線凸面
鏡の焦点に対応する焦点に重なり合う場所に配置されて
いる。前記コンピュータは、前記環状の像を極座標系、
円柱座標系または立方座標系に写像し、これにより、さ
らに、特定の観察角に基づいて表示されるように前記環
状の像を平面像に変えるために前記カメラに接続されて
いる。
To achieve this object, a panoramic image apparatus according to the present invention comprises a hyperbolic convex mirror, a camera and a computer. The hyperbolic convex mirror, hyperbolic equations (y 2 / B 2) - has a curved surface according to (x 2 / A 2) = 1. The camera has a lens facing the hyperbolic convex mirror. The camera is located where its optical center overlaps a focal point corresponding to the focal point of the hyperbolic convex mirror. The computer displays the annular image in a polar coordinate system,
It maps to a cylindrical or cubic coordinate system, and is further connected to the camera to convert the annular image to a planar image for display based on a particular viewing angle.

【0005】本発明の他の目的、有利性および新規な特
徴は、添付の図面に関して理解される次の詳細な説明か
らさらに明らかとなろう。
[0005] Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings.

【0006】[0006]

【発明の実施の形態】図1を参照して、本発明に係るパ
ノラマ像装置は、カメラ12に対して360度の像を反
射させるための双曲線凸面鏡11を利用する。カメラ1
2は、そのレンズが双曲線凸面鏡11の反射面に相対す
るように配置されている。したがって、カメラ12は、
図2のAに示すように、360度の視界または視野から
全ての対象を含む環状の像21を写し取る。環状の像2
1における前記対象の形状は環状に歪められており、こ
のため、環状の像21を表示されるべき図2のBに示す
ような直線状のパノラマ像23に変えるべく前記環状の
像を歪まないようにするためにカメラ12にコンピュー
タ13が接続され、ここにおいて、前記対象の形状はも
はや歪められない。図3のAおよびBは、環状の像の例
と、歪みを除いた後の対応する像の例とを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a panoramic image apparatus according to the present invention utilizes a hyperbolic convex mirror 11 for reflecting a 360-degree image with respect to a camera 12. Camera 1
2 is arranged so that its lens faces the reflecting surface of the hyperbolic convex mirror 11. Therefore, the camera 12
As shown in FIG. 2A, an annular image 21 including all objects is captured from a 360-degree field of view. Ring image 2
The shape of the object in 1 is annularly distorted, so that the annular image 21 is not distorted to change it into a linear panoramic image 23 as shown in FIG. 2B to be displayed. In order to do so, a computer 13 is connected to the camera 12, wherein the shape of the object is no longer distorted. 3A and 3B show an example of an annular image and an example of a corresponding image after removing distortion.

【0007】双曲線凸面鏡11の曲面は、双曲線の方程
式(y2/B2)-(x2/A2)=1に従う。図4を参照すると、前記
双曲線は、実質的に第1の焦点41を通過して対応する
第2の焦点42に至る光を反射させるところに特徴があ
る。したがって、カメラ12が、その光学的中心が第2
の焦点42の場所にあるように配置されるとき、得られ
るパノラマ像内の対象は、これらが同じ視点から観察さ
れるため、歪められない。
The curved surface of the hyperbolic convex mirror 11 follows the hyperbolic equation (y 2 / B 2 ) − (x 2 / A 2 ) = 1. Referring to FIG. 4, the hyperbola is characterized by reflecting light substantially passing through the first focal point 41 and reaching the corresponding second focal point 42. Therefore, the camera 12 has its optical center
When positioned to be at the focal point 42 of the object, the objects in the resulting panoramic image are not distorted because they are viewed from the same viewpoint.

【0008】再び図2のAを参照すると、双曲線凸面鏡
11から前記環状の像をとるためにカメラ12を使用す
るとき、カメラ12は実際には内部の像22を含む円形
の像と、内部の像22を取り巻く環状の像21とをと
る。内部の像22はカメラ12自体の反射像である。環
状の像21は360度の視野からの所望の反射像であ
る。したがって、環状の像21は鮮明でなければなら
ず、他方、内部の像22の鮮明さは重要でない。双曲線
はその中心部(曲線としての)において高曲率を有し、
また、その外方部分に低曲率を有し、これにより、その
外方部分により反射された像は鮮明であり、また、その
内方部分により反射された像はぼやけている。換言する
と、双曲線凸面鏡11は、カメラ12が360度の視野
から前記対象を含む鮮明な環状の像21をとることを可
能にする。
Referring again to FIG. 2A, when using the camera 12 to take the annular image from the hyperbolic convex mirror 11, the camera 12 is actually a circular image including an internal image 22 and an internal image. An annular image 21 surrounding the image 22 is taken. The internal image 22 is a reflection image of the camera 12 itself. The annular image 21 is a desired reflection image from a 360-degree field of view. Therefore, the annular image 21 must be sharp, while the sharpness of the internal image 22 is not important. The hyperbola has a high curvature at its center (as a curve),
It also has a low curvature on its outer part, so that the image reflected by its outer part is sharp and the image reflected by its inner part is blurred. In other words, the hyperbolic convex mirror 11 allows the camera 12 to take a sharp annular image 21 containing the object from a 360 degree field of view.

【0009】図5を参照すると、本発明の好ましい実施
例の寸法が示されている。双曲線凸面鏡11は30mmの
直径51と、15.82mmの高さ52と、73度の観察角5
3の範囲とを有する。前記対応する双曲線方程式(y2/
B2)-(x2/A2)=1のパラメータについては、Aが19.36mmで
ありまたBが25mmである。
Referring to FIG. 5, the dimensions of the preferred embodiment of the present invention are shown. The hyperbolic convex mirror 11 has a diameter 51 of 30 mm, a height 52 of 15.82 mm, and an observation angle 5 of 73 degrees.
3 range. The corresponding hyperbolic equation (y 2 /
For the parameter B 2 )-(x 2 / A 2 ) = 1, A is 19.36 mm and B is 25 mm.

【0010】カメラ12によりとられる環状の像21
は、歪みをなくするためにコンピュータ13により処理
されなければならず、これにより環状の像21が幾何学
的に正しい形を有する像に変えられる。これを達成する
ため、環状の像21内の任意の点と、球面座標、円柱座
標または立方座標(cubic coordinate)のような座標系と
の間の関係を見つけなければならず、これにより、環状
の像21を特定の座標系に写像する。例えば、球面座標
系をとると、ユーザーが所望の視野角を定めるとき、前
記球面座標に写像される環状の像21は、(クイック・
タイムVR(Quick-Time VR)のような)公知のパノラマ表
示方法に従って平面像に変えることができる。図6のA
およびBは、環状の像を球面座標系に写像する方法を示
す。観察位置(view point)(0,C)に集められた単位球
体を考えると、水平角φと前記球面座標の仰角/俯角θ
とが与えられるとき、我々は前記環状の像(図6のBを
参照)中のその場所を知ることを欲する。環状の像21
を極座標(図6のAを参照)によって表すことができ、
また、前記球面座標の水平角φの値が前記球面座標中の
環状の像21のそれと等しいため、仰角/俯角θのみが
考慮されなければならない。すなわち。写像を行うため
の鍵は、与えられた仰角/俯角θと、対応するピクセル
位置d(dは、前記対応するピクセルと前記環状の像の
中心部との間の距離である。)との間の関係を知ること
である。ここで、線=FPが仰角/俯角θを有するもの
とする。線は(0,C)を通りかつtanθの傾きを有するた
め、は次のように表すことができる。
An annular image 21 taken by the camera 12
Must be processed by the computer 13 in order to eliminate distortion, which turns the annular image 21 into an image having a geometrically correct shape. To achieve this, one must find the relationship between any point in the annular image 21 and a coordinate system such as spherical, cylindrical, or cubic coordinates, thereby creating an annular shape. Is mapped to a specific coordinate system. For example, taking a spherical coordinate system, when the user determines a desired viewing angle, the annular image 21 mapped to the spherical coordinates is (quick image).
It can be changed to a plane image according to a known panoramic display method (such as Quick-Time VR). A in FIG.
And B show how to map the annular image onto a spherical coordinate system. Considering the unit spheres collected at the observation point (view point) (0, C), the horizontal angle φ and the elevation angle / depression angle θ of the spherical coordinates
Given that we want to know its location in the annular image (see FIG. 6B). Annular image 21
Can be represented by polar coordinates (see FIG. 6A),
Also, since the value of the horizontal angle φ of the spherical coordinates is equal to that of the annular image 21 in the spherical coordinates, only the elevation angle / depression angle θ has to be considered. That is. The key to performing the mapping is between a given elevation / depression angle θ and the corresponding pixel location d (d is the distance between the corresponding pixel and the center of the annular image). Is to know the relationship. Here, it is assumed that the line K = FP has an elevation angle / depression angle θ. Since the line K passes through (0, C) and has a slope of tan θ, K can be expressed as follows.

【0011】: y=Tx+c ここに、T=tanθである。 K : y = Tx + c Here, T = tan θ.

【0012】Pはと前記双曲線方程式との接点であ
る。ここで、P=(Px,Py)とすると、Px=(-A2TC+A2BS)/(A2
T2-B2)およびPy=(-B2C+A2BTS)/(A2T2-B2)を得る。ここ
に、S=(T2+1)1/2である。
P is a contact point between K and the hyperbolic equation. Here, if P = (Px, Py), Px = (-A 2 TC + A 2 BS) / (A 2
T 2 -B 2 ) and Py = (− B 2 C + A 2 BTS) / (A 2 T 2 -B 2 ). Here, S = (T 2 +1) 1/2 .

【0013】Pがわかると、Pと(0, -C)とを連結して
が得られる。とy=-C-fとの交点から所望のdを得
ることができる。ここに、fはカメラ12の焦点であ
る。計算後、d=f(-A2TC+A2BS)/Wを得る。ここに、W=(A2
T2C-2B2C+A2BTS)である。
When P is known, a line L is obtained by connecting P and (0, -C). The desired d can be obtained from the intersection of L and y = -Cf. Here, f is the focus of the camera 12. After the calculation, d = f (−A 2 TC + A 2 BS) / W is obtained. Where W = (A 2
T 2 C-2B 2 C + A 2 BTS).

【0014】前記写像関係が発見されると、環状の像2
1を前記球面座標系に変換することができる。次いで、
平面座標と球面座標との間の像変換のための公知のパノ
ラマ表示方法が、所望のパノラマ像を得るために適用す
ることができる。
When the mapping relation is found, a circular image 2
1 can be converted to the spherical coordinate system. Then
Known panoramic display methods for image conversion between planar coordinates and spherical coordinates can be applied to obtain a desired panoramic image.

【0015】本発明をその好ましい実施例に関して説明
したが、特許請求の範囲に示す本発明の精神および範囲
から逸脱することなしに、他の多くの考えられる修正お
よび変更が可能である。
Although the present invention has been described with reference to preferred embodiments thereof, many other possible modifications and variations are possible without departing from the spirit and scope of the invention as set forth in the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るパノラマ像装置の概要図である。FIG. 1 is a schematic diagram of a panoramic image device according to the present invention.

【図2】Aは、パノラマ像装置の双曲線凸面鏡から反射
された、カメラによりとられた環状の像の概要図であ
り、Bは、Aの環状の像上で歪み取りプロセスを行うこ
とにより得られた直線状のパノラマ像の概要図である。
FIG. 2A is a schematic diagram of an annular image taken by a camera reflected from a hyperbolic convex mirror of a panoramic imager, and B is obtained by performing a distortion removal process on the annular image of A. It is a schematic diagram of the obtained linear panoramic image.

【図3】Aは環状の像の一例であり、また、Bは、Aの
環状の像上で歪み取りプロセスを行うことにより得られ
た直線状パノラマ像である。
FIG. 3A is an example of an annular image, and B is a linear panoramic image obtained by performing a distortion removing process on the annular image of A.

【図4】双曲線の第1の焦点を実質的に通過して、対応
する第2の焦点に至る光の反射を示す。
FIG. 4 shows the reflection of light substantially through a hyperbolic first focus to a corresponding second focus.

【図5】本発明に従う双曲線凸面鏡の寸法を示す。FIG. 5 shows the dimensions of a hyperbolic convex mirror according to the invention.

【図6】Aは環状の像のための極座標であり、Bは、球
面座標の仰角/俯角と環状の像のピクセルとの間の関係
を示す。
FIG. 6A is polar coordinates for an annular image, and B shows the relationship between elevation / depression angles of spherical coordinates and pixels of the annular image.

【符号の説明】[Explanation of symbols]

11 双曲線凸面鏡 12 カメラ 13 コンピュータ 21 円形像(環状の像) 23 直線状のパノラマ像 41,42 第1の焦点および第2の焦点 DESCRIPTION OF SYMBOLS 11 Hyperbolic convex mirror 12 Camera 13 Computer 21 Circular image (annular image) 23 Linear panoramic image 41, 42 1st focus and 2nd focus

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−206939(JP,A) 特開 昭61−107340(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03B 37/00 - 37/06 H04N 5/225 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-206939 (JP, A) JP-A-61-107340 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03B 37/00-37/06 H04N 5/225

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 パノラマ像装置であって、第1の焦点
と、前記第1の焦点および該第1の焦点に対応する第2
の焦点を含む2つの焦点を有する双曲線方程式(y2/B2)-
(x2/A2)=1に従う曲率とを有する双曲線凸面鏡と、前記
双曲線凸面鏡に相対するレンズを有するカメラであって
その光学的中心が前記第2の焦点と重なり合い、これに
より前記双曲線凸面鏡から反射される環状の像をとる場
所に配置されたカメラと、前記環状の像を特定の観察角
に基づいて表示される平面像に変えるために前記環状の
像を所定の座標系に写像するための前記カメラに接続さ
れたコンピュータとを含む、パノラマ像装置。
1. A panoramic image apparatus, comprising: a first focus; a second focus corresponding to the first focus and the first focus;
Hyperbolic equation with two focal points (y 2 / B 2 )
a hyperbolic convex mirror having a curvature according to (x 2 / A 2 ) = 1, and a camera having a lens opposite to the hyperbolic convex mirror, the optical center of which overlaps the second focal point, whereby the hyperbolic convex mirror A camera arranged at a location where the reflected circular image is taken, and for mapping the circular image to a predetermined coordinate system in order to change the circular image into a plane image displayed based on a specific observation angle. And a computer connected to said camera.
【請求項2】 前記所定の座標系が極座標系からなり、
前記極座標系に写像された前記環状の像がパノラマ表示
方法に従って平面像に変えられ、前記所定の座標系が立
方座標系からなり、前記環状の像が、式 d=f(-A2TC+A2
BS)/Wであってdがピクセルと前記環状の像の中心との
間の距離であり、C2=A2+B2であり、fが前記カメラの焦
点であり、S2=T2+1であり、W=(A2T2C-2B2C+ A2BTS)であ
り、T=tanθであり、またθが前記極座標系の仰角/俯
角である、式 d=f(-A2TC+A2BS)/Wに従って前記極座標
系に写像され得る、請求項1に記載のパノラマ像装置。
2. The method according to claim 1, wherein the predetermined coordinate system is a polar coordinate system,
The annular image mapped to the polar coordinate system is changed to a plane image according to a panoramic display method, the predetermined coordinate system is formed of a cubic coordinate system, and the annular image is represented by a formula d = f (-A 2 TC + A 2
BS) / W, where d is the distance between the pixel and the center of the annular image, C 2 = A 2 + B 2 , f is the focus of the camera, and S 2 = T 2 +1, W = (A 2 T 2 C-2B 2 C + A 2 BTS), T = tan θ, and θ is the elevation angle / depression angle of the polar coordinate system, d = f (−A The panoramic image device according to claim 1, wherein the panoramic image device can be mapped to the polar coordinate system according to 2 TC + A 2 BS) / W.
【請求項3】 前記所定の座標系が円柱座標系からな
り、前記立方座標系に写像された前記環状の像がパノラ
マ表示方法に従う平面に変換され、前記円柱座標系に写
像された前記環状の像がパノラマ表示方法に従って平面
像に変換され、前記双曲線凸面鏡が30mmの直径、15.8
2mmの高さ、および、73度の観察角の範囲を有し、ま
た、前記双曲線方程式(y2/B2)-(x2/A2)=1が19.36mmのA
と25mmのBとを有する、請求項1に記載のパノラマ像
装置。
3. The method according to claim 1, wherein the predetermined coordinate system is a cylindrical coordinate system, and the annular image mapped on the cubic coordinate system is converted into a plane according to a panoramic display method, and the annular image mapped on the cylindrical coordinate system is formed. The image is converted to a planar image according to the panoramic display method, wherein the hyperbolic convex mirror has a diameter of 30 mm, 15.8
2mm height, and has a range of 73 degrees of the viewing angle, also, the hyperbolic equation (y 2 / B 2) - (x 2 / A 2) = 1 is 19.36Mm A
2. The panoramic imaging device according to claim 1, wherein the panoramic image device has a B of 25 mm.
JP11219165A 1999-01-06 1999-08-02 Panoramic image device Expired - Fee Related JP3054146B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW88100096 1999-01-06
TW88100096 1999-01-06

Publications (2)

Publication Number Publication Date
JP3054146B1 true JP3054146B1 (en) 2000-06-19
JP2000206635A JP2000206635A (en) 2000-07-28

Family

ID=21639288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11219165A Expired - Fee Related JP3054146B1 (en) 1999-01-06 1999-08-02 Panoramic image device

Country Status (1)

Country Link
JP (1) JP3054146B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196438A (en) * 2000-10-20 2002-07-12 Matsushita Electric Ind Co Ltd Wide angle image pickup apparatus
JP2002333684A (en) * 2001-05-10 2002-11-22 Fujitsu Ltd All-around camera device for mobile photographing
CA2363775C (en) * 2001-11-26 2010-09-14 Vr Interactive International, Inc. A symmetric, high vertical field of view 360 degree reflector using cubic transformations and method
JP3979522B2 (en) * 2002-02-21 2007-09-19 シャープ株式会社 Camera device and monitoring system
JP4211292B2 (en) * 2002-06-03 2009-01-21 ソニー株式会社 Image processing apparatus, image processing method, program, and program recording medium
US7224326B2 (en) 2004-03-03 2007-05-29 Volo, Llc Virtual reality system
IT1378233B1 (en) * 2006-08-17 2010-07-30 Netnoe S R L METHOD OF ACQUISITION, PROCESSING AND PRESENTATION OF IMAGES AND MULTIMEDIA NAVIGATION SYSTEM COMBINED WITH THIS METHOD
CN101592856B (en) * 2008-12-19 2012-01-04 李哲秀 360-degree photographing and image regenerating device
CN102043322A (en) * 2010-11-09 2011-05-04 浙江工业大学 Portable type 360-degree circular-screen theater system
KR101469361B1 (en) * 2013-04-23 2014-12-09 서울과학기술대학교 산학협력단 Apparatus for panorama image acquisition
CN106384330B (en) * 2016-09-21 2022-02-15 深圳看到科技有限公司 Panoramic picture playing method and panoramic picture playing device

Also Published As

Publication number Publication date
JP2000206635A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
KR100922250B1 (en) Panoramic video system with real-time distortion-free imaging
KR100599423B1 (en) An omnidirectional imaging apparatus
JP4247113B2 (en) Method for capturing a panoramic image using a rectangular image sensor
WO2003056516A1 (en) Panoramic imaging and display system with canonical magnifier
JP2006352851A (en) Method and device for acquiring image of scene using composite camera
KR20020007211A (en) Omnidirectional vision sensor
JP3054146B1 (en) Panoramic image device
KR100442733B1 (en) Omniazimuthal visual system
US6345129B1 (en) Wide-field scanning tv
JP4406824B2 (en) Image display device, pixel data acquisition method, and program for executing the method
JP3641747B2 (en) Image display method and image display apparatus
JP3594225B2 (en) Wide-field camera device
Bogner An introduction to panospheric imaging
JPH1118007A (en) Omnidirectional image display system
JP3467785B2 (en) Display system and imaging device
CA2324802C (en) Panoramic imaging apparatus and method
JP2004120095A (en) Method for generating omniazimuth binocular stereoscopic vision image
JP3872250B2 (en) Wide angle imaging device
JP2001258050A (en) Stereoscopic video imaging device
JP3805631B2 (en) Multifocal omnidirectional imaging device
JP2003512783A (en) Camera with peripheral vision
KR200378726Y1 (en) A full direction panorama camera device using a conical mirror
Araki et al. High quality panoramic image generation using multiple panoramic annular lens images
KR200378727Y1 (en) A full direction panorama replaying device using a conical mirror
KR100482727B1 (en) Omnidirectional imaging device and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees