JP3053294B2 - Optical multiplexer / demultiplexer - Google Patents
Optical multiplexer / demultiplexerInfo
- Publication number
- JP3053294B2 JP3053294B2 JP12477292A JP12477292A JP3053294B2 JP 3053294 B2 JP3053294 B2 JP 3053294B2 JP 12477292 A JP12477292 A JP 12477292A JP 12477292 A JP12477292 A JP 12477292A JP 3053294 B2 JP3053294 B2 JP 3053294B2
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- optical
- demultiplexer
- channel
- optical multiplexer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12033—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for configuring the device, e.g. moveable element for wavelength tuning
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、波長多重通信に用いら
れるアレー導波路回折格子型光合分波器に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arrayed waveguide grating type optical multiplexer / demultiplexer used for wavelength division multiplexing communication.
【0002】[0002]
【従来の技術とその課題】近年、光通信においては、そ
の伝送容量を飛躍的に増加させる方法として光周波数多
重通信の研究開発が盛んに行われている。この伝送容量
の増加のためには、波長間隔の小さな光を合分波できる
装置が必要であり、波長間隔の小さな光の合分波が可能
で(分解能が良く)しかも回折効率も高いものの一例と
して、アレー導波路回折格子を用いる方法が知られてい
る。2. Description of the Related Art In recent years, in optical communication, research and development on optical frequency multiplexing communication have been actively conducted as a method of dramatically increasing the transmission capacity. In order to increase the transmission capacity, a device capable of multiplexing / demultiplexing light having a small wavelength interval is required. An example of a device capable of multiplexing / demultiplexing light having a small wavelength interval (having good resolution) and having high diffraction efficiency. A method using an array waveguide diffraction grating is known.
【0003】“Arrayed-waveguide grating for wav
elength division multi/demultiplexer with nano
meter resolution ”;Electronics Letters, vol.2
6,pp.87-88, 1990 および特開平2-244105号公報に従来
技術の開示がある。[0003] "Arrayed-waveguide grating for wav"
elength division multi / demultiplexer with nano
meter resolution ”; Electronics Letters, vol.2
6, pp. 87-88, 1990 and JP-A-2-244105 disclose the prior art.
【0004】ここで、従来のアレー導波路回折格子型光
合分波器を光周波数合分波器として用いた一例を説明す
る。図9はアレー導波路回折格子型光合分波器の構成を
示す図である。図10は図9におけるDD′線の拡大断
面図である。シリコン基板1上にあって、入力導波路2
には、送信側の光ファイバが接続され周波数多重光が入
射される。入力側スラブ導波路3において回折効果によ
り広がった光は、アレー導波路回折格子4を構成する複
数のチャンネル導波路に入り伝搬し、出力側スラブ導波
路5に達し、さらに出力導波路6に集光される。この場
合、アレー導波路回折格子4を構成する個々のチャンネ
ル導波路の長さが異なるため、チャンネル導波路伝搬後
の個々の光の位相にずれが生じこのずれ量に応じて集束
光の波面が傾く。この傾き角度により集光する位置が決
まるが、光の位相ずれ量は光周波数に依存し光周波数が
異なることから、光周波数別に集光位置が決まることに
なり、その位置に出力導波路6をおけば光周波数別に信
号光を取り出すことができる。Here, an example in which a conventional array waveguide diffraction grating type optical multiplexer / demultiplexer is used as an optical frequency multiplexer / demultiplexer will be described. FIG. 9 is a diagram showing a configuration of an arrayed waveguide grating optical multiplexer / demultiplexer. FIG. 10 is an enlarged sectional view taken along line DD 'in FIG. An input waveguide 2 on a silicon substrate 1
Is connected to an optical fiber on the transmission side, and frequency-multiplexed light is incident on the optical fiber. The light spread by the diffraction effect in the input side slab waveguide 3 enters a plurality of channel waveguides forming the array waveguide diffraction grating 4, propagates to the output side slab waveguide 5, and is collected in the output waveguide 6. Be lighted. In this case, since the lengths of the individual channel waveguides constituting the array waveguide diffraction grating 4 are different, the phase of the individual light after the propagation of the channel waveguide is shifted, and the wavefront of the focused light is changed according to the shift amount. Lean. The light condensing position is determined by the tilt angle. However, since the phase shift amount of light depends on the optical frequency and the optical frequency is different, the light condensing position is determined for each optical frequency, and the output waveguide 6 is placed at that position. With this arrangement, signal light can be extracted for each optical frequency.
【0005】アレー導波路回折格子4の特徴は、その光
周波数分解能がアレー導波路回折格子を構成するチャン
ネル導波路の長さの差(ΔL)に比例することである。
即ち、ΔLを大きく設計することにより前述の位相のず
れ量が大きくなって、従来の回折格子では実現できなか
った光周波数間隔の狭い多重光の合分波が可能となる。
図11は光波長1.55μmを中心としてその付近にて
分波を行ない、出力導波路6での特性を測定した結果を
示しており、多重数11本の光が光周波数多重間隔にて
10GHz ずつずれている。つまり、各出力導波路6の
通過波長が10GHz ずつ異なり、良好な分波特性が得
られている。アレー導波路回折格子型光合分波器では、
入出力系、集光系、回折格子など全ての機能が光導波路
を用いて一括して基板1上に作製できるので、レンズや
回折格子を組み立てるバルク型と比較して、量産性、特
性の安定性、低価格などの点において有利である。A feature of the arrayed waveguide grating 4 is that its optical frequency resolution is proportional to the difference (ΔL) between the lengths of the channel waveguides constituting the arrayed waveguide grating.
That is, by designing ΔL to be large, the above-mentioned phase shift amount becomes large, and it becomes possible to multiplex / demultiplex multiplexed light having a narrow optical frequency interval, which cannot be realized by the conventional diffraction grating.
FIG. 11 shows the result of measuring the characteristics in the output waveguide 6 by performing demultiplexing around the optical wavelength of 1.55 μm and measuring the characteristics of the output waveguide 6. It is shifted by z . In other words, transmission wavelength of the output waveguide 6 is different by 10GH z, and good branching characteristics. In an arrayed waveguide grating optical multiplexer / demultiplexer,
Since all functions such as input / output system, light condensing system, and diffraction grating can be manufactured on the substrate 1 collectively by using the optical waveguide, mass productivity and stable characteristics can be achieved compared to the bulk type in which lenses and diffraction gratings are assembled. It is advantageous in terms of properties, low price, and the like.
【0006】ところが、上述した従来のアレー導波路回
折格子型光合分波器は、回折格子により完全に受動的な
光波長合分波機能しか有していない。しかし、この合分
波機能に光周波数選択機能や透過波長幅可変機能を付加
できれば、更に適用範囲が広げられる。However, the above-mentioned conventional array waveguide diffraction grating type optical multiplexer / demultiplexer has only a completely passive optical wavelength multiplexer / demultiplexer function by a diffraction grating. However, if an optical frequency selection function and a transmission wavelength width variable function can be added to the multiplexing / demultiplexing function, the applicable range can be further expanded.
【0007】本発明は、上述の適用範囲を広げるべく光
周波数選択機能や透過波長幅可変機能を実現した光合分
波器の提供を目的とする。An object of the present invention is to provide an optical multiplexer / demultiplexer which realizes an optical frequency selection function and a transmission wavelength width variable function in order to expand the above-mentioned application range.
【0008】[0008]
【課題を解決するための手段】上述の目的を達成する本
発明の[請求項1]の発明は、入力導波路、第1のスラ
ブ導波路、長さの異なる複数のチャンネル導波路、第2
のスラブ導波路、及び出力導波路が基板上にて順に接続
されて作成されてなると共に、上記複数のチャンネル導
波路に光位相制御器を挿入してなる光合分波器におい
て、前記導波路はシリコン基板上に作られた石英系ガラ
ス導波路であり、光位相制御器は薄膜ヒータからなる熱
光学位相シフタでチャンネル導波路の長さに対応して長
さを異ならしめたことを特徴とする。 [請求項2]の発
明は、入力導波路、第1のスラブ導波路、長さの異なる
複数のチャンネル導波路、第2のスラブ導波路、及び出
力導波路が基板上にて順に接続されて作成されてなると
共に、上記複数のチャンネル導波路に光位相制御器を挿
入してなる光合分波器において、前記入力導波路、第1
のスラブ導波路、長さの異なる複数のチャンネル導波
路、第2のスラブ導波路、及び出力導波路はシリコン基
板上に形成した石英系ガラス導波路であり、前記光位相
制御器はLiNbO 3 基板上に形成された導波路と電極
とからなりチャンネル導波路の長さに対応して電極の長
さを異ならしめたことを特徴とする。 According to a first aspect of the present invention, there is provided an input waveguide and a first slider.
Waveguide, a plurality of channel waveguides of different lengths, a second
Slab waveguide and output waveguide are connected in order on the substrate
As well as multiple channels
An optical multiplexer / demultiplexer with an optical phase controller inserted in the waveguide
The waveguide is a quartz glass formed on a silicon substrate.
Optical phase controller is a thin film heater
The optical phase shifter has a length corresponding to the length of the channel waveguide.
It is characterized by different sizes. Issue of [Claim 2]
Ming, input waveguide, first slab waveguide, different length
A plurality of channel waveguides, a second slab waveguide, and
When the force waveguide is created by being connected on the substrate in order
In both cases, an optical phase controller is inserted into the multiple channel waveguides.
In the optical multiplexer / demultiplexer, the input waveguide, the first
Slab waveguide, multiple channel waveguides of different lengths
The waveguide, the second slab waveguide, and the output waveguide are silicon-based.
A quartz glass waveguide formed on a plate, wherein the optical phase
The controller is a waveguide and electrodes formed on a LiNbO 3 substrate.
The length of the electrode corresponding to the length of the channel waveguide
It is characterized by different sizes.
【0009】[0009]
【作用】複数のチャンネル導波路にその長さに対応して
光位相制御器を挿入することにより、等価的に導波路の
長さΔLを長くしたり短くする機能を有することにな
り、透過光周波数を切替える光周波数選択スイッチとな
り、複数の光周波数に重量されてくる信号を時間的に選
択して取出すことができ、光周波数領域におけるチュー
ナとして動作する。また、複数のチャンネル導波路に光
位相制御器を挿入することにより、その透過波長の幅
(透過帯域幅)を制御することができ、幅の拡大により
フィルタとしての最適制御が可能となる。By inserting an optical phase controller into a plurality of channel waveguides corresponding to their lengths, the waveguides have a function of equivalently increasing or decreasing the length ΔL of the waveguides, and transmitting light. It becomes an optical frequency selection switch for switching the frequency, and it can temporally select and extract a signal weighed at a plurality of optical frequencies, and operates as a tuner in the optical frequency domain. Further, by inserting an optical phase controller into a plurality of channel waveguides, the width of the transmission wavelength (transmission band width) can be controlled, and the widening of the width enables optimal control as a filter.
【0010】[0010]
【実施例】ここで、本発明の実施例について図1〜図8
を参照して説明する。 [実施例1]図1は第1実施例である光周波数選択可能
なアレー導波路回折格子型光合分波器の平面図である。
基板1上に入力導波路2(例えば11本)、第1のスラ
ブ導波路3、複数のチャンネル導波路4(例えば41
本)、第2のスラブ導波路5、及び出力導波路6(例え
ば11本)が順に接続されて備えられている。 ここ
で、チャンネル導波路4は、同一の曲率をもって長さの
異なる複数本が形成され、導波路の長さΔLを大きくし
て狭い周波数間隔でも分解能を上げられるように形成さ
れている。更に、このチャンネル導波路4には、各導波
路につきその導波路の長さに対応して形成された位相制
御器である熱光学位相シフタ7が装荷されている。この
熱光学位相シフタ7は、薄膜ヒータであり、温度を変化
させて屈折率を変えることにより光周波数をシフトさせ
るものである。また、熱光学位相シフタ7をチャンネル
導波路4の長さに対応させるのは、各チャンネル導波路
での周波数シフトを全導波路にて同様に行なうためであ
る。FIG. 1 to FIG. 8 show an embodiment of the present invention.
This will be described with reference to FIG. [Embodiment 1] FIG. 1 is a plan view of an optical waveguide selectable array waveguide grating type optical multiplexer / demultiplexer according to a first embodiment.
On a substrate 1, an input waveguide 2 (for example, eleven), a first slab waveguide 3, and a plurality of channel waveguides 4 (for example, 41).
Book), a second slab waveguide 5, and an output waveguide 6 (for example, 11). Here, a plurality of channel waveguides 4 having the same curvature and different lengths are formed, and are formed so that the length ΔL of the waveguide is increased so that the resolution can be increased even at a narrow frequency interval. Further, the channel waveguide 4 is loaded with a thermo-optic phase shifter 7 which is a phase controller formed for each waveguide corresponding to the length of the waveguide. The thermo-optic phase shifter 7 is a thin-film heater, and shifts the optical frequency by changing the temperature to change the refractive index. The reason why the thermo-optic phase shifter 7 is made to correspond to the length of the channel waveguide 4 is that the frequency shift in each channel waveguide is similarly performed in all the waveguides.
【0011】本光合分波器の作製に当たっては、図2に
示すようにシリコン基板1上に火炎堆積法を用いて、ま
ず石英ガラスのアンダークラッド膜を30μm堆積し、
次にGeを添加した石英ガラスをコア膜として7μm堆
積した。コア膜の屈折率はアンダークラッドおよびオー
バークラッドの石英ガラスより0.75%だけ大きくし
た。次にフォトリソグラフィと反応性イオンエッチング
によってコア膜の不要部分を削り、図1および図2に示
す導波路形状を作製した。更に火炎堆積法によって石英
ガラスのオーバークラッド膜を堆積することによって埋
め込み型の3次元光導波路4を作製した。導波路コアサ
イズは7μm×7μmとした。最後にフォトリソグラフ
ィと金属蒸着法によって熱光学位相シフタ7を製作し
た。In manufacturing the optical multiplexer / demultiplexer, as shown in FIG. 2, an under clad film of quartz glass is first deposited on a silicon substrate 1 by a flame deposition method to a thickness of 30 μm.
Next, 7 μm of quartz glass to which Ge was added was deposited as a core film. The refractive index of the core film was 0.75% higher than that of the under clad and over clad quartz glass. Next, unnecessary portions of the core film were cut off by photolithography and reactive ion etching to produce the waveguide shapes shown in FIGS. Further, a buried type three-dimensional optical waveguide 4 was manufactured by depositing an over-cladding film of quartz glass by a flame deposition method. The waveguide core size was 7 μm × 7 μm. Finally, the thermo-optic phase shifter 7 was manufactured by photolithography and metal vapor deposition.
【0012】光導波路回路の設計に当たっては、アレー
導波路回折格子のピッチ(アレー導波路を構成するチャ
ンネル導波路4のスラブ導波路3、5端における間隔)
dは20μm、スラブ導波路の曲率半径fは5762μ
m、アレー導波路を構成するチャンネル導波路のとなり
の導波路との光路長差ΔLを1656μmとした。この
とき、出力導波路6のスラブ導波路5端における線分散
は、光波長1.55μm帯において10GHZ 当り25
μm間隔となり、よって波長多重間隔10GH Z が得ら
れるように出力導波路6の入力部の間隔は25μm間隔
とした。熱光学位相シフタ7の各チャンネル導波路と重
なる長さは隣の導波路と重なる長さに比べてΔL=2mm
だけ異なるようにした。本実施例の光周波数選択可能な
アレー導波路回折格子型光合分波器では、熱光学位相シ
フタ7を駆動することによってアレー導波路のチャンネ
ル導波路間の光路長差ΔLを変化させることができ、あ
る周波数の光の集光位置が移動できて出力導波路6での
光周波数を切り替えることができた。このときの実際の
熱光学位相シフタ部の導波路温度と光周波数シフトとの
関係は、1.7GHZ /℃であった。またチャンネル切
り替えに要する時間は100msecであった。この光周波
数選択可能な光合分波器は任意の光周波数の信号を任意
の出力ポートから取り出すことができる点で非常に有効
な部品として働く。In designing an optical waveguide circuit, an array
The pitch of the waveguide grating (the channel that constitutes the array waveguide)
(Spacing of the slab waveguides 3 and 5 of the tunnel waveguide 4)
d is 20 μm, and the radius of curvature f of the slab waveguide is 5762 μm.
m, next to the channel waveguide that constitutes the array waveguide
Was set to 1656 μm. this
When the linear dispersion of the output waveguide 6 at the end of the slab waveguide 5 is obtained.
Is 10 GH in the optical wavelength 1.55 μm band.Z25 per hit
μm interval, so wavelength multiplexing interval 10GH ZGot
The distance between the input portions of the output waveguide 6 is 25 μm.
And Each channel waveguide of the thermo-optic phase shifter 7
Length is ΔL = 2 mm compared to the length overlapping the adjacent waveguide.
Only different. Optical frequency selectable in this embodiment
In an arrayed waveguide grating optical multiplexer / demultiplexer, a thermo-optic phase shifter is used.
By driving the lid 7, the channel of the array waveguide is
The optical path length difference ΔL between the optical waveguides can be changed.
The focus position of light of a certain frequency can be moved,
The optical frequency could be switched. The actual at this time
Between the waveguide temperature of the thermo-optic phase shifter and the optical frequency shift
The relationship is 1.7GHZ/ ° C. Also channel off
The time required for the replacement was 100 msec. This light frequency
Selectable number of optical multiplexer / demultiplexers can output signals of any optical frequency
Very effective in that it can be taken out from the output port of
Work as a simple part.
【0013】[実施例2]図3に本発明の第2実施例と
しての通過帯域幅可変なアレー導波路回折格子型光合分
波器の平面図を、図4にBB′線の拡大断面図を示す。
その構成はほとんど実施例1の光合分波器と同様である
が、熱光学位相シフタ8がアレー回折格子のチャンネル
導波路4の一本おきに装荷されている点が異なる。熱光
学位相シフタ8を駆動しないときの光合分波器のフィル
タ特性を図5に黒丸で示す。これに対して熱光学位相シ
フタ8を駆動して、熱光学位相シフタのある部分の導波
路温度を無い部分に対して3℃だけ高くしたときの光合
分波器のフィルタ特性を図5の白丸で示す。このよう
に、チャンネル導波路4の一本おきに熱光学位相シフタ
8を備え駆動することにより、実施例1では全部のチャ
ンネル導波路4に熱光学位相シフタを備えて周波数選択
を行なったのに対して、偶数本又は奇数本ごとに長さΔ
Lを等価的に変化させた結果、集光周波数帯を変化させ
ることができる。この結果、光周波数合分波器として用
いるときは、使用する信号光に乗せられている信号容量
によってその透過帯域幅を最適に与えることが好まし
い。本実施例の透過帯域幅可変なアレー導波路回折格子
型光合分波器は、使用する信号光によってその最適な透
過帯域幅を変化させることができるという点で非常に有
効である。[Embodiment 2] FIG. 3 is a plan view of an array waveguide diffraction grating type optical multiplexer / demultiplexer having a variable pass band width according to a second embodiment of the present invention, and FIG. 4 is an enlarged sectional view taken along the line BB '. Is shown.
Its configuration is almost the same as that of the optical multiplexer / demultiplexer of the first embodiment, except that the thermo-optic phase shifter 8 is mounted on every other channel waveguide 4 of the array diffraction grating. The filter characteristics of the optical multiplexer / demultiplexer when the thermo-optic phase shifter 8 is not driven are shown by black circles in FIG. On the other hand, the filter characteristics of the optical multiplexer / demultiplexer when the thermo-optic phase shifter 8 is driven to increase the waveguide temperature in a certain portion of the thermo-optic phase shifter by 3 ° C. with respect to the non-wavelength portion is shown by a white circle in FIG. Indicated by As described above, by driving with the thermo-optic phase shifter 8 provided every other channel waveguide 4, in the first embodiment, the frequency selection is performed with the thermo-optic phase shifter provided in all the channel waveguides 4. On the other hand, the length Δ
As a result of changing L equivalently, the light-collecting frequency band can be changed. As a result, when used as an optical frequency multiplexer / demultiplexer, it is preferable that the transmission bandwidth is optimally given by the signal capacity carried on the used signal light. The array waveguide diffraction grating type optical multiplexer / demultiplexer having a variable transmission bandwidth of this embodiment is very effective in that the optimum transmission bandwidth can be changed depending on the signal light used.
【0014】第2実施例における位相制御器は、チャン
ネル導波路の一本おきに備えられた構造としたが、一定
本おきに長さΔLを変化させて透過波長幅を変化させら
れることから2本おきとか3本おきという具合に位相制
御器を備えてもよい。また、複数のチャンネル導波路4
の全本数に位相制御器を備えた場合であっても、備える
位置を変えたり、チャンネル導波路の長さに比例させる
ことなく位相制御器を備えたり、また、各本について温
度を変えたりすることによっても、透過波長幅を変える
ことができフィルタとして機能できる。Although the phase controller in the second embodiment has a structure provided for every other channel waveguide, the transmission wavelength width can be changed by changing the length ΔL every other line. A phase controller may be provided such as every other or every third. In addition, a plurality of channel waveguides 4
Even if the number of phase controllers is provided in all of the above, the position to be provided is changed, the phase controller is provided without being proportional to the length of the channel waveguide, and the temperature is changed for each book. Also in this case, the transmission wavelength width can be changed and the filter can function as a filter.
【0015】[実施例3]第1実施例、第2実施例は、
位相制御器として熱光学位相シフタ7,8を備えた例を
示したが、本実施例では電気光学位相シフタを備えてい
る。すなわち、電気光学効果により屈折率を変え長さΔ
Lを変える構成を示している。図6は、実施例3として
の光周波数選択可能なアレー導波路回折格子型光合分波
器の平面図である。図7は図6におけるCC′線の拡大
断面図である。図8は図6における電気光学位相シフタ
用電極11の配線を説明するための拡大平面図である。
この光合分波器の動作原理は実施例1の光合分波器と全
く同じであるが、本実施例の光合分波器ではアレー導波
路に挿入する光位相シフタとしてLiNbO3 結晶の電
気光学効果を利用した導波路型位相シフタ11である点
が異なる。光位相シフタ以外の部分では曲がりによる光
損失の小さなガラス導波路を用いている。[Embodiment 3] The first embodiment and the second embodiment are as follows.
Although the example in which the thermo-optical phase shifters 7 and 8 are provided as the phase controller has been described, the present embodiment includes the electro-optical phase shifter. That is, the refractive index is changed by the electro-optic effect and the length Δ
The configuration for changing L is shown. FIG. 6 is a plan view of an arrayed waveguide grating type optical multiplexer / demultiplexer capable of selecting an optical frequency according to a third embodiment. FIG. 7 is an enlarged sectional view taken along the line CC 'in FIG. FIG. 8 is an enlarged plan view for explaining the wiring of the electro-optical phase shifter electrode 11 in FIG.
The operating principle of this optical multiplexer / demultiplexer is exactly the same as that of the optical multiplexer / demultiplexer of the first embodiment. However, in the optical multiplexer / demultiplexer of the present embodiment, the electro-optic effect of LiNbO 3 crystal is used as an optical phase shifter inserted into the array waveguide. In that it is a waveguide type phase shifter 11 utilizing the In portions other than the optical phase shifter, a glass waveguide having a small light loss due to bending is used.
【0016】LiNbO3 光導波路及び電気光学位相シ
フタ用電極11の製作は、LiNbO3 基板9の表面に
Ti薄膜をスパッタ法で付着させ、リソグラフィ及びド
ライエッチング法で導波路パターンを形成した。次に1
050度でTiを熱拡散することによりTi拡散3次元
光導波路10をLiNbO3 表面層に作製した。次にS
iO2 バッファ層12をスパッタ法で作製し、更に蒸着
法によるAuで電極を作製した。この光合分波器の構成
は、入出力部、スラブ展開部などの導波路曲がり部を、
光損失の小さなガラス導波路を用いており、位相変調の
必要な部分にのみ直線のTi拡散LiNbO3 導波路1
0を用いた。本実施例の光合分波器では電気光学効果を
用いた位相変調を利用しているため、熱光学効果を利用
した実施例1に比べて格段に速い1μsec 以下の時間で
透過光周波数の選択ができた。また電気光学効果による
位相制御であるため、本質的に熱の発生がないという点
で非常に有利な方法である。In manufacturing the LiNbO 3 optical waveguide and the electrode 11 for the electro-optical phase shifter, a Ti thin film was adhered to the surface of the LiNbO 3 substrate 9 by sputtering, and a waveguide pattern was formed by lithography and dry etching. Then 1
By thermally diffusing Ti at 050 degrees, a Ti-diffused three-dimensional optical waveguide 10 was formed on the LiNbO 3 surface layer. Then S
The iO 2 buffer layer 12 was formed by a sputtering method, and an electrode was formed by Au by a vapor deposition method. The configuration of the optical multiplexer / demultiplexer includes a waveguide bending portion such as an input / output unit and a slab development unit,
A glass waveguide with small light loss is used, and a linear Ti-diffused LiNbO 3 waveguide 1 is used only in a portion where phase modulation is necessary.
0 was used. Since the optical multiplexer / demultiplexer of the present embodiment utilizes the phase modulation using the electro-optic effect, the selection of the transmitted light frequency can be made within 1 μsec or less, which is much faster than the first embodiment utilizing the thermo-optic effect. did it. Further, since the phase is controlled by the electro-optic effect, it is a very advantageous method in that heat is not generated essentially.
【0017】[0017]
【発明の効果】以上説明したように、本発明のアレー導
波路回折格子型光合分波器は、従来完全に受動的な機能
しか有しなかった光合分波器に、光周波数選択機能や透
過帯域幅可変機能を付与することができる。これにより
アレー導波路回折格子型光合分波器の適用できる範囲が
広まる点で有効である。As described above, the arrayed waveguide grating type optical multiplexer / demultiplexer according to the present invention can be applied to an optical multiplexer / demultiplexer which has only a completely passive function in the past. A variable bandwidth function can be provided. This is effective in that the applicable range of the arrayed waveguide grating type optical multiplexer / demultiplexer is widened.
【図1】本発明第1実施例の光周波数選択可能なアレー
導波路回折格子型光合分波器の平面図。FIG. 1 is a plan view of an arrayed waveguide diffraction grating type optical multiplexer / demultiplexer capable of selecting an optical frequency according to a first embodiment of the present invention.
【図2】図1におけるAA′線の拡大断面図。FIG. 2 is an enlarged sectional view taken along line AA ′ in FIG.
【図3】本発明第2実施例の透過帯域幅可変なアレー導
波路回折格子型光合分波器の平面図。FIG. 3 is a plan view of an arrayed waveguide grating optical multiplexer / demultiplexer having a variable transmission bandwidth according to a second embodiment of the present invention.
【図4】図3におけるBB′線の拡大断面図。FIG. 4 is an enlarged sectional view taken along the line BB ′ in FIG. 3;
【図5】本発明第2実施例の透過帯域幅可変なアレー導
波路回折格子型光合分波器の1つの出力ポートからの透
過特性図。FIG. 5 is a transmission characteristic diagram from one output port of an arrayed waveguide grating optical multiplexer / demultiplexer having a variable transmission bandwidth according to a second embodiment of the present invention.
【図6】本発明第3実施例の光周波数選択可能なアレー
導波路回折格子型光合分波器の平面図。FIG. 6 is a plan view of an arrayed waveguide grating optical multiplexer / demultiplexer capable of selecting an optical frequency according to a third embodiment of the present invention.
【図7】図6におけるCC′線の拡大断面図。FIG. 7 is an enlarged sectional view taken along line CC ′ in FIG. 6;
【図8】図6における電気光学位相シフタ用電極の配線
を説明するための拡大平面図。FIG. 8 is an enlarged plan view for explaining wiring of electrodes for an electro-optical phase shifter in FIG. 6;
【図9】従来技術によるアレー導波路回折格子型光合分
波器の平面図。FIG. 9 is a plan view of an array waveguide diffraction grating type optical multiplexer / demultiplexer according to the related art.
【図10】図9におけるDD′線の拡大断面図。FIG. 10 is an enlarged sectional view taken along line DD ′ in FIG. 9;
【図11】従来技術のアレー導波路回折格子型光合分波
器の透過光周波特性図。FIG. 11 is a transmission optical frequency characteristic diagram of a conventional arrayed waveguide grating optical multiplexer / demultiplexer.
1 シリコン基板 2 入力導波路 3 入力側スラブ導波路 4 アレー導波路回折格子 5 出力側スラブ導波路 6 出力導波路 7,8 熱光学位相シフタ 9 LiNbO3 基板 10 Ti拡散LiNbO3 光導波路 11 電気光学位相シフタ用電極 12 SiO2 バッファ層 13 電気光学位相シフタ用−電極 14 電気光学位相シフタ用+電極DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Input waveguide 3 Input side slab waveguide 4 Array waveguide diffraction grating 5 Output side slab waveguide 6 Output waveguide 7,8 Thermo-optic phase shifter 9 LiNbO 3 substrate 10 Ti diffusion LiNbO 3 optical waveguide 11 Electro-optics Electrode for phase shifter 12 SiO 2 buffer layer 13 -electrode for electro-optical phase shifter 14 + electrode for electro-optical phase shifter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 扇太 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 小湊 俊海 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 高橋 浩 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 肥田 安弘 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平4−326308(JP,A) 米国特許5002350(US,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/29 - 1/313 G02F 1/00 - 1/035 G02B 6/12 G02B 6/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Oota Suzuki, Inventor 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Toshimi Kominato 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Nippon Telegraph and Telephone Corporation (72) Inventor Hiroshi Takahashi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Yasuhiro Hita 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan (56) References JP-A-4-326308 (JP, A) US Patent 5002350 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/29- 1/313 G02F 1/00-1/035 G02B 6/12 G02B 6/28
Claims (2)
異なる複数のチャンネル導波路、第2のスラブ導波路、
及び出力導波路が基板上にて順に接続されて作成されて
なると共に、上記複数のチャンネル導波路に光位相制御
器を挿入してなる光合分波器において、 前記導波路はシリコン基板上に作られた石英系ガラス導
波路であり、光位相制御器は薄膜ヒータからなる熱光学
位相シフタでチャンネル導波路の長さに対応して長さを
異ならしめたことを特徴とする光合分波器。 An input waveguide, a first slab waveguide, a plurality of channel waveguides having different lengths, a second slab waveguide,
And output waveguides is <br/> been created are connected in this order in substrate Rutotomoni, optical phase control to the plurality of channel waveguides
In the optical multiplexer / demultiplexer in which a waveguide is inserted, the waveguide is a quartz glass waveguide formed on a silicon substrate.
The optical phase controller is a thermo-optic consisting of a thin film heater.
Use the phase shifter to adjust the length according to the length of the channel waveguide.
An optical multiplexer / demultiplexer characterized by being different.
異なる複数のチャンネル導波路、第2のスラブ導波路、
及び出力導波路が基板上にて順に接続されて作成されて
なると共に、上記複数のチャンネル導波路に光位相制御
器を挿入してなる光合分波器において、 前記入力導波路、第1のスラブ導波路、長さの異なる複
数のチャンネル導波路、第2のスラブ導波路、及び出力
導波路はシリコン基板上に形成した石英系ガラス導波路
であり、前記光位相制御器はLiNbO 3 基板上に形成
された導波路と電極とからなりチャンネル導波路の長さ
に対応して電極の長さを異ならしめたことを特徴とする
光合分波器。 2. An input waveguide, a first slab waveguide, a length of
A plurality of different channel waveguides, a second slab waveguide,
And the output waveguides are connected and created on the substrate in order
And optical phase control to the plurality of channel waveguides.
In the optical multiplexer / demultiplexer in which the optical waveguide is inserted, the input waveguide, the first slab waveguide,
A number of channel waveguides, a second slab waveguide, and an output
The waveguide is a quartz glass waveguide formed on a silicon substrate
Wherein the optical phase controller is formed on a LiNbO 3 substrate.
Length of channel waveguide consisting of waveguide and electrode
The feature is that the length of the electrode is changed according to
Optical multiplexer / demultiplexer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12477292A JP3053294B2 (en) | 1992-05-18 | 1992-05-18 | Optical multiplexer / demultiplexer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12477292A JP3053294B2 (en) | 1992-05-18 | 1992-05-18 | Optical multiplexer / demultiplexer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05323246A JPH05323246A (en) | 1993-12-07 |
JP3053294B2 true JP3053294B2 (en) | 2000-06-19 |
Family
ID=14893737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12477292A Expired - Fee Related JP3053294B2 (en) | 1992-05-18 | 1992-05-18 | Optical multiplexer / demultiplexer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3053294B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401808B2 (en) | 2008-05-30 | 2013-03-19 | Nippon Telegraph And Telephone Corporation | Wavelength-multiplexed optical signal measurement device and the method thereof |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5425116A (en) * | 1993-11-16 | 1995-06-13 | At&T Corp. | Tunable optical waveguide grating arrangement |
EP0662621B1 (en) * | 1994-01-11 | 1998-05-06 | Siemens Aktiengesellschaft | Optical device having strip optical waveguides |
US5636300A (en) * | 1994-12-12 | 1997-06-03 | Corning Incorporated | MxO multiplex demultiplex component |
DE19527219B4 (en) * | 1995-07-26 | 2007-06-21 | Robert Bosch Gmbh | Tuning device for an integrated optical multi-beam interferometer |
FR2757722B1 (en) * | 1996-12-23 | 1999-03-19 | France Telecom | TEMPERATURE INDEPENDENT OPTICAL MULTIPLEXER AND / OR DEMULTIPLEXER |
GB2334594A (en) | 1998-02-20 | 1999-08-25 | Fujitsu Telecommunications Eur | Arrayed waveguide grating device |
JP2001083344A (en) * | 1999-09-10 | 2001-03-30 | Nec Corp | Array waveguide diffraction grating type optical element |
GB2361073B (en) * | 2000-04-05 | 2003-08-06 | Bookham Technology Ltd | Dispersive optical waveguide array device |
JP2002014306A (en) * | 2000-04-26 | 2002-01-18 | Sumitomo Electric Ind Ltd | Optical filter |
GB2373386A (en) * | 2001-03-16 | 2002-09-18 | Fujitsu Network Comm Inc | Compensation for higher order chromatic dispersion |
EP1624334A1 (en) | 2004-08-05 | 2006-02-08 | STMicroelectronics S.r.l. | Integrated optical network with controlled optical beam deflection and optical transmitter |
US8285150B2 (en) | 2006-10-02 | 2012-10-09 | Futurewei Technologies, Inc. | Method and system for integrated DWDM transmitters |
US8285149B2 (en) | 2006-10-02 | 2012-10-09 | Futurewei Technologies, Inc. | Method and system for integrated DWDM transmitters |
US8050525B2 (en) | 2006-10-11 | 2011-11-01 | Futurewei Technologies, Inc. | Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform |
US7532783B2 (en) * | 2006-10-11 | 2009-05-12 | Futurewei Technologies, Inc. | Method and system for integrated DWDM receivers |
US8285151B2 (en) | 2006-10-20 | 2012-10-09 | Futurewei Technologies, Inc. | Method and system for hybrid integrated 1XN DWDM transmitter |
JP4818967B2 (en) * | 2007-03-23 | 2011-11-16 | 日本電信電話株式会社 | Optical processing circuit |
JP4818968B2 (en) * | 2007-03-23 | 2011-11-16 | 日本電信電話株式会社 | Optical processing circuit |
JP2008281639A (en) * | 2007-05-08 | 2008-11-20 | Ricoh Co Ltd | Optical deflection element, optical deflection module, optical switch module and optical deflecting method |
JP2013172400A (en) * | 2012-02-22 | 2013-09-02 | Nippon Telegr & Teleph Corp <Ntt> | Optical orthogonal frequency division multiplex signal separation circuit |
WO2014129613A1 (en) * | 2013-02-25 | 2014-08-28 | カナレ電気株式会社 | Optical amplifier and laser oscillator |
JP6099144B2 (en) * | 2013-07-23 | 2017-03-22 | 日本電信電話株式会社 | Optical switch and optical switch system |
-
1992
- 1992-05-18 JP JP12477292A patent/JP3053294B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401808B2 (en) | 2008-05-30 | 2013-03-19 | Nippon Telegraph And Telephone Corporation | Wavelength-multiplexed optical signal measurement device and the method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH05323246A (en) | 1993-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3053294B2 (en) | Optical multiplexer / demultiplexer | |
Miya | Silica-based planar lightwave circuits: passive and thermally active devices | |
US6351581B1 (en) | Optical add-drop multiplexer having an interferometer structure | |
Okamoto | Recent progress of integrated optics planar lightwave circuits | |
Doerr et al. | Advances in silica planar lightwave circuits | |
JP2870499B2 (en) | Optical wavelength multiplexer / demultiplexer | |
McGreer | Arrayed waveguide gratings for wavelength routing | |
US20020159684A1 (en) | Novel optical waveguide switch using cascaded mach-zehnder interferometers | |
JP2006251563A (en) | Waveguide type variable optical attenuator | |
JP2941670B2 (en) | Tunable optical grating device | |
Doerr et al. | Integrated band demultiplexer using waveguide grating routers | |
EP1284434A2 (en) | An optical switching apparatus and method for fabricating | |
US6993217B2 (en) | Optical switch device | |
JPH0672964B2 (en) | Waveguide optical interferometer | |
JPH05313029A (en) | Light wave combining/splitting instrument | |
US20020197012A1 (en) | Method and apparatus for adding/droping optical signals in a semiconductor substrate | |
JP3527431B2 (en) | Array optical waveguide thermo-optic phase shifter, array optical waveguide grating tunable filter, and array optical waveguide optical switch | |
Doerr et al. | Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer | |
Clemens et al. | Wavelength-adaptable optical phased array in SiO 2-Si | |
Okamoto | Planar lightwave circuits (PLCs) | |
JP4263027B2 (en) | Waveguide type optical signal processor | |
JP3472247B2 (en) | Waveguide type optical multiplexer / demultiplexer | |
Li et al. | MEMS switch based serial reconfigurable OADM | |
JP2014228640A (en) | Optical filter | |
JP2000171648A (en) | Array waveguide grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000314 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |