JP3051289B2 - Coated nuclear fuel particles - Google Patents
Coated nuclear fuel particlesInfo
- Publication number
- JP3051289B2 JP3051289B2 JP6009700A JP970094A JP3051289B2 JP 3051289 B2 JP3051289 B2 JP 3051289B2 JP 6009700 A JP6009700 A JP 6009700A JP 970094 A JP970094 A JP 970094A JP 3051289 B2 JP3051289 B2 JP 3051289B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- coated
- particles
- nuclear fuel
- fuel particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、高温ガス炉等の燃料
となる燃料コンパクトの製造等に用いられる被覆核燃料
粒子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated nuclear fuel particle used for producing a fuel compact used as a fuel for a high temperature gas reactor or the like.
【0002】[0002]
【従来の技術】現在使用されている被覆燃料粒子は、核
分裂性物質や親物質(本明細書においてはこれらを総称
して“核燃料物質”という)の酸化物からなる直径20
0〜600μmの燃料核を、熱分解炭素や炭化ケイ素で
多重に被覆した微小粒子からなるものであり、燃料コン
パクトは、これらの被覆燃料粒子を黒鉛粉末およびバイ
ンダーと混合してプレス成形して炉に装荷しやすくした
ものである。2. Description of the Related Art Coated fuel particles currently used have a diameter of 20 which is composed of an oxide of a fissile material or a parent material (herein, these are collectively referred to as "nuclear fuel material").
The fuel compact is composed of fine particles in which a fuel core of 0 to 600 μm is multiply coated with pyrolytic carbon or silicon carbide. The fuel compact is obtained by mixing these coated fuel particles with graphite powder and a binder and press-molding the mixture. It is easier to load.
【0003】現在最も多く使用されているTRISO型
と呼ばれる被覆燃料粒子は、UまたはThの酸化物から
なる直径200〜600μmの燃料核を、厚さ60μm
の低密度熱分解炭素からなるバッファー層で包み、その
外側を厚さ30μmの高密度熱分解炭素層で被覆し、さ
らにその外側を厚さ25μmのSiC層で被覆し、さら
にその外側を厚さ45μmの高密度熱分解炭素層で被覆
した三重被覆構造となっている。[0003] The most commonly used coated fuel particles of the TRISO type are a fuel core made of U or Th oxide having a diameter of 200 to 600 µm and a fuel core having a thickness of 60 µm.
Wrapped in a buffer layer made of low-density pyrolytic carbon, covered with a high-density pyrolytic carbon layer having a thickness of 30 μm, covered with a 25 μm-thick SiC layer, and further covered with a thickness of 25 μm. It has a triple coating structure coated with a high-density pyrolytic carbon layer of 45 μm.
【0004】[0004]
【発明が解決しようとする課題】こうした多重被覆構造
を有する被覆燃料粒子は、個々の粒子内に核分裂生成ガ
スを保持できることが最大の利点であるが、照射中の化
学的破損が大きな問題となっている。その原因は、高温
における酸化物(燃料核)と炭化物(被覆層)との化学
反応であり、とりわけ燃料核移動と呼ばれる燃料核中の
酸素イオンがバッファー層の炭素と反応してCOガスと
なって粒子の高温側(内側)から低温側(外側)へと移
動するためであると考えられている。The greatest advantage of the coated fuel particles having such a multi-coated structure is that the fission gas can be retained in each particle, but chemical damage during irradiation is a major problem. ing. The cause is a chemical reaction between oxides (fuel nuclei) and carbides (coating layer) at high temperatures. In particular, oxygen ions in the fuel nuclei, called fuel nucleus migration, react with carbon in the buffer layer to form CO gas. It is believed that the particles move from the high temperature side (inside) to the low temperature side (outside) of the particles.
【0005】また被覆層は、流動床中での蒸着ガスの熱
分解による機械的蒸着で形成されるため、微視的観点か
らの被覆層自体の化学結合等についてはほとんど考慮さ
れておらず、被覆層自体の物理的破損も起こりやすい。[0005] Further, since the coating layer is formed by mechanical vapor deposition by thermal decomposition of a deposition gas in a fluidized bed, little consideration is given to chemical bonding of the coating layer itself from a microscopic viewpoint. The coating layer itself is likely to be physically damaged.
【0006】そこでこの発明は、燃料核の酸化物と被覆
層の炭化物との化学反応をなくし、その結果、燃料核移
動等に起因する化学的破損を少なくできるとともに、被
覆層の形成に際しても機械的蒸着を使用しないためさら
に破損しにくい、新規かつ改良された被覆燃料粒子を提
供することを目的としてなされたものである。Therefore, the present invention eliminates the chemical reaction between the oxide of the fuel core and the carbide of the coating layer, thereby reducing the chemical damage caused by the movement of the fuel nucleus and the like. It is an object of the present invention to provide a new and improved coated fuel particle that is less likely to be broken because it does not use a chemical vapor deposition.
【0007】[0007]
【課題を解決するための手段】すなわちこの発明による
被覆燃料粒子は、核燃料物質の炭化物からなる燃料核の
外側を、多重の籠状炭素クラスターで被覆してなるもの
である。籠状炭素クラスターは、炭素原子が網目状に結
合した多面体型の一種の分子カプセルであり、このカプ
セル内に核燃料物質の炭化物からなる燃料核が包み込ま
れた構造となっている。That is, the coated fuel particles according to the present invention are obtained by coating the outside of a fuel core made of a carbide of nuclear fuel material with a plurality of cage-like carbon clusters. The cage-like carbon cluster is a kind of polyhedral molecular capsule in which carbon atoms are connected in a network, and has a structure in which a fuel core made of carbide of a nuclear fuel substance is wrapped in the capsule.
【0008】この発明の被覆燃料粒子を製造するに際し
ては、核燃料物質を充填したグラファイト棒を電極とし
て不活性雰囲気中でアーク加熱する方法が採用できる。
これによって、核燃料物質炭化物の燃料核が籠状炭素ク
ラスターで多重に包まれた構造の被覆粒子を陰極部に生
成させることができる。In producing the coated fuel particles of the present invention, a method of performing arc heating in an inert atmosphere using a graphite rod filled with a nuclear fuel material as an electrode can be adopted.
Thus, coated particles having a structure in which the fuel nuclei of the nuclear fuel material carbide are wrapped in the cage-like carbon clusters in a multiple manner can be generated in the cathode portion.
【0009】かような多重籠状炭素クラスターで微粒子
を被覆して被覆粒子を製造する方法自体は既に知られて
いるが、核燃料物質の炭化物からなる燃料核を多重籠状
炭素クラスターで被覆して被覆燃料粒子を製造しようと
する提案は従来なされていない。A method for producing coated particles by coating fine particles with such multiple cage carbon clusters is already known. However, a fuel core made of carbide of nuclear fuel material is coated with multiple cage carbon clusters. No proposal has been made to produce coated fuel particles.
【0010】[0010]
【作用】この発明による被覆燃料粒子は、核燃料物質の
炭化物である燃料核の外側が、籠状炭素クラスターで多
重に被覆されたものであるから、従来の被覆燃料粒子の
ような核燃料物質の酸化物と被覆層の炭化物との化学反
応が起こることがなく、その結果、燃料核移動等による
化学破損が少なくなる。According to the coated fuel particles of the present invention, since the outside of the fuel core, which is a carbide of the nuclear fuel material, is multiply coated with the cage-shaped carbon cluster, the oxidation of the nuclear fuel material such as the conventional coated fuel particles is performed. No chemical reaction occurs between the material and the carbide of the coating layer, and as a result, chemical damage due to fuel nucleus migration and the like is reduced.
【0011】また、従来の被覆燃料粒子のように被覆層
を機械的蒸着によって形成せず、燃料核を一種の分子カ
プセルである多重籠状炭素クラスター内に包み込む構造
であるので、物理的破損も少なくまた核分裂生成ガスの
閉じ込めも効果的かつ確実になされる。Further, unlike the conventional coated fuel particles, the coating layer is not formed by mechanical vapor deposition, but has a structure in which the fuel core is wrapped in a multi-cage carbon cluster, which is a kind of molecular capsule, so that physical damage is also prevented. At least, the confinement of fission gas is also effectively and reliably achieved.
【0012】[0012]
【実施例】以下にこの発明の被覆燃料粒子の製造例を説
明する。図1は被覆燃料粒子の製造装置の概略図であ
り、通常のグラファイト棒を陽極とし、核燃料物質を充
填したグラファイト棒を陰極としてチャンバー内に取り
付ける。EXAMPLES Examples of the production of the coated fuel particles of the present invention will be described below. FIG. 1 is a schematic view of an apparatus for producing coated fuel particles, in which a normal graphite rod is used as an anode and a graphite rod filled with nuclear fuel material is used as a cathode and installed in a chamber.
【0013】核燃料物質を充填したグラファイト棒は次
のようにして製造する。直径10mm、長さ100mm
のグラファイト棒の長手方向に直径4mm、深さ40m
mの孔をドリルで穿孔し、孔の中にThO2を充填す
る。ThO2の試料としては、実験上の取扱いが容易で
入手しやすいThO2(2%)+W(98%)の混合物
を使用した。グラファイト棒に充填する核燃料物質は炭
化物でもよいが、酸化物の方が取扱いが容易で入手もし
やすい。グラファイト棒に核燃料物質を充填した後、こ
れを窒素雰囲気下で400℃1時間仮焼し、さらに10
00℃で2時間程度の熱処理を行う。A graphite rod filled with a nuclear fuel material is manufactured as follows. Diameter 10mm, length 100mm
4mm diameter, 40m depth in the longitudinal direction of graphite rod
A hole of m is drilled, and the hole is filled with ThO 2 . As a sample of ThO 2 , a mixture of ThO 2 (2%) + W (98%), which is easy to handle and easily available in an experiment, was used. The nuclear fuel material to be filled in the graphite rod may be a carbide, but an oxide is easier to handle and more readily available. After filling the graphite rod with the nuclear fuel material, it was calcined at 400 ° C. for 1 hour under a nitrogen atmosphere,
Heat treatment is performed at 00 ° C. for about 2 hours.
【0014】上記した陽極と陰極をチャンバー内にセッ
トした後、真空ポンプによりチャンバー内を10−4 T
orr 以下まで排気し、この時のリーク量を10−6 at
m.cc/sec (He換算)以下とする。これは、被覆燃料
粒子の製造に際してその収率を向上させるためには、水
や酸素を取り除くことが必要であるからである。次い
で、ヘリウムガスを導入口より400〜500 Torr 程
度チャンバー内に導入する。次いで、電極間隔が2mm
となるように陽極を移動させながら電極間に150〜2
00A、25Vの電圧を直流電源により印加して約10
分間アーク放電させる。この間、電極のチャック部やチ
ャンバーのシール面を熱から保護するために、これらの
部分に冷却水を流して冷却する。After setting the above-mentioned anode and cathode in the chamber, the inside of the chamber is evacuated to 10 −4 T by a vacuum pump.
Exhaust to orr or less and reduce the amount of leak at this time to 10 -6 at
m.cc/sec (He conversion) or less. This is because it is necessary to remove water and oxygen in order to improve the yield in producing coated fuel particles. Next, helium gas is introduced into the chamber at about 400 to 500 Torr from the inlet. Next, the electrode interval is 2 mm
While moving the anode so that
00A, 25V voltage applied by DC power supply
Arc discharge for a minute. During this time, in order to protect the chuck portion of the electrode and the sealing surface of the chamber from heat, cooling water is flowed through these portions to cool them.
【0015】アーク放電により陽極の炭素がC+となっ
てガス化し、陰極に引き寄せられてその先端表面に降り
積もったように堆積する。また陽極のグラファイト棒内
に充填したThO2は下記式によりThC2となって陰
極へ移行、堆積する。 ThO2 + 3C → ThC2 + CO2 陰極先端部に堆積しない超微粒子は、超微粒子捕集系に
より捕集される。The carbon on the anode is converted into C + and gasified by the arc discharge, and is attracted to the cathode to be deposited on the front end surface as if it were deposited. Further, ThO 2 filled in the graphite rod of the anode becomes ThC 2 according to the following formula, migrates to the cathode, and is deposited. ThO 2 + 3C → ThC 2 + CO 2 Ultra fine particles that are not deposited on the tip of the cathode are collected by the ultra fine particle collecting system.
【0016】放電終了後、陰極先端部の堆積部分を回収
し、その内部のコア部分を粉砕し、エタノール等の溶媒
中で超音波を用いて凝集させ、粒子径約100〜500
オングストロームの被覆燃料粒子を分離回収する。陰極
先端部の堆積部分からの被覆燃料粒子の分離回収は、上
記の方法以外に、粒径による選別方法や重量による選別
方法も採用することができる。After the end of the discharge, the deposited portion at the tip of the cathode is recovered, the inner core portion is pulverized, and aggregated in a solvent such as ethanol by using ultrasonic waves to obtain a particle diameter of about 100 to 500.
Angstrom coated fuel particles are separated and recovered. Separation and collection of the coated fuel particles from the deposited portion at the tip of the cathode may be performed by a method other than the above-described method, such as a particle size sorting method or a weight sorting method.
【0017】得られた被覆燃料粒子の高分解能透過電子
顕微鏡写真を図2に示す。この写真から、燃料核(X)
が多重籠状炭素クラスター(Y)内に内包されているこ
とが観察される。またこの被覆燃料粒子のEDX分析
(エネルギー分散型X線微小分析)結果を図3に示す。
この分析結果から、燃料核(X)がTh−W炭化物であ
ることがわかる。FIG. 2 shows a high-resolution transmission electron micrograph of the obtained coated fuel particles. From this picture, the fuel core (X)
Is included in the multiple cage-like carbon cluster (Y). FIG. 3 shows the results of EDX analysis (energy dispersive X-ray microanalysis) of the coated fuel particles.
From this analysis result, it is understood that the fuel core (X) is a Th-W carbide.
【0018】この発明の被覆燃料粒子は、従来のTRI
SO型被覆燃料粒子と同様に、例えば黒鉛粉末およびバ
インダーを混合しプレス成形することによって、燃料コ
ンパクトに成形することができる。また、燃料コンパク
トを中空ペレット状とした被覆燃料粒子成形体を、スリ
ーブ内に振動充填もしくは、冷間等方性加圧(CIP)
や熱間等方性加圧(HIP)処理を施して、一体型燃料
棒とすることができる。The coated fuel particles of the present invention can
As in the case of the SO-type coated fuel particles, a fuel compact can be formed by, for example, mixing graphite powder and a binder and press-molding. In addition, the fuel compact in which the fuel compact is formed as a hollow pellet is filled in the sleeve by vibration or cold isostatic pressing (CIP).
Or hot isostatic pressurization (HIP) treatment to obtain an integral fuel rod.
【0019】[0019]
【発明の効果】以上説明したところからわかるようにこ
の発明の被覆燃料粒子は、燃料核が炭化物であり、その
外側を覆うのが多重籠状炭素クラスターであるため、従
来の例えばTRISO型被覆燃料粒子でみられたような
燃料核の酸化物と被覆層の炭化物との化学反応は起こら
ず、その結果、燃料核移動等による化学的破損が少なく
なる。As can be seen from the above description, the coated fuel particles of the present invention have a fuel core made of carbide, and the outside of the coated fuel particles is covered with multiple cage carbon clusters. No chemical reaction occurs between the oxide of the fuel core and the carbide of the coating layer as seen in the particles, and as a result, chemical damage due to fuel core migration and the like is reduced.
【0020】また、多重籠状炭素クラスターは一種の分
子カプセルであるため、蒸着により形成していた従来の
被覆層でみられたような物理的破損等の問題も解消でき
るとともに、核分裂生成ガスもその内部に確実に閉じ込
めることができる。Further, since the multi-cage carbon cluster is a kind of molecular capsule, it is possible to solve the problems such as physical damage as seen in the conventional coating layer formed by vapor deposition and to reduce the fission gas. It can be securely locked inside.
【0021】さらにこの発明の被覆燃料粒子の物性値は
グラファイトに類似しているため、従来の核燃料に比べ
て熱伝導率の向上が期待でき、さらには耐熱温度も約2
000℃でグラファイトに類似しているため、核燃料の
高燃焼度化や安全性の向上も期待できる。Further, since the physical properties of the coated fuel particles of the present invention are similar to those of graphite, the thermal conductivity can be expected to be improved as compared with the conventional nuclear fuel, and the heat resistance temperature is also about 2 times.
Since it is similar to graphite at 000 ° C., it is expected that the burnup of nuclear fuel and the improvement of safety can be expected.
【図1】この発明の被覆燃料粒子の製造装置の概略説明
図。FIG. 1 is a schematic explanatory view of an apparatus for producing coated fuel particles according to the present invention.
【図2】被覆燃料粒子の高分解能透過電子顕微鏡写真。FIG. 2 is a high-resolution transmission electron micrograph of coated fuel particles.
【図3】被覆燃料粒子のEDX分析結果を示すグラフ。FIG. 3 is a graph showing the results of EDX analysis of coated fuel particles.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21C 3/62 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G21C 3/62
Claims (1)
側を多重の籠状炭素クラスターで被覆してなることを特
徴とする被覆核燃料粒子。1. Coated nuclear fuel particles characterized in that the outside of a fuel core made of carbide of a nuclear fuel material is coated with a plurality of cage-like carbon clusters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6009700A JP3051289B2 (en) | 1994-01-31 | 1994-01-31 | Coated nuclear fuel particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6009700A JP3051289B2 (en) | 1994-01-31 | 1994-01-31 | Coated nuclear fuel particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07218674A JPH07218674A (en) | 1995-08-18 |
JP3051289B2 true JP3051289B2 (en) | 2000-06-12 |
Family
ID=11727515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6009700A Expired - Fee Related JP3051289B2 (en) | 1994-01-31 | 1994-01-31 | Coated nuclear fuel particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3051289B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5145551B2 (en) * | 2006-10-17 | 2013-02-20 | 国立大学法人 名古屋工業大学 | Method for producing carbide-encapsulated carbon nanocapsules |
-
1994
- 1994-01-31 JP JP6009700A patent/JP3051289B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07218674A (en) | 1995-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7287742B2 (en) | Composite Moderator for Reactor Systems | |
US3356618A (en) | Coated boron containing material dispersed in a metal matrix | |
US11919815B2 (en) | Additive manufacturing of complex objects using refractory matrix materials | |
US3151037A (en) | Encased fuel | |
CN109912313A (en) | A kind of single-phase superhigh temperature ceramics modifying carbon/carbon composite material of new multicomponent and preparation method thereof | |
US20130044847A1 (en) | Apparatus and Method for Low Energy Nuclear Reactions | |
US3325363A (en) | Carbon coated nuclear fuel and poison particles | |
JP3051289B2 (en) | Coated nuclear fuel particles | |
US3276968A (en) | Nuclear fuel body containing uranium carbide spheroids coated with silicon carbide | |
US3232717A (en) | Uranium monocarbide thermionic emitters | |
JP2960721B1 (en) | Gadolinium-containing coated nuclear fuel particles and method for producing the same | |
KR20210116677A (en) | Sintering with SPS/FAST uranium fuel with or without combustible absorbents | |
Burkes et al. | An Overview of Current and Past W-UO [2] CERMET Fuel Fabrication Technology | |
US3321646A (en) | Thermoelectric cell and reactor | |
US3293332A (en) | Process for fabricating a fission product retentive nuclear fuel body | |
Hopkins | Silicon carbide and graphite materials for fusion reactors | |
Goeddel | The Development and Evaluation of Graphite-Matrix Fuel Compacts for the HTGR | |
CN110176317B (en) | Oxide gradient multiphase ceramic feed-through wire for nuclear power and preparation and application thereof | |
US20240062925A1 (en) | Triso architecture for palladium and silicon carbide interaction mitigation | |
Huddle et al. | Coated-particle fuel for the Dragon Reactor Experiment | |
Barrett et al. | METHOD OF PRODUCING SHAPED BODIES OF BERYLLIUM | |
Carpenter et al. | Studies of thermionic materials for space power applications informal monthly report, oct. 1-oct. 31, 1963 | |
Gontar’ et al. | Analysis of physicochemical processes in multicomponent electricity generating channels with communicating fuel-element and interelectrode gaps | |
Kim et al. | Preparation of Diffusion Couples (II) to investigate Ag/Pd Migration in ZrC/SiC | |
Fortini et al. | Enabling materials technology for nuclear-thermal propulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |