JP3049961B2 - Bacterial test equipment - Google Patents

Bacterial test equipment

Info

Publication number
JP3049961B2
JP3049961B2 JP4232511A JP23251192A JP3049961B2 JP 3049961 B2 JP3049961 B2 JP 3049961B2 JP 4232511 A JP4232511 A JP 4232511A JP 23251192 A JP23251192 A JP 23251192A JP 3049961 B2 JP3049961 B2 JP 3049961B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber plate
image
bacteria
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4232511A
Other languages
Japanese (ja)
Other versions
JPH0678748A (en
Inventor
時喜雄 大戸
靖史 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4232511A priority Critical patent/JP3049961B2/en
Publication of JPH0678748A publication Critical patent/JPH0678748A/en
Application granted granted Critical
Publication of JP3049961B2 publication Critical patent/JP3049961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液体または液体中の微生
物や体細胞の数を計測する細菌検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bacteria testing apparatus for measuring the number of microorganisms and somatic cells in a liquid or a liquid.

【0002】[0002]

【従来の技術】ここでは、細菌を微生物、体細胞なども
含めて、これらの総称として取り扱うが、これら細菌数
を計測することは、食品,醸造,臨床,上下水および半
導体などの各分野における品質管理や環境管理などを行
なう上で極めて重要である。例えば、微生物の菌数また
は微生物活性の計測には、従来、コロニー計数方法が一
般に用いられている。コロニー計数方法は、寒天培地に
試料液の一定量を散布または混合して培養し、生じたコ
ロニーを計数する方法であるが、培養時間に数十時間を
必要とし、操作も煩雑である。
2. Description of the Related Art Here, bacteria are treated as a generic term including microorganisms, somatic cells, and the like. Counting the number of these bacteria is required in various fields such as food, brewing, clinical, water and sewage, and semiconductors. It is extremely important for quality control and environmental management. For example, a colony counting method is generally used for measuring the number of microorganisms or the activity of microorganisms. The colony counting method is a method in which a certain amount of a sample solution is sprayed or mixed on an agar medium and cultured, and the resulting colonies are counted. However, the culturing time requires several tens of hours, and the operation is complicated.

【0003】その他、ATPをルシフェリン−ルシフェ
ラーゼ基質−酵素混合液で発光させ、その発光量から菌
数を推定するATP測定法、細菌を蛍光色素で染色して
観察する方法などがあるが、いずれも操作が煩雑で迅速
性に欠け、精度も悪い。このような従来の方法の欠点を
克服して、迅速で精度の高い方法が近年開発されつつあ
る。例えば、特開平2−51063号公報、雑誌J.C
lin.Chem.Clin.Biochem.,Vo
l.26,1988,pp147−148に記載されて
いるように、二次元的に散布された細菌に対して、抗原
−抗体反応を利用して発光酵素を標識し、基質を添加し
たときの発光基点を画像として撮像し計数する方法であ
る。図6はその方法を行なう装置の測定部の要部構成を
示す模式図であり、メンブレンフィルター(以後、単に
膜ということもある)1で濾過した付着細菌2(発光基
点)の発光画像を、カメラレンズ3によって高感度撮像
手段4の入力面5に結像させ、画像信号をケーブル6に
より取り出すものである。この方法は、イメージインテ
ンシファイアーなどの高感度撮像手段を用いることによ
り、測定の迅速性と正確性において優れた特徴を有す
る。
[0003] In addition, there are a method of measuring ATP, in which ATP is caused to emit light by a luciferin-luciferase substrate-enzyme mixture, and the number of bacteria is estimated from the amount of the emitted light, and a method in which bacteria are stained with a fluorescent dye and observed. The operation is complicated, lacks quickness, and the accuracy is poor. Overcoming these shortcomings of conventional methods, rapid and accurate methods have been developed in recent years. For example, JP-A-2-51063, magazine J.A. C
lin. Chem. Clin. Biochem. , Vo
l. 26, 1988, pp. 147-148, a luminescent enzyme is labeled on a two-dimensionally dispersed bacterium using an antigen-antibody reaction, and the luminescent base point when a substrate is added is determined. This is a method of capturing and counting as an image. FIG. 6 is a schematic diagram showing a configuration of a main part of a measuring unit of an apparatus for performing the method. FIG. 6 shows a luminescence image of adherent bacteria 2 (a luminescence base point) filtered by a membrane filter (hereinafter sometimes simply referred to as a membrane) 1. The camera lens 3 forms an image on the input surface 5 of the high-sensitivity imaging means 4, and an image signal is taken out by a cable 6. This method has excellent characteristics in terms of quickness and accuracy of measurement by using high-sensitivity imaging means such as an image intensifier.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
文献に示されている方法には、次のような問題がある。
この方法は、撮像手段としてフォトンレベルの感度を有
しながら、前段の光学系で光量の損失があり、その結
果、例えば細菌に含まれるATPを発光させるような発
光強度の低い反応系には、使用することができない。
However, the method disclosed in the above document has the following problems.
This method has a photon level sensitivity as an imaging means, but there is a loss of light amount in the preceding optical system, and as a result, for example, a reaction system having a low luminescence intensity such as emitting ATP contained in bacteria is: Can not be used.

【0005】また、図6に示したように、発光面を上部
から撮像するので、試薬を撮像手段と同期させる自動注
入機構など、本来、細菌付着面の上部に配置されるべき
であるのに、撮像の障害となることから設置し難くなっ
ている。したがって、あらかじめ、発光反応を開始させ
てから、膜を設置し、撮像を行なわざるを得ない。これ
では、発光寿命が短く反応開始後数秒で光量ピーク点と
なるような、例えば殆どのATP発光反応には、適用す
ることが困難である。これはこの種の測定の自動化が難
しいことを意味するものである。
Further, as shown in FIG. 6, since the light-emitting surface is imaged from above, it should be originally disposed above the bacteria-adhering surface, such as an automatic injection mechanism for synchronizing the reagent with the imaging means. However, it is difficult to install the camera because it may hinder imaging. Therefore, after the luminescence reaction is started in advance, the film must be installed and imaging must be performed. This is difficult to apply to, for example, most ATP luminescence reactions in which the luminescence lifetime is short and the light amount peaks several seconds after the start of the reaction. This means that automation of this type of measurement is difficult.

【0006】本発明は上述の問題点を解決し、低発光
量、低濃度でも高感度かつ迅速に測定することができ、
発光反応開始直後から計測可能な発光基点計数による細
菌検査装置を提供することを目的とする。
The present invention solves the above-mentioned problems, and enables high-sensitivity and rapid measurement even at a low light emission amount and a low concentration.
It is an object of the present invention to provide a bacterium testing apparatus that can measure a luminescent base point immediately after the start of a luminescent reaction.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の細菌検査装置は、あらかじめ一定量の試
料をメンブレンフィルターで濾過し捕捉した細菌を、そ
の捕捉位置で所定の試薬を用いて発光反応させ、このメ
ンブレンフィルターを高感度撮像手段の結像面に接続し
た光ファイバープレートの入力面に、細菌付着面で直接
密着させて、発光画像を撮像するように構成したもので
ある。
In order to solve the above-mentioned problems, a bacterium testing apparatus according to the present invention comprises a bacterium obtained by filtering a predetermined amount of a sample through a membrane filter in advance, and a predetermined reagent at a capturing position. The membrane filter is configured to capture a luminescent image by directly contacting the membrane filter with the input surface of an optical fiber plate connected to the imaging surface of the high-sensitivity imaging means.

【0008】[0008]

【作用】以上のように構成することにより、本発明の細
菌検査装置は、光ファイバープレートの開口数で決まる
最大受光効率で、細菌捕捉位置から受光することがで
き、また、メンブレンフィルターを高感度撮像手段の結
像面、即ち入力光ファイバープレートに、細菌付着面で
密着させて設置したために、メンブレンフィルターの裏
面から、発光反応試薬を添加、浸透した後、細菌付着面
で発光反応を開始させ、発光反応開始直後からその発光
画像を撮像することが可能となる。さらに、高感度撮像
手段の入力光ファイバープレートとして、入力像の大き
さを所定の倍率に拡大可能なテーパー型光ファイバープ
レートを用いることにより、膜面の有効視野領域を拡げ
ることができる。
With the above configuration, the bacteria test apparatus of the present invention can receive light from the bacteria capturing position with the maximum light receiving efficiency determined by the numerical aperture of the optical fiber plate, and can perform high-sensitivity imaging of the membrane filter. Since the luminous reaction reagent was added and penetrated from the back surface of the membrane filter to the image-forming surface of the means, that is, the input optical fiber plate in close contact with the bacterium-adhering surface, the luminescence reaction was started on the bacterium-adhered surface, and the luminescence was started. Immediately after the start of the reaction, the luminescence image can be taken. Further, by using a tapered optical fiber plate capable of expanding the size of an input image to a predetermined magnification as the input optical fiber plate of the high-sensitivity imaging means, the effective visual field region of the film surface can be expanded.

【0009】[0009]

【実施例】以下、本発明を実施例に基づき説明する。図
1は本発明の細菌検査装置の測定部の構成を示す模式断
面図である。図1において、図示してない濾過装置によ
り細菌が捕捉されたメンブレンフィルター7は、マルチ
チャンネルプレートを内蔵したイメージインテンシファ
イアーの高感度撮像手段8の一部である入力光ファイバ
ープレート8aの上に置き、このとき、メーンブレンフ
ィルター7の細菌が付着している面が入力光ファイバー
プレート8aに接するようにしてある。そして、マルチ
チャンネルプレートを内蔵したイメージインテンシファ
イアーの高感度撮像手段8の内部で増倍された画像を、
出力光ファイバープレート8bに蛍光画像として映し出
し、その下方に設置してあるカメラレンズ9と、撮像素
子、例えばCCDカメラ10によって撮像し、画像信号
として出力することができる。さらに、測定部の蓋11
には、発光反応基質試薬の注入ノズル12を設けてあ
り、前処理した後のメンブレンフィルター7の細菌付着
面の裏側から、試薬を注入することができ、表面に浸透
・拡散した時点から発光反応が開始される。高感度撮像
手段8の電圧リード線13には、光電面8cが接地電位
となるように、高電圧をかける。接地電位とするのは、
光電面8cに高電圧を印加すると、ウエットな膜7や試
薬に漏電したり、光電面8cにノイズを発生させる危険
があるからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a schematic cross-sectional view showing the configuration of the measuring section of the bacteria test apparatus of the present invention. In FIG. 1, a membrane filter 7 in which bacteria are captured by a filtration device (not shown) is placed on an input optical fiber plate 8a which is a part of a high-sensitivity imaging means 8 of an image intensifier incorporating a multi-channel plate. At this time, the surface of the main membrane filter 7 on which the bacteria are attached is in contact with the input optical fiber plate 8a. Then, the image multiplied inside the high-sensitivity imaging means 8 of the image intensifier incorporating the multi-channel plate is
The image is projected on the output optical fiber plate 8b as a fluorescent image, imaged by a camera lens 9 installed below the image, and an image sensor, for example, a CCD camera 10, and output as an image signal. Further, the lid 11 of the measuring unit
Is provided with an injection nozzle 12 for a luminescence reaction substrate reagent, and a reagent can be injected from the back side of the bacteria-adhered surface of the membrane filter 7 after the pretreatment, and the luminescence reaction is started from the time when it permeates and diffuses on the surface. Is started. A high voltage is applied to the voltage lead wire 13 of the high-sensitivity imaging means 8 so that the photocathode 8c is at the ground potential. The ground potential is
This is because, when a high voltage is applied to the photocathode 8c, there is a danger that the wet film 7 or the reagent may leak, or may generate noise on the photocathode 8c.

【0010】ここで、本発明の細菌検査装置における光
学的な優位性を、前述のカメラレンズによる撮像方式
(図6)との比較で説明する。はじめに、従来法におけ
る菌体位置(基点)からの光が、レンズでマルチチャン
ネルプレート内蔵イメージインテンシファイアーの入力
光ファイバープレート上に結像した様子を模式的に図2
に示すが、図2(a)は、膜上の点光源a,bから追跡
した像面への光線を示す光線追跡図であり、図2(b)
は、光ファイバープレートの開口数(N.A=0.1)
で制限された受光角θの光線を、それぞれの基点に逆に
辿った光線追跡図である。図2(a)および(b)から
わかるように、通常、像の明るさを左右するのは、レン
ズの大きさと焦点距離、即ちf数であるが、光ファイバ
ープレートを入力とする場合は、ファイバーの開口数
(N.A)で明るさが決定される。しかも、通常膜の大
きさは、光ファイバープレートより大きいので、縮小投
影(倍率<1)となり、発光基点からの受光立体角度ω
は、ファイバーの受光角度θより小さくなる。即ち、受
光角度θを十分に使っていない。
Here, the optical superiority of the bacteria test apparatus of the present invention will be described in comparison with the above-described imaging method using a camera lens (FIG. 6). First, FIG. 2 schematically shows a state in which light from a bacterial cell position (base point) in the conventional method is imaged by a lens on an input optical fiber plate of an image intensifier with a built-in multi-channel plate.
FIG. 2A is a ray tracing diagram showing light rays from the point light sources a and b on the film to the image plane traced, and FIG.
Is the numerical aperture of the optical fiber plate (NA = 0.1)
FIG. 4 is a ray tracing diagram in which light rays having a light receiving angle θ limited by the above are traced back to respective base points. As can be seen from FIGS. 2A and 2B, the brightness of an image usually depends on the size of the lens and the focal length, that is, the f-number. The brightness is determined by the numerical aperture (NA). Moreover, since the size of the film is usually larger than that of the optical fiber plate, a reduced projection (magnification <1) is obtained, and the light receiving solid angle ω from the light emitting base point is obtained.
Is smaller than the light receiving angle θ of the fiber. That is, the light receiving angle θ is not sufficiently used.

【0011】具体的な計算例を挙げてθとωの大きさを
比較してみる。膜の大きさ(線分bc)を直径35m
m、光ファイバープレートの有効視野領域(線分b1
1 )を直径15mm、レンズから膜面までの距離f1
100mmとすると、レンズの焦点距離(像側焦点距
離)fは、42.9mmである。ここで、レンズの倍率
をm、像面における光軸からの変位量をxとすると、物
点での受光立体角度ωは次式で表わされる。
The magnitudes of θ and ω will be compared with a specific calculation example. The size of the membrane (line segment bc) is 35 m in diameter
m, effective field of view of optical fiber plate (line segment b 1 c
1) The diameter of 15 mm, when the distance f 1 to the film surface and 100mm from the lens, the focal length (image-side focal length) f of the lens is 42.9 mm. Here, assuming that the magnification of the lens is m and the amount of displacement from the optical axis on the image plane is x, the light receiving solid angle ω at the object point is expressed by the following equation.

【0012】 ω=tan-1{(1+1/m)x/f+1/m(tanθ/2)} −tan-1{(1+1/m)x/f−1/m(tanθ/2)} (1) また、θは N.A=n・sin(θ/2)=0.1 (2) n=1.00(空気の屈折率) から計算し、11.5°とする。倍率m(線分bc/線
分b1 1 )は2.333として、ωの値を計算した結
果、膜の中心部(光軸)で4.94度、周辺部で4.6
5度であった。
Ω = tan −1 {(1 + 1 / m) x / f + 1 / m (tan θ / 2)} −tan −1 {(1 + 1 / m) x / f−1 / m (tan θ / 2)} (1 ) Also, θ is N. A = n · sin (θ / 2) = 0.1 (2) Calculated from n = 1.00 (refractive index of air) and set to 11.5 °. Assuming that the magnification m (line segment bc / line segment b 1 c 1 ) is 2.333, the value of ω was calculated. As a result, the film was 4.94 degrees at the center (optical axis) and 4.6 at the periphery.
5 degrees.

【0013】これに対して、図3に本発明の装置におけ
る基点の受光角度を説明するための模式図を示す。図3
(a)は通常の光ファイバープレートを用いた場合、図
3(b)はテーパー型光ファイバープレートを用いた場
合を表わす。図3に示すように、本発明の装置には、レ
ンズによる結像過程がなく、発光基点14が光ファイバ
ープレート15の入力面15aに密着しているために、
発光基点14からの受光立体角は、光ファイバーの受光
角16に等しく、レンズ自体の光吸収による損失(約1
0%)もない。光ファイバープレート15を入射径/出
射径比率が40:15のテーパー型光ファイバープレー
ト15に置き換えたときの光透過率80%、およびメン
ブレンフィルター7と光ファイバープレート15との間
の液膜層17の屈折率(約1.3)を考慮するとして
も、レンズによる結像方式に比べて、集光効率は2.8
倍向上することになる。
On the other hand, FIG. 3 is a schematic diagram for explaining the light receiving angle at the base point in the apparatus of the present invention. FIG.
FIG. 3A shows the case where a normal optical fiber plate is used, and FIG. 3B shows the case where a tapered optical fiber plate is used. As shown in FIG. 3, the device of the present invention has no image forming process by the lens, and the light emitting base point 14 is in close contact with the input surface 15 a of the optical fiber plate 15.
The solid angle of light reception from the light emitting base point 14 is equal to the light reception angle 16 of the optical fiber, and the loss due to light absorption of the lens itself (about 1).
0%). 80% light transmittance when the optical fiber plate 15 is replaced by a tapered optical fiber plate 15 having an incident diameter / outgoing diameter ratio of 40:15, and the refractive index of the liquid film layer 17 between the membrane filter 7 and the optical fiber plate 15 (Approximately 1.3), the light collection efficiency is 2.8 compared to the imaging method using a lens.
It will be improved twice.

【0014】図4(a)〜(c)は、ルシフェリン−ル
シフェラーゼによるATP発光法を、本発明の装置に適
用して生菌計数を行なったときの過程を示す模式図であ
る。図4(a)〜(c)におけるE(□印)は酵素、即
ちここではルシフェラーゼ、S(○印)は基質、ここで
はルシフェリンを表わしている。細菌Cが捕捉された膜
表面7a上には、あらかじめルシフェリン−ルシフェラ
ーゼ混合液を浸潤させておくので、入力光ファイバー面
15aと膜表面7aとの間には、酵素−基質を含む液膜
層17aが存在する。一方、ATP18(・印)は、細
胞内部に細胞膜19によって閉じ込められているため
に、発光反応は起こらない[図4(a)]。
FIGS. 4 (a) to 4 (c) are schematic diagrams showing a process when a viable cell count is performed by applying the ATP luminescence method using luciferin-luciferase to the apparatus of the present invention. 4 (a) to 4 (c), E (symbol) represents an enzyme, ie, luciferase here, and S (() represents a substrate, here, luciferin. Since the luciferin-luciferase mixture is infiltrated in advance on the membrane surface 7a on which the bacteria C are captured, a liquid membrane layer 17a containing an enzyme-substrate is provided between the input optical fiber surface 15a and the membrane surface 7a. Exists. On the other hand, since ATP18 (marked by A) is confined inside the cell by the cell membrane 19, no luminescence reaction occurs [FIG. 4 (a)].

【0015】ここで膜裏面7bから、矢印で示したAT
P抽出液(通常は界面活性剤など細胞膜を溶解する試
薬)20を注入すると、膜表面7aに拡散し、付着して
いた細菌の細胞膜19が溶解して、内部のATP18は
外部に放出される[図4(b)]。放出されたATP1
8は、液膜層17aに存在していた発光酵素ルシフェラ
ーゼEにより、基質ルシフェリンSと反応して発光(太
い矢印21)する[図4(c)]。
Here, from the film back surface 7b, the AT indicated by an arrow
When a P extract (usually a reagent for dissolving cell membranes such as a surfactant) 20 is injected, the P extract is diffused on the membrane surface 7a, the attached bacterial cell membrane 19 is dissolved, and the internal ATP 18 is released to the outside. [FIG. 4 (b)]. ATP1 released
8 reacts with the substrate luciferin S by the luminescent enzyme luciferase E present in the liquid film layer 17a to emit light (thick arrow 21) [FIG. 4 (c)].

【0016】この反応の発光強度の応答特性を図5に示
す。応答曲線は、反応開始数秒で光量ピークに達し、そ
の後急速に光量が減衰する。以上のように、本発明の装
置を用いることにより、膜裏面から試薬の注入が可能と
なり、発光反応初期からの計測が容易に実施される。本
発明は、2次元に分布した発光基点を計数する測定装置
の特に測定部に関するものであり、測定中に出力される
画像信号の後段の処理については、従来と同様であり、
画像信号を所定のフレーム数を積算し、適当な画像処理
を施した後、2値化して計数することができる。
FIG. 5 shows the response characteristics of the luminescence intensity of this reaction. The response curve reaches a light intensity peak a few seconds after the start of the reaction, and then the light intensity rapidly decreases. As described above, by using the apparatus of the present invention, the reagent can be injected from the back surface of the film, and the measurement can be easily performed from the early stage of the luminescence reaction. The present invention particularly relates to a measuring unit of a measuring device that counts emission base points distributed two-dimensionally, and the subsequent processing of an image signal output during measurement is the same as that of the related art,
After a predetermined number of frames are added to the image signal and subjected to appropriate image processing, the image signal can be binarized and counted.

【0017】なお、本発明の実施例では、高感度撮像手
段としてマルチチャンネルプレートを内蔵したイメージ
インテンシファイアーを用いたが、通常のイメージイン
テンシファイアーを用いてもよい。また、SITカメラ
や冷却型CCDカメラの光電面や撮像素子に光ファイバ
ープレートを直接カップリングして用いることもでき
る。
In the embodiment of the present invention, an image intensifier having a built-in multi-channel plate is used as the high-sensitivity imaging means, but a normal image intensifier may be used. Further, an optical fiber plate can be directly coupled to a photocathode or an image sensor of a SIT camera or a cooled CCD camera.

【0018】さらに、本発明の装置を用いた発光反応と
して、ルシフェリン−ルシフェラーゼによるATP発光
を例に説明したが、細菌内部のDNAを膜上に固定し、
このDNAに発光酵素で標識した抗体またはプローブを
反応させ、最後に発光酵素の基質を添加して発光させる
という方法にも適用することができる。
Furthermore, as the luminescence reaction using the apparatus of the present invention, ATP luminescence by luciferin-luciferase has been described as an example, but DNA inside bacteria is immobilized on a membrane,
It is also applicable to a method in which an antibody or a probe labeled with a luminescent enzyme is reacted with the DNA, and finally, a substrate of the luminescent enzyme is added to emit light.

【0019】[0019]

【発明の効果】本発明の細菌検査装置は、実施例で述べ
た如く、測定部をレンズによる結像方式に代えて、光フ
ァイバープレートを用い、その入力面にメンブレンフィ
ルターの細菌付着面を密着させて設置し、試薬を膜裏面
から注入することができるように構成したために、発光
基点からの光の集光効率を向上させるとともに、発光反
応の開始直後からの計測が可能となり、また測定の完全
自動化を図ることができる。
As described in the embodiment, the bacteria test apparatus of the present invention uses an optical fiber plate instead of an image forming method using a lens as a measuring unit, and makes the bacteria adhering surface of a membrane filter adhere to an input surface of the optical fiber plate. In addition to improving the light collection efficiency of the light from the luminescence base point, measurement can be performed immediately after the start of the luminescence reaction, and complete measurement is possible. Automation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の細菌検査装置の測定部の構成を示す模
式断面図
FIG. 1 is a schematic cross-sectional view showing a configuration of a measuring section of a bacteria test apparatus of the present invention.

【図2】従来のレンズによる結像方式を示し(a)は点
光源から像面への光線追跡図、(b)は像面から逆に辿
った光線追跡図
FIGS. 2A and 2B show a conventional image forming method using a lens, wherein FIG. 2A is a ray tracing diagram from a point light source to an image plane, and FIG.

【図3】本発明の装置における基点の受光角度を示し、
(a)は通常の光ファイバープレートを用いた場合、
(b)はテーパー型光ファイバープレートを用いた場合
のいずれも模式図
FIG. 3 shows a light receiving angle at a base point in the apparatus of the present invention;
(A) is a case where a normal optical fiber plate is used,
(B) is a schematic diagram when a tapered optical fiber plate is used.

【図4】本発明の装置のATP発光法による生菌計数の
過程を示し、(a)は発光反応前の状態、(b)は試薬
を注入した状態、(c)は発光状態のいずれも模式図
FIG. 4 shows a process of viable cell count by the ATP luminescence method of the apparatus of the present invention, wherein (a) is a state before a luminescence reaction, (b) is a state in which a reagent is injected, and (c) is a luminescence state. Pattern diagram

【図5】本発明の装置によるATP発光反応の発光強度
の応答特性線図
FIG. 5 is a response characteristic diagram of luminescence intensity of an ATP luminescence reaction by the apparatus of the present invention.

【図6】従来装置の測定部の要部構成を示す模式図FIG. 6 is a schematic diagram showing a configuration of a main part of a measuring unit of the conventional device.

【符号の説明】[Explanation of symbols]

1 メンブレンフィルター 2 付着細菌 3 カメラレンズ 4 高感度撮像手段 5 入力面 6 ケーブル 7 メンブレンフィルター 7a 膜表面 7b 膜裏面 8 高感度撮像手段 8a 入力光ファイバープレート 8b 出力光ファイバープレート 8c 光電面 9 カメラレンズ 10 CCDカメラ 11 蓋 12 注入ノズル 13 電圧リード線 14 発光基点 15 光ファイバープレート 15a 入力面 16 受光角 17 液膜層 17a 液膜層 18 ATP 19 細胞膜 20 ATP抽出液 21 発光 DESCRIPTION OF SYMBOLS 1 Membrane filter 2 Adhering bacteria 3 Camera lens 4 High sensitivity imaging means 5 Input surface 6 Cable 7 Membrane filter 7a Membrane surface 7b Backside of membrane 8 High sensitivity imaging means 8a Input optical fiber plate 8b Output optical fiber plate 8c Photoelectric surface 9 Camera lens 10 CCD camera DESCRIPTION OF SYMBOLS 11 Cover 12 Injection nozzle 13 Voltage lead wire 14 Emission base point 15 Optical fiber plate 15a Input surface 16 Receiving angle 17 Liquid film layer 17a Liquid film layer 18 ATP 19 Cell membrane 20 ATP extract 21 Light emission

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】あらかじめ一定量の試料をメンブレンフィ
ルターで濾過し捕捉した細菌を所定の試薬を用いて発光
反応させ、その発光画像を高感度撮像手段により撮像し
て細菌数を測定する細菌検査装置であって、メンブレン
フィルターの細菌付着面と、結像面に光ファイバープレ
ートを備えた高感度撮像手段の入力面とが密着してなる
ことを特徴とする細菌検査装置。
A bacterium testing apparatus for filtering a fixed amount of a sample through a membrane filter in advance and causing a luminescent reaction of the captured bacterium using a predetermined reagent, and taking an image of the luminescent image by a high-sensitivity imaging means to measure the number of bacteria. A bacterium testing apparatus, wherein a bacterium-adhering surface of a membrane filter and an input surface of a high-sensitivity imaging means having an optical fiber plate on an image forming surface are in close contact with each other.
【請求項2】請求項1記載の装置において、高感度撮像
手段は光ファイバープレートの出力面が撮像素子に接し
ていることを特徴とする細菌検査装置。
2. An apparatus according to claim 1, wherein said high-sensitivity imaging means has an output surface of an optical fiber plate in contact with said imaging device.
【請求項3】請求項1または2記載の装置において、細
菌付着面の裏面から試薬を添加、浸透させて発光反応を
開始させることを特徴とする細菌検査装置。
3. The apparatus according to claim 1, wherein a reagent is added and permeated from the back surface of the bacteria-adhered surface to start a luminescence reaction.
【請求項4】請求項1ないし3記載の装置において、光
ファイバープレートは、入力像の大きさを所定の倍率に
拡大可能なテーパー型光ファイバープレートであること
を特徴とする細菌検査装置。
4. An apparatus according to claim 1, wherein said optical fiber plate is a tapered optical fiber plate capable of expanding the size of an input image to a predetermined magnification.
JP4232511A 1992-09-01 1992-09-01 Bacterial test equipment Expired - Lifetime JP3049961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4232511A JP3049961B2 (en) 1992-09-01 1992-09-01 Bacterial test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4232511A JP3049961B2 (en) 1992-09-01 1992-09-01 Bacterial test equipment

Publications (2)

Publication Number Publication Date
JPH0678748A JPH0678748A (en) 1994-03-22
JP3049961B2 true JP3049961B2 (en) 2000-06-05

Family

ID=16940483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232511A Expired - Lifetime JP3049961B2 (en) 1992-09-01 1992-09-01 Bacterial test equipment

Country Status (1)

Country Link
JP (1) JP3049961B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003044198A (en) * 2001-07-31 2003-02-14 Nissei Electric Co Ltd Terminal for inputting personal identification number
FR2897941B1 (en) * 2006-02-24 2009-01-16 Millipore Corp DEVICE AND METHOD FOR RAPID MICROBIOLOGICAL ANALYSIS.
FR2915487B1 (en) 2007-04-26 2009-06-05 Millipore Corp ASSEMBLY AND METHOD FOR MICROBIOLOGICAL ANALYSIS
CN103743723B (en) * 2014-01-14 2016-01-13 中国人民解放军63750部队后勤部防检环监所 A kind of high sensitivity bioluminescence detector
JP7347733B2 (en) * 2019-01-17 2023-09-20 トヨタホーム株式会社 Air conditioning air outlet structure

Also Published As

Publication number Publication date
JPH0678748A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
Garcia et al. Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens
JP4445596B2 (en) Optical measuring device for detecting luminescence or fluorescence signals
Truant et al. Fluorescence microscopy of tubercle bacilli stained with auramine and rhodamine
JP3133328B2 (en) Viable count method
AU2002223985B2 (en) A method for the detection of viable microorganisms
JPH05505457A (en) Improvements in and relating to light delivery systems and improved cell testing techniques resulting therefrom
JPS6111693Y2 (en)
JP3049961B2 (en) Bacterial test equipment
US7760346B2 (en) Method and apparatus for analyzing a dry-chemical test element
US7727471B2 (en) Rare cell detection using flat-panel imager and chemiluminescent or radioisotopic tags
GB2178847A (en) Testing for the presence of living organisms at the surface of an object
JP2622567B2 (en) High sensitivity optical imaging device
JP3734080B2 (en) Method and apparatus for immediate discrimination of fungi
JP4812962B2 (en) Specific microorganism measuring method and specific microorganism measuring apparatus
JPH08136546A (en) Method for analyzing substance
US9436866B2 (en) High sensitivity flat panel microbiology detection and enumeration system
JP4714366B2 (en) Specific microorganism weighing device
EP0653633B1 (en) Toxicity testing assay
JP2984161B2 (en) Bacteria test equipment
JP2594622B2 (en) Method for detecting specific antigen or minute object having the same
Doh et al. Portable bioluminescence detection for food safety: smartphone vs. silicon photomultiplier
JP2894912B2 (en) Small object detection method
US20220260499A1 (en) Method and apparatus for collecting signals, tracking cells, and imaging control using a photosensitive chip
JP2925879B2 (en) Small object detection method
WO2019088723A1 (en) Speckle inspection device and speckle amplification device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13