JP3049208B2 - Optical fiber pressure sensor using optical loss structure - Google Patents

Optical fiber pressure sensor using optical loss structure

Info

Publication number
JP3049208B2
JP3049208B2 JP8224403A JP22440396A JP3049208B2 JP 3049208 B2 JP3049208 B2 JP 3049208B2 JP 8224403 A JP8224403 A JP 8224403A JP 22440396 A JP22440396 A JP 22440396A JP 3049208 B2 JP3049208 B2 JP 3049208B2
Authority
JP
Japan
Prior art keywords
optical fiber
connecting rod
bellows
amount
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8224403A
Other languages
Japanese (ja)
Other versions
JPH1048084A (en
Inventor
裕二 那倉
英明 二島
隆之 川井
明延 宮崎
学 八木
孝 東条
進 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Saginomiya Seisakusho Inc
Original Assignee
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Sumitomo Electric Industries Ltd, Saginomiya Seisakusho Inc filed Critical Chubu Electric Power Co Inc
Priority to JP8224403A priority Critical patent/JP3049208B2/en
Publication of JPH1048084A publication Critical patent/JPH1048084A/en
Application granted granted Critical
Publication of JP3049208B2 publication Critical patent/JP3049208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体や気体など流体
の圧力を変換して光ファイバの局部曲げによる光損失と
してとらえることができる光損失付与構造を用いた光フ
ァイバ圧力センサに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an optical fiber pressure sensor using the optical loss providing structure that can be regarded as an optical loss due to local bending of the optical fiber and converts the pressure of the fluid such as liquid or gas .

【0002】[0002]

【従来の技術】光ファイバの損失分布を測定する試験機
としてOTDR(Optical Time Domain Reflectmeter)
が広く用いられている。これは光ファイバ中に光パルス
を入射し、光ファイバ中で発生する散乱光のうち、入射
端側に戻ってくる光(後方散乱光)の強度を時間的にサ
ンプリング測定するものであり、時間領域後方散乱光測
定装置とも呼ばれている。光パルスを入射した時刻を零
として後方散乱光をサンプリングすると、サンプリング
の遅れの時間が入射端から後方散乱光の発生した個所ま
での距離に対応し、その強度が該当する個所までの光フ
ァイバの損失に対応する。それ故サンプリングされた後
方散乱光の強度分布から光ファイバの損失分布を表せる
のである。
2. Description of the Related Art An OTDR (Optical Time Domain Reflectometer) is used as a tester for measuring the loss distribution of an optical fiber.
Is widely used. In this method, an optical pulse is injected into an optical fiber, and of the scattered light generated in the optical fiber, the intensity of the light (backscattered light) returning to the incident end side is temporally sampled and measured. It is also called an area backscattered light measuring device. When the backscattered light is sampled with the time at which the light pulse was incident set to zero, the sampling delay time corresponds to the distance from the incident end to the place where the backscattered light is generated, and the intensity of the optical fiber to the corresponding place is measured. Respond to losses. Therefore, the loss distribution of the optical fiber can be expressed from the intensity distribution of the sampled backscattered light.

【0003】このような原理によれば、光ファイバの途
中に何らかの物理量によって、伝搬する光に損失を与え
る機構を一点もしくは多点において設ければ、それぞれ
の場合において前記一点もしくは多点の物理量の計測が
できる。
According to such a principle, if a mechanism for giving a loss to propagating light is provided at one or more points in the middle of an optical fiber by some physical quantity, in each case, the physical quantity at the one or more points is calculated. Can measure.

【0004】例えば、特開昭61−61038号公報に
は通信用ケーブル内にガスを封入し、異常によりケーブ
ル内ガス圧が低下した際、基準ガス圧とケーブル内のガ
ス圧の差圧によって押し棒で光ファイバを凹みに押し込
み、光ファイバを曲げ、これを後方散乱光検出装置によ
って光損失を検出することによって通信用ケーブルの異
常とその発生位置を検出する装置が提案されている。
For example, in Japanese Patent Application Laid-Open No. 61-61038, a gas is sealed in a communication cable, and when the gas pressure in the cable is reduced due to an abnormality, the gas is pushed by a differential pressure between the reference gas pressure and the gas pressure in the cable. A device has been proposed in which an optical fiber is pushed into a recess with a rod, the optical fiber is bent, and the optical fiber is detected by a backscattered light detection device to detect an abnormality in the communication cable and its occurrence position.

【0005】[0005]

【発明が解決しようとする課題】上記のような装置にお
いて、光ファイバを物理量に応じて局部曲げを作る手段
についてみると、前記公報記載のものでは、光ファイバ
への損失付与点で光ファイバが自由に動くように認めら
れ、光ファイバがくぼみ部に押し込まれた際、同一事象
に対し、緩みや弛みの影響で常に安定した曲率、曲げ長
さを得ることができない。また特開昭54−12217
8号公報には印加圧力によって光ファイバに局部曲げを
圧力伝達装置によって形成し、光ファイバ中の光の伝搬
損失を検知することで圧力を測定するものが示されてい
るが、光ファイバを一定曲率で曲げることができず、安
定した曲げ長さを得ることはできない。
In the apparatus described above, the means for locally bending an optical fiber in accordance with a physical quantity will be described. The optical fiber is allowed to move freely, and when the optical fiber is pushed into the concave portion, it is impossible to always obtain a stable curvature and bending length due to the effect of loosening or loosening for the same event. Also, Japanese Patent Application Laid-Open No. 54-12217
No. 8 discloses a method in which a local bending is formed in an optical fiber by a pressure transmitting device by an applied pressure, and the pressure is measured by detecting a propagation loss of light in the optical fiber. It cannot be bent at a curvature, and a stable bending length cannot be obtained.

【0006】このような観点から、圧力により変形し、
圧力解除時には復元する弾性筒体に光ファイバをコイル
状に巻き付け、圧力を加えた筒体の変形に伴い光ファイ
バが湾曲し、光強度の変化から圧力を検出する構造のも
のが開示されている。しかし、曲率が安定して変化しな
いため損失変化の再現性に乏しい。このような従来の技
術から脱却するため、光ファイバに繰り返しの変形、す
なわち光ファイバへの繰り返しの光損失付与に際して、
光ファイバに圧力が加わらない初期状態から、限られた
範囲ではあるが、任意の大きさの圧力が加えられた際
は、その力に応じて、所定の局部曲げを形成し、圧力が
解除されたときは、光ファイバを前記の光ファイバに圧
力が加わらないさきの初期状態に忠実に復元させる機構
を用いた光ファイバ圧力センサの出現が望ましい。
[0006] From such a viewpoint, it is deformed by pressure,
A structure is disclosed in which an optical fiber is wound in a coil shape around an elastic cylinder that is restored when pressure is released, and the optical fiber is bent with the deformation of the cylinder under pressure, and the pressure is detected from a change in light intensity. . However, since the curvature does not change stably, reproducibility of loss change is poor. In order to depart from such conventional technology, when repeatedly deforming the optical fiber, that is, when repeatedly applying optical loss to the optical fiber,
From the initial state in which no pressure is applied to the optical fiber, when a pressure of an arbitrary magnitude is applied within a limited range, a predetermined local bend is formed according to the applied force, and the pressure is released. Mechanism that restores the optical fiber to the initial state before pressure is not applied to the optical fiber.
It is desirable to use a fiber optic pressure sensor using an optical fiber .

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の、光ファイバとの接触面に曲線を有する突子を対向す
る凹状の曲線を有する固定子の方向へ移動させることに
より光ファイバに局部曲げを与え、伝送損失変化を発生
させる光損失付与構造において、前記光ファイバに常時
張力を加える機構を備える光損失付与構造体を提案す
る。また上記構造体において光ファイバに局部曲げを発
生させた後、前記突子を強制的に初期の状態に戻すた
め、前記突子とこの突子を保持する支持体との間にバネ
等を介在させ、強制的に突子を初期の状態に戻す機構を
具える光損失付与構造を提案する。次に前記光損失付与
構造体と基準流体用ベローズと、この基準流体用ベロー
ズに対向し、被検知流体と基準流体との差圧で伸縮する
被検知流体用ベローズと、これらベローズを連結し、被
検知流体用ベローズの差圧変化による伸縮量に対応した
移動量を示す連結棒と、この連結棒の移動量が支点を介
して支点と動作点の距離を変化させることで伸縮量を動
作点移動量として取り出すことのできる作動板とからな
る差圧−移動量変換部とを組合せ、基準流体と被検知流
体の差圧変化を光ファイバの損失変化として検出する光
ファイバ圧力センサを提案する。なお残余の点について
は、以下において述べる。
In order to solve the above-mentioned problems, a protrusion having a curved surface on a contact surface with an optical fiber is moved toward a stator having a concave curved surface facing the optical fiber, thereby forming a local portion on the optical fiber. In a light loss providing structure that bends and causes a change in transmission loss, an optical loss providing structure including a mechanism for constantly applying tension to the optical fiber is proposed. In addition, after the optical fiber is locally bent in the above-mentioned structure, a spring or the like is interposed between the protrusion and the support holding the protrusion in order to forcibly return the protrusion to the initial state. Then, an optical loss applying structure including a mechanism for forcibly returning the projection to the initial state is proposed. Next, the light loss imparting structure, the bellows for the reference fluid, and the bellows for the fluid to be detected, which are opposed to the bellows for the reference fluid, expand and contract by the differential pressure between the fluid to be detected and the reference fluid, and these bellows are connected. A connecting rod indicating the amount of movement corresponding to the amount of expansion and contraction of the bellows for the fluid to be detected due to a change in the differential pressure, and the amount of movement of the connecting rod changes the distance between the fulcrum and the operating point via the fulcrum to determine the amount of expansion and contraction. An optical fiber pressure sensor that detects a change in differential pressure between a reference fluid and a fluid to be detected as a change in loss of an optical fiber by combining a differential pressure-movement amount conversion unit including an operation plate that can be extracted as a movement amount is proposed. The remaining points will be described below.

【0008】[0008]

【発明の実施の形態】まず、光損失付与構造体を実施例
1に示し、図1(a)と、(a)の丸で囲んだ部分の拡
大詳細図(b)と、(c)により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an optical loss imparting structure is shown in Embodiment 1, and FIG. 1 (a), enlarged detailed views (b) and (c) of a circled portion in FIG. explain.

【0009】(張力付加部)図1(c)に断面中心に貫
通孔8を有し、長手方向中央部にフランジ9を有する内
筒管7と、断面中心に前記内筒管7の外径より径の大き
い貫通孔11を有し、外径は内筒管7のフランジ外径と
等しい外径を有し、片端にフランジ12を具える外筒管
10を用意する。これらの筒管の材質は金属又はプラス
チックのいずれでもよく、長手方向で二つ割りタイプの
ものを使用すれば、組立作業は容易となる。
(Tension applying portion) FIG. 1C shows an inner tube 7 having a through hole 8 at the center of the cross section and a flange 9 at the center in the longitudinal direction, and an outer diameter of the inner tube 7 at the center of the cross section. An outer tube 10 having a larger through hole 11, an outer diameter equal to the outer diameter of the flange of the inner tube 7, and having a flange 12 at one end is prepared. The material of these cylindrical tubes may be either metal or plastic, and if a split type is used in the longitudinal direction, the assembling work becomes easy.

【0010】ここで用いられる光ファイバ2は主に石英
のガラスファイバで、その表面に合成樹脂の一次被覆を
有するものである。図1(b)に示すように、光ファイ
バ2に適当な余長をとり、前記内筒管7の貫通孔8に通
して内筒管7に対し、接着剤等を用いて光ファイバ2を
長手方向で固着して一体化する。前記外筒管10の上
に、そのフランジ12の径よりも小径で筒部の外径より
大径のコイルバネ6を載置し、この状態で前記光ファイ
バ2を固着して一体化した内筒管7と光ファイバ2を外
筒管10の貫通孔11に挿入し、前記コイルバネの一端
を内筒管7のフランジ9上において固定し、他端を外筒
管10の筒部上にて固定し、両者を連結する。これによ
って、図1(a)において丸で囲んだ張力付加部5が構
成される。
The optical fiber 2 used here is mainly a glass fiber of quartz and has a primary coating of a synthetic resin on its surface. As shown in FIG. 1 (b), an appropriate extra length is provided for the optical fiber 2, and the optical fiber 2 is passed through the through-hole 8 of the inner tube 7 and attached to the inner tube 7 using an adhesive or the like. It is fixed and integrated in the longitudinal direction. An inner cylinder in which a coil spring 6 having a diameter smaller than the diameter of the flange 12 and larger than the outer diameter of the cylindrical portion is mounted on the outer cylindrical tube 10 and the optical fiber 2 is fixed and integrated in this state. The tube 7 and the optical fiber 2 are inserted into the through hole 11 of the outer tube 10, one end of the coil spring is fixed on the flange 9 of the inner tube 7, and the other end is fixed on the tube portion of the outer tube 10. And connect them. Thus, a tension applying portion 5 circled in FIG. 1A is configured.

【0011】(局部曲げ形成部)図1(a)に示すよう
に、配置される光ファイバ2と直交する方向で表面に所
定の凸の曲線を有し、支持体1の下面を貫通して保持さ
れ、上下動できる脚3′付の突子3と、この突子3と対
向して支持体1の上側に固定され、光ファイバ2と直交
する方向で、表面に所定の凹の曲線を有する固定子4に
より局部曲げ形成部が構成される。
(Local Bending Forming Section) As shown in FIG. 1A, the surface has a predetermined convex curve in a direction orthogonal to the optical fiber 2 to be arranged, and penetrates the lower surface of the support 1. A projection 3 having legs 3 'which can be held and moved up and down, and a predetermined concave curve formed on the surface in a direction orthogonal to the optical fiber 2 in a direction orthogonal to the optical fiber 2 and fixed to the upper side of the support 1 opposite to the projection 3 The stator 4 has a local bend forming portion.

【0012】前記のように支持体1に配置された局部曲
げ形成部に対し、光ファイバ2の左右方向のラインに合
わせ、支持体1の一方の側面を貫通する位置に前記張力
付加部5が外筒管のフランジ12で支持体1に固定さ
れ、張力付加部の内筒管7の先端から延びる光ファイバ
2は、局部曲げ形成部の対向する突子3と固定子4との
間を、突子3が下方に下っている状態で直線状に通り抜
け、支持体1の他方の側面を貫通して外側に至るが、こ
の際支持体1の他方の側面貫通の位置で、光ファイバ2
を引張り、張力を付加した状態で固定部13で固定され
る。この場合、光ファイバ2に加わる張力は支持体1の
他側面固定部13と内筒管7との間である。この状態
で、局部曲げ形成部の突子3および固定子4の曲線によ
る対光ファイバ曲げ能動部の前端は光ファイバに殆んど
接するか、僅かに離間した位置を採るように調整され
る。コイルバネのバネ定数の異なるものを適用すれば前
記張力は変化する。
The tension applying portion 5 is positioned at a position penetrating one side surface of the support 1 in accordance with the horizontal line of the optical fiber 2 with respect to the local bend forming portion arranged on the support 1 as described above. The optical fiber 2 fixed to the support body 1 by the flange 12 of the outer tube and extending from the tip of the inner tube 7 of the tension applying portion passes between the opposed protrusion 3 and the stator 4 of the local bending portion. The projection 3 passes straight down in a state of being lowered, penetrates the other side of the support 1 and reaches the outside. At this time, the optical fiber 2
Is fixed by the fixing portion 13 in a state where tension is applied. In this case, the tension applied to the optical fiber 2 is between the other side fixing portion 13 of the support 1 and the inner tube 7. In this state, the front end of the optical fiber bending active portion according to the curves of the projection 3 and the stator 4 of the local bending forming portion is adjusted so as to be almost in contact with the optical fiber or to take a slightly distant position. If a coil spring having a different spring constant is applied, the tension changes.

【0013】上記構成の構造体によれば、突子3の上下
方向の移動による固定子4への近接により、光ファイバ
2に局部曲げを形成し、光ファイバ2に伝送損失変化を
付与することができ、初期張力を与えた状態に保持され
ているので、突子3の上下方向の移動に応答して光ファ
イバ2は常時張力を加えられ、緊張を維持した状態に置
かれ、突子3、固定子4によって作られる局部曲げ形状
の再現性の質は極めて高い。図9に試作装置により5回
繰返し、突子3の移動量(mm)と光ファイバの伝送損
失増加量(dB)の関係を測定したが、繰返しによる計
測結果は、同一移動量に対する損失増加量を黒線で示し
ているように、その黒線の縦方向で示す変動幅(以下図
10、12において同じ)は極めてせまい範囲、つまり
変動誤差が小さく再現性が高いことを示している。
According to the structure having the above-described structure, a local bend is formed in the optical fiber 2 due to the proximity of the protrusion 3 to the stator 4 due to the vertical movement of the protrusion, thereby imparting a change in transmission loss to the optical fiber 2. The optical fiber 2 is constantly tensioned in response to the vertical movement of the projection 3 and is maintained in a state of tension, and is maintained in a state where the projection 3 is applied. The quality of the reproducibility of the local bending shape produced by the stator 4 is extremely high. In FIG. 9, the relationship between the movement amount (mm) of the protrusion 3 and the transmission loss increase amount (dB) of the optical fiber was measured five times by the prototype device, and the measurement result by the repetition was the loss increase amount for the same movement amount. Is indicated by a black line, the range of variation (hereinafter the same in FIGS. 10 and 12) of the black line in the vertical direction is an extremely narrow range, that is, a small variation error and a high reproducibility.

【0014】(実施例2)図2に実施例2を示す。前記
図1に示したものと相違するところは支持体1の下面
で、突子3の脚3′が外側に貫通した位置で支持体1に
コイルバネ14を嵌挿し、ねじ切りされた脚3′にナッ
ト15を螺合し、前記コイルバネ14を圧縮した状態で
突子3の先端の光ファイバ2と接する位置を調整してい
る。このような構成にしておくと、突子3が付加力によ
って上方にあり、付加力が解除され、下降する場合、そ
の下降力は図1の構造では自重および光ファイバ2に加
わっている張力によるところもあるが、本例の場合、突
子3にコイルバネ14より弾ぱつ力が働き、移動の際の
ガタつきの影響を受けず、迅速に元位置に復帰する。
(Embodiment 2) FIG. 2 shows an embodiment 2. The difference from the one shown in FIG. 1 is that the coil spring 14 is inserted into the support 1 at the position where the leg 3 ′ of the projection 3 penetrates outward on the lower surface of the support 1, and the threaded leg 3 ′ The position where the tip of the protruding member 3 contacts the optical fiber 2 is adjusted in a state where the nut 15 is screwed and the coil spring 14 is compressed. With such a configuration, when the protrusion 3 is located above by the additional force, and the additional force is released and descends, the descending force is caused by the own weight and the tension applied to the optical fiber 2 in the structure of FIG. However, in the case of this example, the elastic force acts on the projection 3 from the coil spring 14, and the projection 3 quickly returns to the original position without being affected by backlash.

【0015】(実施例3)図3に実施例3を示す。前記
図1に示すものと相違するところは、図1に示したもの
では局部曲げ形成部が一つであったのを光ファイバ2の
線上の二つ位置に配置した点である。本例によれば光フ
ァイバにそれぞれの位置で局部曲げを与え、伝送損失変
化をそれぞれ発生させることができるが、その使用につ
いては後述する。
Third Embodiment FIG. 3 shows a third embodiment. The difference from the one shown in FIG. 1 is that the local bend forming part in the one shown in FIG. 1 is arranged at two positions on the line of the optical fiber 2. According to this example, the optical fiber can be locally bent at each position to cause a change in transmission loss, and its use will be described later.

【0016】(実施例4) 以上、光損失付与構造体について説明したが、次に前記
構造体を用いたガス圧力センサを説明する。
[0016] (Example 4) than on, have been described optical loss causing structures, it will now be described gas pressure sensor using the structure.

【0017】(差圧−移動量変換部)図4にその一例を
示す。図において、上部に配置される構造体はすでに説
明したものであり、その下側に差圧−移動量変換部が配
置される。差圧によって発生した移動量は作動板29を
介し、突子3に伝達される。このような圧力センサは例
えば、ガス絶縁電気機器の絶縁ガス圧変動の監視装置に
適用される。図において、被検知ガスと基準ガスの差圧
で伸縮する流体用ベローズである被検知ガス用ベローズ
21と基準ガス用ベローズ22は、支持体20において
支持され、ベローズ21と22とを対向させて連結棒2
3にて連結する。被検知ガス圧力源24と被検知ガス用
ベローズ21、基準ガス圧力源25と基準ガス用ベロー
ズ22とはそれぞれ圧力パイプ26にて接続される。こ
のような構成により、後述のように被検知ガス用ベロー
ズの差圧変化による伸縮量に対応した移動量を支点28
を介して支点28と作動板29の動作点30の距離を変
化させることで伸縮量を任意の動作点移動量として作動
板29から取り出す。
(Differential pressure-movement amount converter) FIG. 4 shows an example of this. In the figure, the structure disposed at the upper portion has already been described, and the differential pressure-movement amount converter is disposed below the structure. The movement amount generated by the differential pressure is transmitted to the projection 3 via the operation plate 29. Such a pressure sensor is applied, for example, to a monitoring device for fluctuation of insulating gas pressure of gas-insulated electric equipment. In the figure, a detected gas bellows 21 and a reference gas bellows 22, which are fluid bellows that expand and contract due to a differential pressure between the detected gas and the reference gas, are supported by a support 20, and the bellows 21 and 22 face each other. Connecting rod 2
Connect at 3. The detected gas pressure source 24 and the detected gas bellows 21, and the reference gas pressure source 25 and the reference gas bellows 22 are connected by pressure pipes 26, respectively. With such a configuration, as described later, the movement amount corresponding to the amount of expansion and contraction due to the change in the differential pressure of the bellows for detection gas is set to
By changing the distance between the fulcrum 28 and the operating point 30 of the operating plate 29 via the, the amount of expansion and contraction is taken out from the operating plate 29 as an arbitrary operating point moving amount.

【0018】上記連結棒23にピン27を固定し、その
上方に支持体20に支点28を設定し、断面L字形の作
動板29の折り曲げ点で、この作動板29を回動自在に
支持する。この際、作動板29がピン27と対向する位
置で、作動板29の端面は図でピン27の左側に接し、
局部曲げ形成部の突子3の脚3′と対向する位置で、こ
の脚3′を越えて所定の長さ延び、支点28を軸とし
て、作動板29が回動したとき、前記脚3′から作動板
29の端が外れぬ長をもたせている。図5は作動板29
の一例を示す。作動板29は直交して折れ曲る水平片3
5と垂直片36と垂直片36の中間から水平片35と平
行方向にのびる支持片37よりなり、垂直片36にはそ
の中心部で孔33が形成されこの孔33を両ベローズ間
の連結棒23に通し、支点28の位置で、すでに説明し
たように支持体20(図4)に対し、回動できるように
支持される。一方支持片37上に孔を設け、この孔の周
りに、例えばナットを固定してこれと螺合する支持棒3
8を挿入し、この支持棒38の先端を水平片35の裏面
と接する状態として、ねじ溝切り(図示していない)の
支持棒38の回転による上下高さ調節機能によって、支
持片37に対して水平片35を僅かな範囲であるが、水
平片35の曲げ弾性により、その高さを調節することの
できる構成としており、同時に局部曲げ形成部の突子の
脚と接して、回動を与える際の支持片37の補強の役目
を果している。なお、図示のように垂直片36の背後の
位置で、連結棒23には、前記説明の図4のピン27に
かわり、連結棒23上の位置設定用のナット34が連結
棒23上に形成したねじ溝(図示していない)と螺合
し、図で垂直片36の背面と接する状態で固定されてお
り、連結棒23が矢印の方向に移動すれば、垂直片36
の背面を押し、水平片35の端部は上方向に回動しなが
ら上る。
A pin 27 is fixed to the connecting rod 23, a fulcrum 28 is set on the support 20 above the connecting rod 23, and the operating plate 29 is rotatably supported at a bending point of the operating plate 29 having an L-shaped cross section. . At this time, at the position where the operating plate 29 faces the pin 27, the end face of the operating plate 29 contacts the left side of the pin 27 in the drawing,
At a position facing the leg 3 ′ of the projection 3 of the local bending portion, the leg 3 ′ extends a predetermined length beyond the leg 3 ′, and when the operation plate 29 rotates about the fulcrum 28, the leg 3 ′ The end of the operating plate 29 has a length that does not come off. FIG.
An example is shown below. The operating plate 29 is a horizontal piece 3 that bends at right angles.
5, a vertical piece 36, and a support piece 37 extending in the direction parallel to the horizontal piece 35 from the middle of the vertical piece 36. The vertical piece 36 has a hole 33 formed in the center thereof. Through the support 23, at the position of the fulcrum 28, it is rotatably supported by the support 20 (FIG. 4) as described above. On the other hand, a hole is provided on the support piece 37, and around the hole, for example, a nut is fixed and a support rod 3 screwed with the nut is fixed.
8, the tip of the support rod 38 is brought into contact with the back surface of the horizontal piece 35, and the vertical height adjustment function by the rotation of the support rod 38 in the form of a thread groove (not shown) is used to adjust the height of the support piece 37. Although the horizontal piece 35 is in a small range, the height of the horizontal piece 35 can be adjusted by the bending elasticity of the horizontal piece 35, and at the same time, the horizontal piece 35 contacts the leg of the protrusion of the local bend forming part and rotates. It serves to reinforce the support piece 37 when giving. At the position behind the vertical piece 36 as shown, a nut 34 for setting the position on the connecting rod 23 is formed on the connecting rod 23 instead of the pin 27 of FIG. 4 described above. And is fixed so as to be in contact with the back surface of the vertical piece 36 in the figure. When the connecting rod 23 moves in the direction of the arrow, the vertical piece 36
, The end of the horizontal piece 35 rises while rotating upward.

【0019】本例において、基準ガス圧力と被検知ガス
圧力が等しく、両ベローズが平衡した状態で、ピン27
と作動板29が丁度接触した状態にあるとし、他方で作
動板29が、突子3の脚3′又はその接続脚と接する
か、僅かに離間した状態にあるとし、被検知ガス圧力が
低下すれば、ベローズ間の平衡は破れて、連結棒23は
左方向に移動する。この移動量は支点28を介して作動
板29の前記突子3の脚3′に対する動作点30の距離
を変化させることで前記伸縮量を任意の動作点移動量と
して取りだすことができ、差圧−移動量変換部を形成す
る。このように構成した差圧−移動量変換部の動作板の
上側位置に、すでに説明した光損失付与構造体の突子の
脚の位置を対向させて組立を行えば本発明の圧力センサ
が構成される。
In this embodiment, when the reference gas pressure and the detected gas pressure are equal and both bellows are in equilibrium,
And the operating plate 29 are just in contact with each other, and on the other hand, the operating plate 29 is in contact with or slightly apart from the leg 3 ′ of the projection 3 or its connection leg, and the pressure of the detected gas decreases. Then, the balance between the bellows is broken, and the connecting rod 23 moves to the left. By changing the distance of the operating point 30 of the operating plate 29 with respect to the leg 3 'of the projection 3 via the fulcrum 28, the amount of expansion / contraction can be taken as an arbitrary amount of movement of the operating point. Forming a moving amount conversion unit; The pressure sensor according to the present invention can be constructed by assembling the differential pressure-movement amount converter with the position of the leg of the protrusion of the light loss imparting structure facing the upper position of the operation plate of the differential pressure-movement amount converter. Is done.

【0020】図10に試作装置により、基準ガス圧力と
の差圧(kgf/cm2 )と光ファイバの伝送損失増加
量(dB)の関係を測定した結果を示すが、同一のガス
差圧に対する光ファイバの伝送損失量は測定の600回
の繰返しによっても殆んど変化は認められない。また、
このように連続して600回テストを繰返したが、光フ
ァイバが切れないことが確認できた。
FIG. 10 shows the results of measuring the relationship between the differential pressure (kgf / cm 2 ) from the reference gas pressure and the increase in the transmission loss (dB) of the optical fiber using the prototype device. The transmission loss of the optical fiber hardly changes even after 600 repetitions of the measurement. Also,
The test was repeated 600 times in this manner, and it was confirmed that the optical fiber was not cut.

【0021】(実施例5)実施例5を図6に示す。図4
と比較して相違するところは作動板29の上側の丸で囲
んだ位置で支持体20にスナップアクション機構を用い
た突子移動増幅具31が作動板29の上側に配置され、
前記増幅具31を通る可動連桿32の下端は作動板29
の面と対向させ、上端は局部曲げ形成部の突子3の脚
3′またはその接続脚と係合されるところであり、この
ように突子移動増幅具を含んで差圧−移動量変換部が形
成されることで動作することができる。このように突子
は前記突子移動増幅具を介してその可動連桿32の下端
が作動板と近接して対向配置される。なお、スナップア
クション機構を図8により説明する。図示のように、両
支点S、S′間にコイルバネCと棒状体Bの一端を支持
し、その接続点Jに着目する。(イ)に示す矢印の上方
向への力を加えた場合、コイルバネCが形をくずさず正
規に縮むものとする。こうしてコイルバネは縮んで
(ロ)に示すように接続点Jを含む両支点S、S′間は
直線状となるが、更に僅の力がさきと同じ矢印方向に加
わると急激にコイルバネCの圧縮状態は解け、コイルバ
ネCの力は斜方向に働き、接続点Jは急速に、(ハ)に
示すように上方に変位する。本突子移動量増幅器はこの
ような接続点Jの急速移動機能を具えるもので、図6で
は関連する可動連桿32を急速に上方に移動させる。
(Embodiment 5) Embodiment 5 is shown in FIG. FIG.
The difference from the above is that at a position surrounded by a circle on the upper side of the operation plate 29, a protrusion moving amplifying tool 31 using a snap action mechanism for the support 20 is disposed above the operation plate 29,
The lower end of the movable connecting rod 32 passing through the amplifying tool 31 is
And the upper end thereof is engaged with the leg 3 'of the projection 3 of the local bend forming portion or the connection leg thereof. Thus, the differential pressure-movement amount conversion portion including the projection moving amplifying tool is included. It can operate by forming. Thus, the lower end of the movable connecting rod 32 of the protruding member is opposed to the operating plate through the protruding member amplifying member. The snap action mechanism will be described with reference to FIG. As shown in the drawing, one end of the coil spring C and one end of the rod-shaped body B is supported between both fulcrums S and S ', and the connection point J is focused on. When an upward force is applied to the arrow shown in (a), the coil spring C is normally contracted without breaking its shape. In this way, the coil spring contracts and becomes linear between the two fulcrums S and S 'including the connection point J as shown in (b), but when a slight force is applied in the same arrow direction as before, the coil spring C is rapidly compressed. The state is released, the force of the coil spring C acts in an oblique direction, and the connection point J is rapidly displaced upward as shown in (c). The protrusion amplifier has such a function of rapidly moving the connection point J. In FIG. 6, the associated movable connecting rod 32 is rapidly moved upward.

【0022】このように前記突子移動量増幅具31を作
動板29の上側に取付け、作動板29と対向する可動連
桿32の下端が、差圧の上昇により作動板の回動によっ
て接触し、可動連桿32に対する上向きの力で前記連桿
32は若干上昇し、前記増幅具31はスナップアクショ
ン機能を発現し、前記連桿32を急速に上昇させ、これ
に連結されている突子3(図4参照)は上昇し、光ファ
イバに伝送損失の大きい局部曲げを与える。図示してい
ないが、光ファイバが配線されている監視位置において
は時間領域後方散乱光測定装置(OTDR)により、直
ちに異常を警報することができる。
As described above, the axle moving amount amplifying tool 31 is mounted on the upper side of the operating plate 29, and the lower end of the movable connecting rod 32 facing the operating plate 29 comes into contact by the rotation of the operating plate due to an increase in the differential pressure. The connecting rod 32 slightly rises due to an upward force on the movable connecting rod 32, and the amplifying tool 31 expresses a snap action function, rapidly raises the connecting rod 32, and connects the protrusion 3 connected thereto. (See FIG. 4) rises, giving the optical fiber local bending with large transmission losses. Although not shown, at the monitoring position where the optical fiber is wired, an abnormality can be immediately alerted by the time domain backscattered light measuring device (OTDR).

【0023】この場合、突子の移動にスナップアクショ
ン機構を用いており、予め作動板と可動連桿との隙間等
を調節することで警報を生じる動作圧力以外では突子を
移動させず光ファイバに伝送損失の増加が起らないよう
にすることができるため、確実に異常警報と判別するこ
とができる。また、前記監視に際して、この圧力センサ
を直列に配置した分布型監視方式が可能であり、複数個
のセンサの配置位置における圧力の異常を一線のファイ
バで検出することができる。図11は基準ガス圧力との
差圧が−0.38kgf/cm2 ・Gと減圧した場合に
前記突子移動量増幅具が動作するように設定して、試験
装置により試験した結果をしているが、5回の繰り返し
によってその結果は極めて良好であった。
In this case, a snap action mechanism is used to move the protrusion, and the optical fiber is not moved except at an operating pressure at which an alarm is generated by adjusting the gap between the operating plate and the movable connecting rod in advance. Since it is possible to prevent an increase in transmission loss from occurring, it is possible to reliably determine an abnormal alarm. Further, at the time of the monitoring, a distributed monitoring method in which the pressure sensors are arranged in series is possible, and an abnormal pressure at the positions where a plurality of sensors are arranged can be detected with a single fiber. FIG. 11 shows the results of a test performed by a test apparatus by setting the agitator movement amount amplifying device to operate when the differential pressure from the reference gas pressure is reduced to −0.38 kgf / cm 2 · G. However, the results were extremely good after 5 repetitions.

【0024】(実施例6)実施例6を図7に示す。光損
失付与部構造体については省略されているが、本例では
実施例3に示したような二つの局部曲げ形成部を備える
構造体のそれぞれの突子を差圧−移動量変換部の一つの
作動板に対向させたものを示しているが、支点28に近
い側のものは、すでに実施例5で説明したスナップアク
ション機構による突子移動量増幅具31を用いた形式の
ものであり、一方支点より遠い側のものは、動作時脚が
作動板29の回動によりその動作点が変り、常時差圧の
変化に対応して突子により光ファイバに伝送損失の局部
曲げを与える形式のものである。前記突子移動量増幅具
31を可動連桿32により突子に係合させたものは作動
板の水平位置、すなわち、ガス圧力の平衡位置において
突子とつながる可動連桿32の下端との間に所定の隙間
を形成するようにセットする。このようにセットしてお
くと、動作時、ベローズ間の差圧が大きくなり、支点を
中心として作動板が回動するときは、初期の間はその隙
間のあるため、作動板とは接せず、規定の異常減圧状態
もしくはその事前で作動板は前記可動連桿下端に接し、
差圧が規定の差圧を越えたところで突子移動量増幅具が
動作し、突子は急速上昇して固定子に対向して光ファイ
バに小さな局部曲げ、すなわち伝送損失の大きい曲げを
与えて伝送損失が急増し、監視所で、これをガス圧力異
常として警報する。一方突子移動量増幅具を係合してい
ない側の突子では差圧による作動板の回動に応じて実施
例4で説明したように、減圧の状態をアナログ的に常時
監視する役目を果す。もっとも前記突子移動量増幅具を
備えるものと備えないものとでは、予め動作設定条件を
調整し、突子移動量増幅具を備えないものは、差圧が零
からすくなくとも異常減圧までアナログ的に計測できる
ものでなければならない。図12は本実施例の試作装置
により5回繰り返して試験した例を示している。このグ
ラフを見れば、圧力変化が見られ、異常を生じる予知に
対応は可能であり、異常圧力時には前記スナップアクシ
ョン機構による突子移動量増幅具が動作するため、設定
した警報動作点で瞬時に損失増加が起こり、確実に異常
警報を判別することができ、一方ではアナログの状態
で、各位置における圧力差を監視することができ、生ず
べき事態の予測も可能であるし、ぼっ発的事故に対し
て、その警報により対処することができる。なお、上記
実施例は基準ガス圧力と被検出ガス圧力の差圧を検出す
るものであるが、ガスに換え基準液体圧力と被検出液体
圧力の差圧を検出することができる。
(Embodiment 6) Embodiment 6 is shown in FIG. Although the light loss imparting portion structure is omitted, in this example, each protrusion of the structure including the two local bend forming portions as shown in Embodiment 3 is connected to one of the differential pressure-movement amount converting portions. Although the one that is opposed to one of the operating plates is shown, the one near the fulcrum 28 is of the type that uses the axle moving amount amplifying tool 31 by the snap action mechanism already described in the fifth embodiment. On the other hand, the one on the side farther from the fulcrum is of a type in which the operating point changes its operating point due to the rotation of the operating plate 29 during operation, and always gives a local bending of the transmission loss to the optical fiber by the protrusion in response to the change in the differential pressure. Things. The one in which the axle moving amount amplifying tool 31 is engaged with the apron by the movable connecting rod 32 is provided between the horizontal position of the operation plate, that is, the lower end of the movable connecting rod 32 connected to the prong at the gas pressure equilibrium position. Are set so as to form a predetermined gap. When set in this way, the differential pressure between the bellows increases during operation, and when the operating plate rotates around the fulcrum, there is a gap during the initial period. Without, the operating plate in contact with the lower end of the movable connecting rod in a specified abnormally decompressed state or in advance thereof,
When the differential pressure exceeds the specified differential pressure, the axle movement amplifying device operates, and the axle rises rapidly and gives a small local bend to the optical fiber facing the stator, that is, a bend with a large transmission loss. The transmission loss suddenly increases, and the monitoring station alerts this as a gas pressure abnormality. On the other hand, as described in the fourth embodiment, the protrusion on the side not engaged with the protrusion moving amount amplifying tool has a function of constantly monitoring the pressure reduction state in an analog manner as described in the fourth embodiment. Accomplish. However, those with and without the axle moving amount amplifying device adjust the operation setting conditions in advance, and those without the axle moving amount amplifying device have a differential pressure from zero to at least an abnormally reduced pressure in an analog manner. It must be measurable. FIG. 12 shows an example in which the test is repeated five times by the prototype device of this embodiment. Looking at this graph, a pressure change is observed, and it is possible to cope with the prediction of occurrence of an abnormality.In the event of an abnormal pressure, the agitator moving amount amplifying device by the snap action mechanism operates, so that the instantaneous operation is performed at the set alarm operating point. An increase in loss occurs, and abnormal alarms can be reliably identified.On the other hand, pressure differences at each position can be monitored in an analog state, and possible situations can be predicted. Can be dealt with by the alarm. In the above embodiment, the differential pressure between the reference gas pressure and the detected gas pressure is detected, but the differential pressure between the reference liquid pressure and the detected liquid pressure can be detected instead of gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明は光損失付与構造体の実施例を
示し、(b)、(c)は張力付加部の構成説明図を示
す。
FIG. 1 (a) shows an embodiment of a light loss applying structure according to the present invention, and FIGS. 1 (b) and 1 (c) show explanatory views of the configuration of a tension applying section.

【図2】(a)は本発明の実施例を示し、(b)は張力
付加部の構成説明図を示す。
FIG. 2A illustrates an embodiment of the present invention, and FIG. 2B illustrates a configuration explanatory view of a tension applying unit.

【図3】(a)は本発明の実施例を示し、(b)は張力
付加部の構成説明図を示す。
3A illustrates an embodiment of the present invention, and FIG. 3B illustrates a configuration explanatory view of a tension applying unit.

【図4】本発明光損失付与構造体を用いた光ファイバ圧
力センサの実施例を示す。
FIG. 4 shows an embodiment of an optical fiber pressure sensor using the optical loss applying structure of the present invention.

【図5】本発明で用いる作動板の一例を示す。FIG. 5 shows an example of an operation plate used in the present invention.

【図6】本発明のスナップアクション機構で動作する突
子を備えた光損失付与構造体を用いた圧力センサの実施
例を示す。
FIG. 6 shows an embodiment of a pressure sensor using an optical loss applying structure provided with a protrusion operated by the snap action mechanism of the present invention.

【図7】本発明のスナップアクション機構で動作する突
子、スナップアクション機構を備えない突子併用の光損
失付与構造体を用いた光ファイバ圧力センサの実施例を
示す。
FIG. 7 shows an embodiment of an optical fiber pressure sensor using a protrusion operated by the snap action mechanism of the present invention and an optical loss applying structure that is used in combination with a protrusion without a snap action mechanism.

【図8】(イ)、(ロ)、(ハ)はスナップアクション
機構動作の概略説明図である。
FIGS. 8A, 8B and 8C are schematic illustrations of snap action mechanism operation.

【図9】本発明光損失付与構造体の一例の動作特性(損
失増加量−移動量の関係)を示す。
FIG. 9 shows an operation characteristic (a relationship between a loss increase amount and a movement amount) of an example of the light loss imparting structure of the present invention.

【図10】本発明の光損失付与構造体を用いた光ファイバ
ガス圧力センサの一例の動作特性(損失増加量−差圧の
関係)を示す。
FIG. 10 shows an operation characteristic (a relationship between a loss increase amount and a differential pressure) of an example of an optical fiber gas pressure sensor using the light loss imparting structure of the present invention.

【図11】本発明の差圧−移動量変換部にスナップアクシ
ョン機構による突子移動量増幅具を設けた一例の動作特
性(損失増加量−差圧の関係)を示す。
FIG. 11 shows an operation characteristic (a relationship between a loss increase amount and a differential pressure) of an example in which a protrusion moving amount amplifying tool using a snap action mechanism is provided in the differential pressure-movement amount conversion unit of the present invention.

【図12】本発明の差圧−移動量変換部にスナップアクシ
ョン機構による突子移動量増幅具を設けたものと設けな
いものを併用した一例の動作特性(損失増加量−差圧の
関係)を示す。
FIG. 12 is a diagram illustrating an example of an operational characteristic (a relationship between a loss increase amount and a differential pressure) in which a differential pressure-to-movement amount conversion unit according to the present invention is provided with and without a protrusion-amplifying device for a protrusion of a snap action mechanism. Is shown.

【符号の説明】[Explanation of symbols]

1 支持体 2 光ファイバ 3 突子
3′ 突子の脚 4 固定子 5 張力付加部 6 コイルバネ 7 内筒管 8 貫通孔 9 フランジ 10 外筒管 11 貫通孔 12 フランジ 13 固定部 14 コイルバネ 15 ナット 20 支持体 21 被検知ガス用ベローズ 22
基準ガス用ベローズ 23 連結棒 24 被検知ガス圧力源 25
基準ガス圧力源 26 パイプ 27 ピン 28
支点 29 作動板 30 動作点 31 スナップアクション機構を用いた突子移動量増幅具
32 可動連桿
Reference Signs List 1 support 2 optical fiber 3 protrusion
3 'leg of foot 4 stator 5 tension applying part 6 coil spring 7 inner tube 8 through hole 9 flange 10 outer tube 11 through hole 12 flange 13 fixing part 14 coil spring 15 nut 20 support 21 bellows for detected gas 22
Bellows for reference gas 23 Connecting rod 24 Detected gas pressure source 25
Reference gas pressure source 26 Pipe 27 Pin 28
Supporting point 29 Operating plate 30 Operating point 31 Lever movement amplifying tool using snap action mechanism
32 Movable rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二島 英明 大阪市此花区島屋一丁目1番3号 住友 電気工業株式会社大阪製作所内 (72)発明者 川井 隆之 名古屋市東区東新町1番地 中部電力株 式会社内 (72)発明者 宮崎 明延 名古屋市熱田区横田二丁目3番24号 中 部電力株式会社中央送変電建設所内 (72)発明者 八木 学 名古屋市熱田区横田二丁目3番24号 中 部電力株式会社中央送変電建設所内 (72)発明者 東条 孝 埼玉県所沢市青葉台1311 株式会社鷺宮 製作所 所沢事業所内 (72)発明者 駒崎 進 埼玉県所沢市青葉台1311 株式会社鷺宮 製作所 所沢事業所内 (56)参考文献 特開 昭60−211405(JP,A) 特開 昭64−29727(JP,A) 特開 平6−34401(JP,A) 実開 平2−37394(JP,U) 実開 平3−102672(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01L 11/02 G01L 1/24 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideaki Nishima 1-3-1 Shimaya, Konohana-ku, Osaka-shi In the Osaka Works, Sumitomo Electric Industries, Ltd. (72) Inventor Takayuki Kawai 1 Higashi-Shinmachi, Higashi-ku, Nagoya Chubu Electric Power Inside the Company (72) Inventor Akinobu Miyazaki 2-4-2, Yokota, Atsuta-ku, Nagoya-shi Inside Chubu Electric Power Co., Inc.Chuo Transmission and Substation Construction (72) Inventor Manabu Yagi 2--24, Yokota, Atsuta-ku, Nagoya No. 72 Chubu Electric Power Co., Inc.Central Transmission & Substation Construction Plant (72) Inventor Takashi Tojo 1311 Aobadai, Tokorozawa-shi, Saitama Prefecture Sagimiya Manufacturing Co., Ltd. In-house (56) References JP-A-60-211405 (JP, A) JP-A-64-29727 (JP, A) JP-A-6-34401 (JP, A ) JitsuHiraku flat 2-37394 (JP, U) JitsuHiraku flat 3-102672 (JP, U) (58 ) investigated the field (Int.Cl. 7, DB name) G01L 11/02 G01L 1/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光ファイバとの接触面に曲線を有する突1. A projection having a curved surface in contact with an optical fiber.
子を対向する凹状の曲線を有する固定子の方向へ移動さMoving the stator in the direction of the stator with the opposite concave curve
せることにより光ファイバに局部曲げを与えて伝送損失Causes the optical fiber to bend locally, causing transmission loss.
を発生させる光損失付与構造であって、更に前記光ファAn optical loss providing structure for generating
イバに張力を加える張力付加部を備える光損失付与構造Optical loss applying structure with tension applying part to apply tension to the rivet
と、When, 基準流体用ベローズと該ベローズに対向して被検知流体The bellows for reference fluid and the fluid to be detected facing the bellows
と基準流体との差圧で伸縮する被検知用ベローズの間をBetween the bellows to be detected that expands and contracts due to the differential pressure between
連結棒で結合し、該連結棒の移動量が支点を介して支点Connected by a connecting rod, and the moving amount of the connecting rod is
と動作点の距離を変化させることで伸縮量を任意の動作Change the amount of expansion and contraction by changing the distance between
点移動量として取り出すことのできる作動板からなる差Difference consisting of an operating plate that can be taken out as a point movement
圧−移動量変換部とを備え、A pressure-movement amount conversion unit, 前記突子の脚は前記作動板に近接させて対向配置されてThe legs of the protruding member are disposed so as to be opposed to and close to the operation plate.
なることを特徴とする光ファイバ圧力センサ。An optical fiber pressure sensor.
【請求項2】 光ファイバとの接触面に曲線を有する突2. A projection having a curve on a contact surface with an optical fiber.
子を対向する凹状の曲線を有する固定子の方向に移動さMoving the stator in the direction of the stator with the opposite concave curve
せることにより光ファイバに局部曲げを与えて伝送損失Causes the optical fiber to bend locally, causing transmission loss.
を発生させる光損失付与構造であって、更に前記光ファAn optical loss providing structure for generating
イバに張力を加える張力付加部を備える光損失付与構造Optical loss applying structure with tension applying part to apply tension to the rivet
と、When, 基準流体用ベローズと該ベローズに対向して被検知流体The bellows for reference fluid and the fluid to be detected facing the bellows
と基準流体との差圧で伸縮する被検知用ベローズの間をBetween the bellows to be detected that expands and contracts due to the differential pressure between
連結棒で連結し、該連結棒の移動量が支点を介して支点Connected by a connecting rod, and the amount of movement of the connecting rod is
と動作点の距離を変化させることで伸縮量を任意の動作Change the amount of expansion and contraction by changing the distance between
点移動量として取り出すことのできる作動板と前記作動An operation plate that can be taken out as a point movement amount and the operation
板の上方に配置し、その可動連桿の下端が前記作動板にIt is placed above the plate, and the lower end of the movable connecting rod is
対向し、近接して配置されるスナップアクション機構をSnap action mechanism that is placed facing and close to
用いた突子移動量増幅具を備える差圧−移動量変換部とA differential pressure-movement amount conversion unit including
を備え、With 前記突子移動量増幅具の可動連桿他端は、前記突子の脚The other end of the movable connecting rod of the axle moving amount amplifying tool is a leg of the axle.
と係合されてなることを特徴とする光ファイバ圧力センOptical fiber pressure sensor characterized by being engaged with
サ。Sa.
【請求項3】 光ファイバとの接触面に曲線を有する突3. A projection having a curved surface in contact with an optical fiber.
子を対向する凹状の曲線を有する固定子の方向に移動さMoving the stator in the direction of the stator with the opposite concave curve
せることにより光ファイバに局部曲げを与えて伝送損失Causes the optical fiber to bend locally, causing transmission loss.
を発生させる二つの局部曲げを与えて伝送損失を発生さTwo local bends cause transmission loss
せる光損失付与構造であって、更に前記光ファイバに張A light loss imparting structure for extending the optical fiber.
力を加える張力付加部を備える光損失付与構造と、An optical loss applying structure including a tension applying portion for applying a force, 基準流体用ベローズと該ベローズに対向して被検知流体The bellows for reference fluid and the fluid to be detected facing the bellows
と基準流体との差圧でWith the differential pressure between 伸縮する被検知用ベローズの間をBetween the expanding and contracting bellows
連結棒で連結し、該連結棒の移動量が支点を介して支点Connected by a connecting rod, and the amount of movement of the connecting rod is
と動作点の距離を変化させることで伸縮量を任意の動作Change the amount of expansion and contraction by changing the distance between
点移動量として取り出すことのできる作動板と前記作動An operation plate that can be taken out as a point movement amount and the operation
板の上方に配置し、その可動連桿の下端が前記作動板にIt is placed above the plate, and the lower end of the movable connecting rod is
対向し、近接して位置されるスナップアクション機構をSnap action mechanism that is located opposite and close to
用いた突子移動量増幅具を備える差圧−移動量換部とをThe differential pressure-movement amount conversion unit provided with the used
備え、Prepared, 前記突子移動量増幅具の可動連桿他端は突子の脚と係合The other end of the movable connecting rod of the axle moving amount amplifying tool engages with the leg of the axle.
され、他方の突子の脚は前記作動板に対向し、近接してThe leg of the other head is opposed to and close to the operating plate.
配置されることを特徴とする光ファイバ圧力センサ。An optical fiber pressure sensor, which is disposed.
JP8224403A 1996-08-06 1996-08-06 Optical fiber pressure sensor using optical loss structure Expired - Fee Related JP3049208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8224403A JP3049208B2 (en) 1996-08-06 1996-08-06 Optical fiber pressure sensor using optical loss structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8224403A JP3049208B2 (en) 1996-08-06 1996-08-06 Optical fiber pressure sensor using optical loss structure

Publications (2)

Publication Number Publication Date
JPH1048084A JPH1048084A (en) 1998-02-20
JP3049208B2 true JP3049208B2 (en) 2000-06-05

Family

ID=16813218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8224403A Expired - Fee Related JP3049208B2 (en) 1996-08-06 1996-08-06 Optical fiber pressure sensor using optical loss structure

Country Status (1)

Country Link
JP (1) JP3049208B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965122B2 (en) * 2005-12-27 2012-07-04 アズビル株式会社 Differential pressure measurement system and differential pressure measurement method
JP6410703B2 (en) * 2015-11-25 2018-10-24 株式会社フジクラ Side incidence device and side incidence method
CN106093464B (en) * 2016-07-27 2022-09-20 山东省科学院激光研究所 Optical fiber differential pressure wind speed sensor and application

Also Published As

Publication number Publication date
JPH1048084A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
US4477725A (en) Microbending of optical fibers for remote force measurement
US4421979A (en) Microbending of optical fibers for remote force measurement
US4459477A (en) Microbending of optical fibers for remote force measurement
US4408495A (en) Fiber optic system for measuring mechanical motion or vibration of a body
US4463254A (en) Microbending of optical fibers for remote force measurement
Hampshire et al. Monitoring the behavior of steel structures using distributed optical fiber sensors
JPH11132874A (en) Load cell and load detector provided with the same
CN111879970B (en) Temperature insensitive FBG acceleration sensor and method based on strain chirp effect
KR102169504B1 (en) Apparatus for Measuring Strain of Pipe, and Method for Monitoring Leakage of Pipe Connection
JP3049208B2 (en) Optical fiber pressure sensor using optical loss structure
US7533588B2 (en) Micromovement measuring device and method of movement process conversion to an electric signal
JP2012088155A (en) Measuring method using fbg sensor, and device thereof
JP2003254724A (en) System for measuring wide-area distortion distribution
Kadokura et al. Sensitivity enhancement of a semicircular curved hetero-core optical fiber accelerometer with low cross-axis sensitivity
US5216240A (en) Fiber optical sensor having a plurality of sets of actuation means with different natural vibrational frequencies
KR20180105816A (en) Apparatus for detecting deflection using optical fiber sensor
JP2001201411A (en) Optical fiber sensor and optical fiber sensor multiple point measuring system
CN211740861U (en) Tension clamp for detecting tensile strength of retainer
JP2000193539A (en) Force sensor and force measurement system using the same
JPH1137717A (en) Apparatus and method for measuring displaced amount
CN105509957A (en) Fiber grating pressure transducer
JP2006266799A (en) Optical fiber sensor device
Png Design and Development of Mach-zehnder Interferometer Fiber Sensor for Structural Health Monitoring
JPH0429362Y2 (en)
JP2004257773A (en) Optical fiber type displacement gauge

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees