JP3045503B1 - Method for producing single crystal film of superconducting oxide - Google Patents

Method for producing single crystal film of superconducting oxide

Info

Publication number
JP3045503B1
JP3045503B1 JP11283587A JP28358799A JP3045503B1 JP 3045503 B1 JP3045503 B1 JP 3045503B1 JP 11283587 A JP11283587 A JP 11283587A JP 28358799 A JP28358799 A JP 28358799A JP 3045503 B1 JP3045503 B1 JP 3045503B1
Authority
JP
Japan
Prior art keywords
single crystal
superconducting oxide
crystal substrate
film
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11283587A
Other languages
Japanese (ja)
Other versions
JP2001106599A (en
Inventor
功 田中
敏司 綿打
建 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP11283587A priority Critical patent/JP3045503B1/en
Application granted granted Critical
Publication of JP3045503B1 publication Critical patent/JP3045503B1/en
Publication of JP2001106599A publication Critical patent/JP2001106599A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】 従来の方法では非常に困難であったミクロン
オーダーすなわち1μm以上の厚みを持った優れた特性
を有する超伝導性酸化物単結晶膜を得ることを可能とす
る新たな方法を開発すること。 【解決手段】 La2 CuO4 等のバルク状超伝導性酸
化物の単結晶基板を熱処理して非超伝導性酸化物の単結
晶基板にし、これを40〜200℃の過マンガン酸塩水
溶液に浸漬することにより、該単結晶基板表面を化学的
に酸化処理して単結晶基板に酸素を導入して酸素過剰な
超伝導性酸化物膜を形成する。
The present invention provides a new method for obtaining a superconducting oxide single crystal film having excellent characteristics having a thickness of a micron order, that is, a thickness of 1 μm or more, which has been extremely difficult with a conventional method. To develop. SOLUTION: A single crystal substrate of a bulk superconducting oxide such as La 2 CuO 4 is heat-treated to form a single crystal substrate of a non-superconducting oxide, which is converted into a permanganate aqueous solution at 40 to 200 ° C. By dipping, the surface of the single crystal substrate is chemically oxidized to introduce oxygen into the single crystal substrate to form an oxygen-excess superconducting oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超伝導性酸化物の
単結晶膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting oxide single crystal film.

【0002】[0002]

【従来の技術】酸化物超伝導体の単結晶は、フローティ
ングゾーン(FZ)法やTSFZ(Traveling Solvent
Floating Zone )法により製造されている。また、酸化
物超伝導体の膜は、主にMBE法などの気相法で合成さ
れている。その他、半導性を示す酸化物に対して過剰酸
素を導入してキャリヤー密度を増加し、超伝導化する方
法として、高圧酸素処理法、電気化学的または化学
的酸化方法、酸素プラズマ法などの方法が、膜の製造
に適する方法として知られている(特開平10−273
317号公報参照)。
2. Description of the Related Art A single crystal of an oxide superconductor is manufactured by a floating zone (FZ) method or a TSFZ (Traveling Solvent) method.
Floating Zone) method. The oxide superconductor film is mainly synthesized by a gas phase method such as the MBE method. In addition, as a method for increasing the carrier density by introducing excess oxygen into the oxide exhibiting semiconductivity and making it superconductive, there are high pressure oxygen treatment, electrochemical or chemical oxidation, oxygen plasma method, etc. The method is known as a method suitable for the production of a film (JP-A-10-273).
No. 317).

【0003】上記の特開平10−273317号公報に
は、超伝導性を示さない厚さ1μm以下の酸化物薄膜に
分子状態より強力な酸化力を持つ酸化ガスを照射するこ
とにより超伝導化する方法が開示されている。
[0003] The above-mentioned Japanese Patent Application Laid-Open No. 10-273317 discloses that an oxide thin film having a thickness of 1 μm or less which does not exhibit superconductivity is irradiated with an oxidizing gas having a stronger oxidizing power than its molecular state to make it superconductive. A method is disclosed.

【0004】また、電気化学的酸化方法としては、例え
ば、特開平6−298531号公報には、酸化物基体上
に形成されたMCuO2 (M=アルカリ金属イオン)で
示される無限層構造を有する銅酸化物の薄膜について、
電解質溶液中での酸化反応により銅酸化物中の薄膜中に
過剰酸素を常圧で導入し110°K以上のTcをもつ超
伝導体を合成する方法が開示されている。J.C.Grenier
et al.Physica C202 (1992) には、ペレット状La2
uO4 焼結体を25℃の水酸化カリウム水溶液中で、9
時間かけて電気化学的酸化を行った結果、過剰酸素量0
≦d≦0.09のLa2 CuO4+dが得られたことを、
また、F.C.Chou,D.C.Johnston,S.W.Cheong and P.C.Can
field,Physica C216(1993)66には、La2 CuO4 バル
ク単結晶の電気化学的酸化法について、電気化学酸化に
要する時間は、20mg程度の小さな結晶でも1か月か
かることを示している。
As an electrochemical oxidation method, for example, Japanese Patent Application Laid-Open No. 6-298531 discloses an infinite layer structure represented by MCuO 2 (M = alkali metal ion) formed on an oxide substrate. For copper oxide thin films,
There is disclosed a method of synthesizing a superconductor having a Tc of 110 ° K or more by introducing excess oxygen into a thin film in a copper oxide at normal pressure by an oxidation reaction in an electrolyte solution. JCGrenier
et al. Physica C202 (1992) include La 2 C pellets.
The uO 4 sintered body was placed in an aqueous solution of potassium hydroxide at 25 ° C. for 9 hours.
As a result of performing the electrochemical oxidation over time, the excess oxygen
That La 2 CuO 4 + d ≦ d ≦ 0.09 was obtained,
FCChou, DC Johnston, SWCheong and PCCan
Field, Physica C216 (1993) 66, indicates that the electrochemical oxidation method of La 2 CuO 4 bulk single crystal takes one month even for a crystal as small as about 20 mg.

【0005】さらに、化学的酸化方法として、特開平4
−219303号公報には、酸化物超伝導体製造工程に
おける中間生成物又は超伝導性を示すに至ったものを、
酸化性を有する化合物を含有する溶液で処理する方法を
開示しており、酸化性を有する化合物としては、カルボ
ニル化合物、オゾン、過酸化水素、有機過酸化物、ジメ
チルスルホキシド、過マンガン酸塩等が例示されてい
る。
Further, as a chemical oxidation method, Japanese Patent Application Laid-Open No.
JP-A-219303 discloses an intermediate product or a product that has shown superconductivity in an oxide superconductor manufacturing process.
It discloses a method of treating with a solution containing a compound having an oxidizing property, examples of the compound having an oxidizing property include carbonyl compounds, ozone, hydrogen peroxide, organic peroxides, dimethyl sulfoxide, permanganate, and the like. Is illustrated.

【0006】[0006]

【発明が解決しようとする課題】La系酸化物高温超伝
導体の結晶構造は、c軸方向に沿ってCuO2 導電層と
La2 2 絶縁層が交互に積み重なった層状構造を有す
ることから、その結晶格子内にCuO2 導電層−La2
2 絶縁層−CuO2 導電層のジョセフソン接合が形成
されている。したがって、La系酸化物高温超伝導体の
単結晶は、無数のジョセフソン接合からなるマイクロ電
子デバイスと見なすことができる。また、その単結晶か
らジョセフソンプラズマ現象が発見され、超高速マイク
ロ電子デバイスへの応用が期待されている。しかし、そ
のような電子デバイスを実現するためには、ミクロンオ
ーダーの厚み、すなわち1μm以上の厚みを持った単結
晶膜が不可欠である。
The crystal structure of the La-based oxide high-temperature superconductor has a layered structure in which CuO 2 conductive layers and La 2 O 2 insulating layers are alternately stacked along the c-axis direction. , A CuO 2 conductive layer—La 2
A Josephson junction between the O 2 insulating layer and the CuO 2 conductive layer is formed. Therefore, the single crystal of the La-based oxide high-temperature superconductor can be regarded as a microelectronic device composed of countless Josephson junctions. In addition, the Josephson plasma phenomenon was discovered from the single crystal, and application to ultra-high-speed microelectronic devices is expected. However, in order to realize such an electronic device, a single crystal film having a thickness on the order of microns, that is, a thickness of 1 μm or more is indispensable.

【0007】ところで、酸化物超伝導体の単結晶製造方
法であるFZ法やTSFZ法は、大型の単結晶を製造す
る方法であり、1mm以下の厚さの単結晶膜を作成する
ことは困難である。膜の製造に適する従来のMBE法な
どの気相法では、基板上に成膜した超伝導体は配向して
いる多結晶体であり単結晶にはなっておらず、しかも膜
厚が0.1μm以下と非常に薄い。
[0007] Incidentally, the FZ method and the TSFZ method, which are methods for producing a single crystal of an oxide superconductor, are methods for producing a large single crystal, and it is difficult to form a single crystal film having a thickness of 1 mm or less. It is. In a gas phase method such as a conventional MBE method suitable for the production of a film, a superconductor formed on a substrate is an oriented polycrystal, not a single crystal, and has a film thickness of 0.1 mm. Very thin, 1 μm or less.

【0008】また、単結晶基板上に単結晶の膜を成膜さ
せる方法も知られているが、単結晶基板には、酸化物超
伝導体とは結晶構造や格子定数が異なる酸化マグネシウ
ムやチタン酸ストロンチウムなどが用いられており、酸
化物超伝導体と同族あるいはその母体となる物質の単結
晶は用いられていない。そのため、良質な単結晶が得ら
れないとともに、膜の結晶方位を制御できず、膜厚もナ
ノメーター級の単結晶膜しかできていない。非超伝導性
単結晶を電気化学的に酸化させる方法では、過剰酸素量
dを最大0.09までしか増加させることができず、結
晶表面層だけを酸化させるなどの膜厚制御が困難である
とともに結晶表面が浸食されて平滑な表面が得られな
い。
A method of forming a single crystal film on a single crystal substrate is also known. However, a magnesium oxide or titanium oxide having a different crystal structure or lattice constant from an oxide superconductor is formed on a single crystal substrate. Strontium acid or the like is used, and a single crystal of a substance which is the same as or a parent of the oxide superconductor is not used. Therefore, a high-quality single crystal cannot be obtained, the crystal orientation of the film cannot be controlled, and only a single-crystal film having a thickness of nanometer class has been formed. In the method of electrochemically oxidizing a non-superconducting single crystal, the excess oxygen amount d can only be increased to a maximum of 0.09, and it is difficult to control the film thickness by oxidizing only the crystal surface layer. At the same time, the crystal surface is eroded and a smooth surface cannot be obtained.

【0009】従来公知の化学的酸化方法として、上記の
特開平4−219303号公報に示される方法は、酸化
物超伝導体の製造工程における中間生成物又は超伝導性
を示すに至ったものを基体とし、粉末、バルク、線材、
薄膜等の任意の形状のものを酸化性を有する化合物を含
有する溶液で処理するものであり、溶媒は超伝導体の安
定性の面からメタノールやトルエンなどの非水溶媒が好
ましいとされており、非水溶媒の沸点が低いために高温
での酸化処理が困難であり、十分に過剰酸素量を増加さ
せることができない。また、上記の特開平10−273
317号公報に化学酸化方法の例として引用されている
E.Takayama-Muromachiet al.Physica C207(1993)97 に
は、焼結体を粉砕した粉末状試料をKMnO4 水溶液で
酸化させるものであり、単結晶や薄膜を如何にして製造
するかについては何も開示されていない。
As a conventionally known chemical oxidation method, the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-219303 discloses an intermediate product or a material which has shown superconductivity in the production process of an oxide superconductor. Base, powder, bulk, wire,
It is intended to treat a thin film or the like in an arbitrary shape with a solution containing a compound having an oxidizing property.The solvent is preferably a non-aqueous solvent such as methanol or toluene from the viewpoint of the stability of the superconductor. Since the non-aqueous solvent has a low boiling point, it is difficult to perform oxidation treatment at a high temperature, and the excess oxygen amount cannot be sufficiently increased. In addition, Japanese Patent Application Laid-Open No. 10-273 described above
No. 317, cited as an example of a chemical oxidation method.
E. Takayama-Muromachi et al. Physica C207 (1993) 97 describes a method of oxidizing a powdery sample obtained by pulverizing a sintered body with an aqueous KMnO 4 solution. Is also not disclosed.

【0010】本発明は、従来の方法では非常に困難であ
ったミクロンオーダーすなわち1μm以上の厚みを持っ
た優れた特性を有する超伝導性酸化物単結晶膜を得るこ
とを可能とする新たな方法を開発することを課題とす
る。
The present invention provides a new method for obtaining a superconducting oxide single crystal film having excellent properties and having a thickness on the order of microns, that is, 1 μm or more, which has been extremely difficult with the conventional method. The task is to develop

【0011】[0011]

【課題を解決するための手段】本発明は、化学酸化法を
用いることにより比較的低温で短時間に簡便な方法で良
質な単結晶膜を提供することを可能としたものである。
すなわち、本発明は、バルク状超伝導性酸化物の単結晶
基板を熱処理して非超伝導性酸化物の単結晶基板にし、
これを40〜200℃の過マンガン酸塩水溶液に浸漬す
ることにより、該単結晶基板表面を化学的に酸化処理し
て単結晶基板に酸素を導入して酸素過剰な超伝導性酸化
物膜を形成することを特徴とする超伝導性酸化物の単結
晶膜の製造方法である。
SUMMARY OF THE INVENTION The present invention has made it possible to provide a high-quality single crystal film at a relatively low temperature in a short time by a simple method by using a chemical oxidation method.
That is, the present invention provides a single crystal substrate of a non-superconducting oxide by heat treating a single crystal substrate of a bulk superconducting oxide,
This is immersed in an aqueous solution of permanganate at 40 to 200 ° C. to chemically oxidize the surface of the single crystal substrate and introduce oxygen into the single crystal substrate to form an oxygen-excess superconducting oxide film. A method for producing a single crystal film of a superconducting oxide, characterized by being formed.

【0012】また、本発明は、バルク状超伝導性酸化物
の単結晶基板を熱処理して非超伝導性酸化物の単結晶基
板にし、これを室温の過マンガン酸塩水溶液に浸漬した
後、該水溶液を密閉容器で100〜200℃に昇温する
ことを特徴とする上記の超伝導性酸化物の単結晶膜の製
造方法である。
Further, the present invention provides a method for heat treating a single crystal substrate of a bulk superconducting oxide into a single crystal substrate of a non-superconducting oxide, and immersing the substrate in a permanganate aqueous solution at room temperature. The method for producing a single crystal film of a superconducting oxide as described above, wherein the temperature of the aqueous solution is raised to 100 to 200 ° C. in a closed container.

【0013】また、本発明は、バルク状超伝導性酸化物
の単結晶基板が酸素濃度によって超伝導性が現れたり消
滅したりする酸化物であることを特徴とする上記の超伝
導性酸化物の単結晶膜の製造方法である。
[0013] The present invention also provides the above superconducting oxide, wherein the single crystal substrate of the bulk superconducting oxide is an oxide whose superconductivity appears or disappears depending on the oxygen concentration. This is a method for producing a single crystal film.

【0014】また、本発明は、バルク状超伝導性酸化物
の単結晶基板がLa2 CuO4 であり、酸素過剰な超伝
導性酸化物膜がLa2 CuO4+d(ただし、0.06≦
d≦0.13である)であることを特徴とする上記の超
伝導性酸化物の単結晶膜の製造方法である。
Further, according to the present invention, the single crystal substrate of the bulk superconducting oxide is La 2 CuO 4 , and the oxygen-excess superconducting oxide film is La 2 CuO 4 + d (0.06 ≤
d ≦ 0.13), wherein the superconducting oxide single crystal film is manufactured.

【0015】本発明の方法において、バルク状超伝導性
酸化物の単結晶基板を熱処理して非超伝導性酸化物にす
る工程を必要とするのは次の理由による。バルク状単結
晶は、酸素を含有するガス雰囲気中で合成されるため
に、育成された単結晶は化学量論組成より酸素過剰であ
り、超伝導性を示すことが知られている。また、化学量
論組成の単結晶を大気中に室温で保管した場合でも、数
日後には超伝導性を示す。ただ、いずれの場合でも、過
剰酸素量dは0.03程度であるために超伝導特性は悪
い。このような単結晶基板を用いて、そのまま化学酸化
処理を行うと、基板の超伝導特性が悪いために単結晶基
板表面に形成された超伝導単結晶膜の超伝導特性が低下
してしまう。
In the method of the present invention, a step of heat-treating a single crystal substrate of a bulk superconducting oxide into a non-superconducting oxide is required for the following reasons. Since a bulk single crystal is synthesized in an oxygen-containing gas atmosphere, it is known that the grown single crystal has an oxygen excess relative to the stoichiometric composition and exhibits superconductivity. Even when a stoichiometric single crystal is stored in the air at room temperature, it shows superconductivity after several days. However, in any case, since the excess oxygen amount d is about 0.03, the superconductivity is poor. If the chemical oxidation treatment is directly performed using such a single crystal substrate, the superconductivity of the superconducting single crystal film formed on the surface of the single crystal substrate is deteriorated because the superconductivity of the substrate is poor.

【0016】これに対して、超伝導性酸化物単結晶を窒
素やアルゴンなどの不活性ガス中で熱処理して超伝導性
酸化物単結晶中の過剰酸素を一度除去して非超伝導性に
し、これを化学酸化処理することにより、非超伝導性酸
化物単結晶基板と構成元素、結晶構造、配向が同じで酸
素濃度のみが異なる良質な超伝導性酸化物単結晶膜を作
製することができる。このための熱処理温度は約600
℃以上であれば過剰酸素の除去が可能であるが時間がか
かるので、通常約800〜1100℃で行うことが望ま
しい。また、熱処理時間は試料の大きさにもよるが1m
m程度の厚さであれば、約10時間以上で十分であり、
比較的厚い試料では40時間程度とする。
On the other hand, the superconducting oxide single crystal is heat-treated in an inert gas such as nitrogen or argon to remove the excess oxygen in the superconducting oxide single crystal once to make it non-superconducting. By subjecting this to a chemical oxidation treatment, a high-quality superconducting oxide single-crystal film having the same constituent elements, crystal structure, and orientation but different oxygen concentration from the non-superconducting oxide single-crystal substrate can be produced. it can. The heat treatment temperature for this is about 600
If the temperature is higher than 0 ° C., excess oxygen can be removed, but it takes a long time. The heat treatment time is 1 m, depending on the size of the sample.
If the thickness is about m, about 10 hours or more is enough,
It takes about 40 hours for a relatively thick sample.

【0017】上記の熱処理を施した非超伝導性酸化物単
結晶基板を過マンガン酸塩水溶液に浸漬する。過マンガ
ン酸塩はカリウムまたはナトリウム塩のいずれでもよ
い。該単結晶基板は過マンガン酸塩水溶液に浸漬する前
に特に表面処理をする必要はないが、平滑な結晶面を出
すために鏡面研磨してもよい。
The heat-treated non-superconductive oxide single crystal substrate is immersed in an aqueous solution of permanganate. The permanganate may be either a potassium or sodium salt. The single crystal substrate does not need to be particularly subjected to a surface treatment before being immersed in the aqueous solution of permanganate, but may be mirror-polished to obtain a smooth crystal surface.

【0018】化学酸化する際の過マンガン酸塩水溶液の
温度は40〜200℃が好ましい。室温で単結晶基板を
溶液に浸漬してからこの温度範囲に昇温する。水溶液の
温度を100℃以上に昇温する場合には、密閉容器を用
いて加熱する。例えば、ポリテトラフロロエチレン(P
TFE)製容器に入れ、それをさらにステンレス鋼製容
器に入れて密閉してから昇温する。水溶液の温度が40
℃未満では、過マンガン酸塩飽和溶液の濃度が低くなる
ために処理時間がかかると共に、La2 CuO4+dの過
剰酸素量dが小さくなり、超伝導特性の優れた単結晶膜
が得られない。また200℃を超えると、La2 CuO
4+dから脱酸素が起こりやすくなり、La2 CuO4+d
過剰酸素量が低下する。
The temperature of the aqueous solution of permanganate during chemical oxidation is preferably from 40 to 200 ° C. After immersing the single crystal substrate in the solution at room temperature, the temperature is raised to this temperature range. When the temperature of the aqueous solution is raised to 100 ° C. or higher, heating is performed using a closed container. For example, polytetrafluoroethylene (P
TFE), and then further sealed in a stainless steel container and then heated. The temperature of the aqueous solution is 40
If the temperature is lower than 0 ° C., the concentration of the permanganate saturated solution becomes low, so that it takes a long processing time and the excess oxygen amount d of La 2 CuO 4 + d becomes small, so that a single crystal film having excellent superconductivity can be obtained. Absent. If the temperature exceeds 200 ° C., La 2 CuO
4 + oxygen tends to occur from d, excess oxygen content of La 2 CuO 4 + d is lowered.

【0019】過マンガン酸塩水溶液の濃度は1%から飽
和濃度の間でよい。KMnO4 の溶解度は水溶液温度の
上昇とともに増大し、例えば20℃では5.96gであ
るが、60℃では18.15gとなる。したがって、水
溶液の温度を上げることによって飽和濃度が増大するた
めに溶液濃度の範囲を広げることができる。過剰酸素量
dの値は、水溶液の濃度が一定であれば処理時間と共に
増大するが、約96時間では一定になる。処理時間が一
定であれば溶液濃度の増加と共に過剰酸素量dの値はわ
ずかに増大する。処理温度、溶液濃度が一定であれば、
温度の上昇と共に過剰酸素量dの値は飛躍的に増大す
る。よって、dの値を最大にするには、過マンガン酸塩
飽和溶液を用いて150〜200℃の温度で処理すると
よい。La2 CuO4+dは、過剰酸素量dがゼロの時は
反強磁性絶縁体であるが過剰酸素量dが0.03以上で
超伝導性を示すことが知られており、0.06≦d≦
0.13の過剰酸素量とすることが好ましい。
The concentration of the aqueous solution of permanganate may be between 1% and a saturated concentration. The solubility of KMnO 4 increases with the temperature of the aqueous solution, for example, 5.96 g at 20 ° C., but 18.15 g at 60 ° C. Therefore, increasing the temperature of the aqueous solution increases the saturation concentration, so that the range of the solution concentration can be widened. The value of the excess oxygen amount d increases with the treatment time when the concentration of the aqueous solution is constant, but becomes constant after about 96 hours. If the treatment time is constant, the value of the excess oxygen amount d slightly increases as the solution concentration increases. If the processing temperature and solution concentration are constant,
As the temperature increases, the value of the excess oxygen amount d dramatically increases. Therefore, in order to maximize the value of d, it is advisable to use a saturated solution of permanganate at a temperature of 150 to 200 ° C. La 2 CuO 4 + d is an antiferromagnetic insulator when the excess oxygen amount d is zero, but is known to exhibit superconductivity when the excess oxygen amount d is 0.03 or more. ≦ d ≦
Preferably, the excess oxygen amount is 0.13.

【0020】本発明の方法は、酸素濃度によって超伝導
性が現れたり消滅したりする超伝導性酸化物を対象とす
るものであり、La2 CuO4 や123系酸化物超伝導
体の酸素欠損させた基板、例えばYBa2 Cu3 7-d
やNdBa2 Cu3 7-d等を単結晶基板として用い
る。
The method of the present invention is directed to a superconducting oxide whose superconductivity appears or disappears depending on the oxygen concentration, and is intended for oxygen deficiency in La 2 CuO 4 or 123-based oxide superconductors. Substrate, for example, YBa 2 Cu 3 O 7-d
Or NdBa 2 Cu 3 O 7-d or the like is used as a single crystal substrate.

【0021】La2 CuO4 の場合について、本発明の
方法における酸化処理を化学式で表すと中性溶液中では
下記のとおりとなる。
In the case of La 2 CuO 4 , the oxidation treatment in the method of the present invention is represented by the following formula in a neutral solution by a chemical formula.

【0022】La2CuO4+(2d/3)KMnO4
(d/3)H2O→La2CuO4+d +(2d/3)Mn
2+(2d/3)KOH また、酸性溶液中では下記のとおりとなる。
La 2 CuO 4 + (2d / 3) KMnO 4 +
(D / 3) H 2 O → La 2 CuO 4 + d + (2d / 3) Mn
O 2 + (2d / 3) KOH In an acidic solution, the results are as follows.

【0023】La2CuO4+(2d/5)KMnO4
La2CuO4+d +(2d/5)MnO+(d/5)K2
La 2 CuO 4 + (2d / 5) KMnO 4
La 2 CuO 4 + d + (2d / 5) MnO + (d / 5) K 2
O

【0024】図1は、本発明の方法によって、La2
uO4 単結晶基板を処理した場合の単結晶表面の変化を
模式的に示す断面図である。本発明の方法は、単結晶の
表面を化学的に酸化させるものであるために、図1に示
すように、過マンガン酸塩溶液によって単結晶の表面が
酸化されると同時に表面が一部浸食されて荒れて多少凹
凸になる。しかし、超伝導層の厚みがミクロン級の厚さ
なのでその凹凸を機械的研磨などで適宜研磨すれば平滑
な面を得ることができる。
FIG. 1 shows that the method of the present invention can be used to obtain La 2 C
FIG. 4 is a cross-sectional view schematically showing a change in a single crystal surface when a uO 4 single crystal substrate is processed. Since the method of the present invention chemically oxidizes the surface of the single crystal, as shown in FIG. 1, the surface of the single crystal is oxidized by the permanganate solution, and at the same time, the surface is partially eroded. It becomes rough and somewhat uneven. However, since the thickness of the superconducting layer is on the order of microns, a smooth surface can be obtained by appropriately polishing the irregularities by mechanical polishing or the like.

【0025】本発明の方法により、図2に示すように非
超伝導性La2 CuO4 基板の表面部に超伝導性La2
CuO4+d膜が形成される。超伝導性La2 CuO4+d
は、非超伝導性La2 CuO4 基板と全く同じ結晶学的
方位関係にあり、例えば、a軸あるいはb軸配向で、c
軸配向に長い単結晶膜を作製することができる。
According to the method of the present invention, as shown in FIG. 2, the surface of the non-superconductive La 2 CuO 4 substrate is superconductive La 2
A CuO 4 + d film is formed. The superconducting La 2 CuO 4 + d film has exactly the same crystallographic orientation relationship as the non-superconducting La 2 CuO 4 substrate.
A single crystal film with a long axial orientation can be manufactured.

【0026】従来の超伝導薄膜作製においては、基板と
成膜との格子定数や熱膨張係数の違いによる格子整合
性、配向性、過飽和度の制御などの問題を考慮する必要
があり、低過飽和度ほど良質な単結晶膜が得られること
が分かっているが、成膜条件に限界があり良質な単結晶
膜が得られていない。
In the preparation of a conventional superconducting thin film, it is necessary to consider problems such as control of lattice matching, orientation, and supersaturation due to differences in lattice constant and thermal expansion coefficient between the substrate and the film. It is known that a high quality single crystal film can be obtained as much as possible, but a film formation condition is limited and a high quality single crystal film has not been obtained.

【0027】これに対して、本発明の方法は、単結晶基
板の表面を酸化させるだけであるから、超伝導単結晶膜
と単結晶基板の違いは酸素濃度の違いだけであるから、
格子整合性の問題は起こらない。また、この方法では基
板の上に成膜するのではないので、過飽和度を考慮する
必要がない。よって、非常に安価で簡便に超伝導体単結
晶膜が作製できる。また、本発明の方法は、非水溶媒を
用いる化学酸化に比べて高温で酸化処理させることが可
能であり、それによって過剰酸素量dを増大させる効果
があり超伝導特性に優れた超伝導膜を作製することがで
きる。
On the other hand, the method of the present invention only oxidizes the surface of the single crystal substrate, and the only difference between the superconducting single crystal film and the single crystal substrate is the difference in oxygen concentration.
No problem of lattice matching occurs. Further, in this method, since the film is not formed on the substrate, it is not necessary to consider the degree of supersaturation. Therefore, a superconductor single crystal film can be manufactured very easily at a low cost. Further, the method of the present invention can perform an oxidation treatment at a higher temperature than chemical oxidation using a non-aqueous solvent, thereby increasing the amount of excess oxygen d, and has a superconducting film excellent in superconductivity. Can be produced.

【0028】[0028]

【実施例】実施例1 四楕円鏡型浮遊帯域溶融装置を用いて、TSFZ法によ
り育成速度1mm/h、0.2MPa酸素雰囲気、育成
方向α-axis の条件でバルク状La2 CuO4 単結晶基
板を育成した。得られた結晶をX線背面ラウエ法により
軸の決定を行った。TSFZ法による育成の結果、棒状
で長さ50mm、直径5mmの結晶初期部から金属光沢
を持つ良質なLa2 CuO4 単結晶を得ることができ
た。
Example 1 Using a four-ellipsoidal mirror type floating zone melting apparatus, a bulk La 2 CuO 4 single crystal was grown by the TSFZ method under the conditions of a growth rate of 1 mm / h, an oxygen atmosphere of 0.2 MPa, and a growth axis α-axis. The substrate was grown. The axis of the obtained crystal was determined by the X-ray back Laue method. As a result of the growth by the TSFZ method, a high-quality single crystal of La 2 CuO 4 having a metallic luster was obtained from the initial part of the crystal having a length of 50 mm and a diameter of 5 mm having a rod shape.

【0029】このLa2 CuO4 単結晶を軸にあわせて
カットし、この単結晶の切断片を窒素中900℃で40
時間熱処理して非超伝導化させ、5%の濃度のKMnO
4 水溶液中に浸漬し、水温を50℃に上昇させて48時
間、72時間、96時間の間、結晶表面の酸化処理を行
った。
The La 2 CuO 4 single crystal was cut along the axis, and the cut piece of the single crystal was cut in nitrogen at 900 ° C. for 40 minutes.
Heat treatment for non-superconducting time for 5% KMnO
4 The crystal surface was immersed in an aqueous solution, and the water temperature was raised to 50 ° C., and the crystal surface was oxidized for 48 hours, 72 hours, and 96 hours.

【0030】これらの試料それぞれについて、SQUI
D磁束計により装置内の磁場を排除した状態で試料を2
〜5Kまで冷却し、試料にl0eの磁場を印加した後、
試料を40K付近まで加熱しながら磁化率を測定した
(零磁場冷却)。その後、5K付近まで冷却しながら磁
化率を測定した(磁場冷却)。測定の結果、超伝導体が
持つ性質である印加磁場を排除するというシールデイン
グ効果を確認した。これにより、超伝導性が発現したこ
とが明らかになった。超伝導膜の厚みは、磁化率と試料
サイズから推測して約10μmであった。なお、明暗視
野顕微鏡において、KMnO4 水溶液による単結晶表面
の浸食の有無を観察したところ、表面の一部が浸食され
ていた。
For each of these samples, SQUI
The sample was placed in a state where the magnetic field inside the device was removed by a D magnetometer.
After cooling to ~ 5K and applying a magnetic field of 10e to the sample,
The magnetic susceptibility was measured while heating the sample to around 40K (zero magnetic field cooling). Thereafter, the susceptibility was measured while cooling to around 5K (magnetic field cooling). As a result of the measurement, the shielding effect of eliminating the applied magnetic field, which is a property of the superconductor, was confirmed. This revealed that superconductivity was developed. The thickness of the superconducting film was about 10 μm as estimated from the magnetic susceptibility and the sample size. In addition, when the presence or absence of erosion of the single crystal surface by the aqueous solution of KMnO 4 was observed with a bright and dark field microscope, a part of the surface was eroded.

【0031】図3は、5%の濃度のKMnO4 水溶液
中、48時間、50℃で処理した単結晶の磁化率(M/
H)■印、アズグロウン単結晶(育成して熱処理等を施
していない単結晶)の磁化率▲印、およびN2 焼鈍単結
晶(熱処理後のバルク状単結晶基板)の磁化率●印の変
化を示すシールディング曲線のグラフである。化学酸化
前の単結晶基板は非超伝導性であるが、化学酸化によっ
て超伝導体になったことが分かる。また、化学酸化後の
試料のシールディング分率が熱処理前のバルク状単結晶
基板に比べてはるかに大きいことが分かる。
FIG. 3 shows the magnetic susceptibility (M / M) of a single crystal treated at 50 ° C. for 48 hours in a 5% aqueous KMnO 4 solution.
H) Changes in ■, magnetic susceptibility of as-grown single crystal (single crystal grown and not subjected to heat treatment) and magnetic susceptibility of N 2 annealed single crystal (bulk single crystal substrate after heat treatment) 6 is a graph of a shielding curve showing the following. It can be seen that the single crystal substrate before chemical oxidation was non-superconductive, but became a superconductor by chemical oxidation. Further, it can be seen that the shielding fraction of the sample after the chemical oxidation is much larger than that of the bulk single crystal substrate before the heat treatment.

【0032】図4は、処理時間48時間の磁化率●印、
処理時間72時間の磁化率▲印、および処理時間96時
間の磁化率■印の変化を示すシールディング曲線のグラ
フである。マイスナー分率はいずれも小さいが、シール
ディング曲線からそれらの試料が超伝導性を示している
ことが分かる。しかも、処理時間に応じて、超伝導転移
がシャープになり超伝導転移温度が上昇することが分か
る。なお、96時間以降では磁化率の変化がほとんど観
測されなかったことから、96時間で平衡に達すると考
えられる。
FIG. 4 is a graph showing magnetic susceptibility ● for 48 hours of processing.
It is a graph of a shielding curve which shows the change of magnetic susceptibility mark of processing time 72 hours, and change of magnetic susceptibility mark of processing time 96 hours. Although the Meissner fractions are all small, the shielding curves show that these samples show superconductivity. Moreover, it can be seen that the superconducting transition becomes sharper and the superconducting transition temperature rises according to the processing time. It should be noted that almost no change in magnetic susceptibility was observed after 96 hours, and it is considered that equilibrium is reached in 96 hours.

【0033】実施例2 実施例1と同様に、La2 CuO4+d単結晶を窒素中、
900℃で40時間熱処理して非超伝導化させた。図5
に示すように、10mlの5%KMnO4水溶液1をポ
リテトラフロロエチレン製容器2に入れ、その中に熱処
理したLa2 CuO4 単結晶基板3を浸漬した後、ポリ
テトラフロロエチレン製ふた4で密閉し、さらにそのポ
リテトラフロロエチレン製容器2をステンレス鋼製密閉
容器5に入れてポリテトラフロロエチレン製ふた4の上
にステンレス鋼製板6を乗せ、恒温槽中でステンレス鋼
製ふた7を介して加圧調整ねじ8によりポリテトラフロ
ロエチレン製ふた4を加圧調整できるようにして、水溶
液1を100℃に加熱し、96時間放置した。
Example 2 In the same manner as in Example 1, La 2 CuO 4 + d single crystal was
Heat treatment was performed at 900 ° C. for 40 hours to make the material non-superconductive. FIG.
As shown in FIG. 2, 10 ml of a 5% KMnO 4 aqueous solution 1 is placed in a container 2 made of polytetrafluoroethylene, and the heat-treated La 2 CuO 4 single crystal substrate 3 is immersed therein. The container was sealed, and the polytetrafluoroethylene container 2 was placed in a stainless steel sealed container 5, a stainless steel plate 6 was placed on the polytetrafluoroethylene lid 4, and the stainless steel lid 7 was placed in a thermostat. The aqueous solution 1 was heated to 100 ° C. and allowed to stand for 96 hours so that the pressure of the polytetrafluoroethylene lid 4 could be adjusted by the pressure adjusting screw 8 via the pressure adjusting screw.

【0034】図6は、実施例2の磁化率(M/H)▲印
の変化を実施例1の処理時間96時間の磁化率●印の変
化と対比して示すグラフである。超伝導転移温度は約2
6K付近であるが、水溶液の温度を100℃に上昇させ
ることにより、転移幅が減少し、マイスナー分率やシー
ルディング分率が増大するなど飛躍的に超伝導特性が向
上することが分かる。超伝導膜の厚みは、磁化率と試料
サイズから推測して約10μmであった。
FIG. 6 is a graph showing the change of the magnetic susceptibility (M / H) in the second embodiment in comparison with the change of the magnetic susceptibility in the first embodiment for 96 hours. Superconducting transition temperature is about 2
Although it is around 6K, it can be seen that increasing the temperature of the aqueous solution to 100 ° C. dramatically reduces the transition width and increases the Meissner fraction and the shielding fraction, thereby dramatically improving the superconductivity. The thickness of the superconducting film was about 10 μm as estimated from the magnetic susceptibility and the sample size.

【0035】実施例3 熱処理した単結晶基板を5%KMnO4 水溶液に浸漬し
たのち、恒温槽中で150℃、48時間放置した以外は
実施例2と同様に酸化処理した。その後、単結晶基板を
取り出して水で洗浄したのち、SQUID磁化率計で磁
化率を測定した。図7は、実施例3の磁化率(M/H)
▽印の変化を実施例1の処理時間96時間の磁化率●印
および実施例2の磁化率▲印と対比して示すグラフであ
る。本実施例では、50℃で96時間、100℃で96
時間化学酸化処理した場合に比べて、超伝導転移温度が
約5K上昇し、超伝導転移も非常に鋭くなった。さら
に、マイスナー分率が向上した。超伝導膜の厚みは、磁
化率と試料サイズから推測して約10μmであった。し
たがって、酸化処理温度を150℃に上げたことによ
り、より短時間で良質なミクロンオーダーの超伝導性単
結晶膜を作製できることが分かる。
Example 3 The heat-treated single crystal substrate was immersed in a 5% KMnO 4 aqueous solution and then oxidized in the same manner as in Example 2 except that the substrate was allowed to stand in a thermostat at 150 ° C. for 48 hours. Then, after taking out the single crystal substrate and washing it with water, the magnetic susceptibility was measured with a SQUID magnetometer. FIG. 7 shows the susceptibility (M / H) of Example 3.
6 is a graph showing the change of the mark 対 in comparison with the magnetic susceptibility ● mark and the magnetic susceptibility mark の of Example 2 for a treatment time of 96 hours in Example 1. In this embodiment, 96 hours at 50 ° C. and 96 hours at 100 ° C.
The superconducting transition temperature increased by about 5K and the superconducting transition became very sharp as compared with the case where the chemical oxidation treatment was performed for a long time. Further, the Meissner fraction was improved. The thickness of the superconducting film was about 10 μm as estimated from the magnetic susceptibility and the sample size. Therefore, it can be seen that by increasing the oxidation treatment temperature to 150 ° C., a high-quality micron-order superconductive single crystal film can be manufactured in a shorter time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法により単結晶基板としてLa2
uO4 を用いた場合の単結晶基板表面の変化を模式的に
示す断面図である。
FIG. 1 shows a single crystal substrate of La 2 C according to the method of the present invention.
FIG. 4 is a cross-sectional view schematically showing a change in the surface of a single crystal substrate when uO 4 is used.

【図2】本発明の方法により非超伝導性La2 CuO4
基板の表面部に形成された超伝導性La2 CuO4+d
を模式的に示す斜視図である。
FIG. 2 shows a non-superconducting La 2 CuO 4 according to the method of the invention.
The superconducting La 2 CuO 4 + d film formed on the surface of the substrate is a perspective view schematically showing.

【図3】実施例1の磁化率(M/H)■印の変化をアズ
グロウン単結晶の磁化率▲印およびN2 焼鈍単結晶の磁
化率●印の変化と比較して示すグラフである。
FIG. 3 is a graph showing a change in magnetic susceptibility (M / H) ■ of Example 1 in comparison with a change in magnetic susceptibility の of an as-grown single crystal and change of magnetic susceptibility ● of an N 2 annealed single crystal.

【図4】実施例1における処理時間に対する磁化率(M
/H)(●印48時間、▲印72時間、■印96時間)
の変化を示すグラフである。
FIG. 4 shows the magnetic susceptibility (M
/ H) (● mark 48 hours, ▲ mark 72 hours, △ mark 96 hours)
6 is a graph showing a change in the graph.

【図5】本発明の方法を水溶液温度100℃以上で実施
する場合に使用できる恒温槽の概略部分断面図である。
FIG. 5 is a schematic partial sectional view of a thermostat that can be used when the method of the present invention is carried out at an aqueous solution temperature of 100 ° C. or higher.

【図6】実施例2の磁化率(M/H)▲印の変化を実施
例1の磁化率●印の変化と対比して示すグラフである。
FIG. 6 is a graph showing a change in magnetic susceptibility (M / H) in Example 2 in comparison with a change in magnetic susceptibility in Example 1;

【図7】実施例3の磁化率(M/H)▽印の変化を実施
例1の磁化率●印および実施例2の磁化率▲印の変化と
対比して示すグラフである。
FIG. 7 is a graph showing a change in magnetic susceptibility (M / H) in Example 3 in comparison with a change in magnetic susceptibility in the first example and a change in magnetic susceptibility in the second example.

【符号の説明】[Explanation of symbols]

1 過マンガン酸塩水溶液 2 PTFE製容器 3 酸化物単結晶基板 4 PTFE製ふた 5 ステンレス鋼製容器 6 ステンレス鋼製板 7 ステンレス鋼製ふた 8 加圧調整ねじ DESCRIPTION OF SYMBOLS 1 Permanganate aqueous solution 2 PTFE container 3 Oxide single crystal substrate 4 PTFE lid 5 Stainless steel container 6 Stainless steel plate 7 Stainless steel lid 8 Pressure adjusting screw

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−219303(JP,A) E.Takayama−Muroma chi et al.,”Direct oxidation of lant hanum copper oxide (La2CuO4)in an aqu eous solution of p ottasium permangan ate(KMnO4),”Physic a C,Vol.207,No.1−2, 1993,pp.97−101 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C01G 1/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-219303 (JP, A) Takayama-Muromachi et al. , "Direct oxidation of lanthanum copper oxide (La2CuO4) in an aque eous solution of potasium permanate rate (KMnO4)," Physica. 207, no. 1-2, 1993, pp. 97-101 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00 C01G 1/00 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バルク状超伝導性酸化物の単結晶基板を熱
処理して非超伝導性酸化物の単結晶基板にし、これを4
0〜200℃の過マンガン酸塩水溶液に浸漬することに
より、該単結晶基板表面を化学的に酸化処理して単結晶
基板に酸素を導入して酸素過剰な超伝導性酸化物膜を形
成することを特徴とする超伝導性酸化物の単結晶膜の製
造方法。
1. A single crystal substrate of a bulk superconducting oxide is heat-treated into a single crystal substrate of a non-superconducting oxide, and
The surface of the single crystal substrate is chemically oxidized by immersion in a permanganate aqueous solution at 0 to 200 ° C. to introduce oxygen into the single crystal substrate to form an oxygen-excess superconducting oxide film. A method for producing a single crystal film of a superconducting oxide, comprising:
【請求項2】バルク状超伝導性酸化物の単結晶基板を熱
処理して非超伝導性酸化物の単結晶基板にし、これを室
温の過マンガン酸塩水溶液に浸漬した後、該水溶液を密
閉容器内で100〜200℃に昇温することを特徴とす
る請求項1記載の超伝導性酸化物の単結晶膜の製造方
法。
2. A single crystal substrate of a bulk superconducting oxide is heat treated to form a single crystal substrate of a non-superconducting oxide, which is immersed in an aqueous solution of permanganate at room temperature, and the aqueous solution is sealed. The method for producing a superconducting oxide single crystal film according to claim 1, wherein the temperature is raised to 100 to 200 ° C. in the container.
【請求項3】バルク状超伝導性酸化物の単結晶基板が酸
素濃度によって超伝導性が現れたり消滅したりする酸化
物であることを特徴とする請求項1記載の超伝導性酸化
物の単結晶膜の製造方法。
3. The superconducting oxide according to claim 1, wherein the single crystal substrate of the bulk superconducting oxide is an oxide whose superconductivity appears or disappears depending on the oxygen concentration. A method for manufacturing a single crystal film.
【請求項4】バルク状超伝導性酸化物の単結晶基板がL
2 CuO4 であり、酸素過剰な超伝導性酸化物膜がL
2 CuO4+d(ただし、0.06≦d≦0.13であ
る)であることを特徴とする請求項1記載の超伝導性酸
化物の単結晶膜の製造方法。
4. A single crystal substrate of a bulk superconducting oxide is L
a 2 CuO 4 , and the oxygen-excess superconducting oxide film is L
2. The method according to claim 1, wherein a2CuO4 + d (where 0.06.ltoreq.d.ltoreq.0.13) is satisfied.
JP11283587A 1999-10-04 1999-10-04 Method for producing single crystal film of superconducting oxide Expired - Fee Related JP3045503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11283587A JP3045503B1 (en) 1999-10-04 1999-10-04 Method for producing single crystal film of superconducting oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11283587A JP3045503B1 (en) 1999-10-04 1999-10-04 Method for producing single crystal film of superconducting oxide

Publications (2)

Publication Number Publication Date
JP3045503B1 true JP3045503B1 (en) 2000-05-29
JP2001106599A JP2001106599A (en) 2001-04-17

Family

ID=17667450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11283587A Expired - Fee Related JP3045503B1 (en) 1999-10-04 1999-10-04 Method for producing single crystal film of superconducting oxide

Country Status (1)

Country Link
JP (1) JP3045503B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861290B2 (en) * 2007-10-30 2012-01-25 日本電信電話株式会社 Superconductor and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.Takayama−Muromachi et al.,"Direct oxidation of lanthanum copper oxide(La2CuO4)in an aqueous solution of pottasium permanganate(KMnO4),"Physica C,Vol.207,No.1−2,1993,pp.97−101

Also Published As

Publication number Publication date
JP2001106599A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP5057784B2 (en) Oxide film with nanodot flux and pinning center
Beyers et al. Thermodynamic considerations in superconducting oxides
Thieme et al. Improved high field performance of Nb‐Al powder metallurgy processed superconducting wires
Kikuchi et al. Microstructures of rapidly-heated/quenched and transformed Nb/sub 3/Al multifilamentary superconducting wires
Yun et al. Fabrication of c‐oriented HgBa2Ca2Cu3O8+ δ superconducting thin films
Jiang et al. Critical current limiting factors in post annealed (Bi, Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/tapes
Kikuchi et al. Nb/sub 3/Al conductor fabricated by DRHQ (Double Rapidly-Heating/Quenching) process
Opagiste et al. Phase diagram of the Tl2Ba2CuO6 compounds in the T, p (O2) plane
Suo et al. Transport critical current densities and n factors in mono-and multifilamentary MgB/sub 2//Fe tapes and wires using fine powders
JP3045503B1 (en) Method for producing single crystal film of superconducting oxide
JP2011510171A (en) Wet chemical methods for producing high temperature superconductors
EP0800494A1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
EP0491496B1 (en) Article comprising a superconductor/insulator layer structure, and method of making the article
Wang et al. A microstructural investigation of the bcc to A15 phase transition in sputter-deposited Nb 3 Al superconductors
Teranishi et al. Study of growth process for YBa 2 Cu 3 O y coated conductors with BaZrO 3 flux pinning centers by monitoring electrical conductivity
Togano et al. Nb 3 (Al. Ge) superconductors prepared by hot-substrate liquid-quenching and subsequent annealing
US7964532B2 (en) RE123-based oxide superconductor and method of production of same
Mao et al. Oxidation and reduction during fabrication of high quality Nd/sub 1.85/Ce/sub 0.15/CuO/sub 4-y/superconducting thin films
Thangaraj et al. Heat treatment studies on Bi-2212/Ag tapes fabricated using a powder-in-tube technique
Tachikawa et al. Nb3Sn superconductors prepared from intermediate compound phase
Liu et al. Superconductivity above 130 K in Tl1− xHgxBa2Ca2Cu3O8+ δ
US6537949B1 (en) Oxide superconductor and method for producing same
Faqir et al. Growth of high-quality Bi2Sr2CaCu2Oz crystal and characterization
US6767866B1 (en) Selective reduction type high temperature superconductor and methods of making the same
Hong et al. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees