JP3044868B2 - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JP3044868B2
JP3044868B2 JP3257504A JP25750491A JP3044868B2 JP 3044868 B2 JP3044868 B2 JP 3044868B2 JP 3257504 A JP3257504 A JP 3257504A JP 25750491 A JP25750491 A JP 25750491A JP 3044868 B2 JP3044868 B2 JP 3044868B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
valve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3257504A
Other languages
Japanese (ja)
Other versions
JPH0599528A (en
Inventor
茂 岩永
克彦 山本
達規 桜武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3257504A priority Critical patent/JP3044868B2/en
Publication of JPH0599528A publication Critical patent/JPH0599528A/en
Application granted granted Critical
Publication of JP3044868B2 publication Critical patent/JP3044868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、暖房時には熱媒体とし
た冷媒を加熱する時の圧力を利用して熱を利用側に移動
させる熱搬送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer apparatus for transferring heat to a use side by utilizing pressure at the time of heating a refrigerant as a heat medium during heating.

【0002】[0002]

【従来の技術】従来この種の冷媒加熱により暖房を行な
う熱搬送装置として、例えば特開昭57−101263
号公報に示されるように、図7のような構成のものがあ
る。
2. Description of the Related Art Conventionally, as a heat transfer apparatus for heating by this type of refrigerant heating, for example, Japanese Patent Application Laid-Open No. 57-101263.
As shown in the publication, there is a configuration as shown in FIG.

【0003】すなわち、圧縮機41、流路切換弁42、
室外送風機43を有する室外熱交換器44、第1電磁弁
45、キャピラリチューブ46、室内送風機47を有す
る室内熱交換器48、第2電磁弁49、逆止弁50、ア
キュムレータ51を順次配管して循環路を構成する。ま
た第3電磁弁52、冷媒ポンプ53、バーナ54を有す
る冷媒加熱器55の直列配管回路をキャピラリチューブ
46の下流と第2電磁弁49の上流との間に接続してい
る。そして暖房運転は冷媒加熱器55をバーナ54で加
熱することにより蒸発器とし、室内熱交換器48を凝縮
器として、冷媒ポンプを冷媒搬送手段として暖房サイク
ルを構成し、冷房は圧縮機駆動による従来方式の冷房サ
イクルを構成している。
That is, a compressor 41, a flow path switching valve 42,
An outdoor heat exchanger 44 having an outdoor blower 43, a first electromagnetic valve 45, a capillary tube 46, an indoor heat exchanger 48 having an indoor blower 47, a second electromagnetic valve 49, a check valve 50, and an accumulator 51 are sequentially piped. Construct a circuit. Further, a series piping circuit of a refrigerant heater 55 having a third electromagnetic valve 52, a refrigerant pump 53, and a burner 54 is connected between the downstream of the capillary tube 46 and the upstream of the second electromagnetic valve 49. In the heating operation, the refrigerant heater 55 is heated by the burner 54 to serve as an evaporator, the indoor heat exchanger 48 is used as a condenser, and a refrigerant pump is used as a refrigerant conveying means to constitute a heating cycle. It constitutes the cooling cycle of the system.

【0004】また、従来他の冷媒加熱により暖房を行な
う熱搬送装置として、冷房は圧縮機駆動による従来方式
で行ない、暖房はこの冷房用の圧縮機を冷媒ガスポンプ
として作用させるものがある。(図示せず)
[0004] As another conventional heat transfer device for heating by heating a refrigerant, cooling is performed by a conventional method driven by a compressor, and heating is performed by using the compressor for cooling as a refrigerant gas pump. (Not shown)

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、暖房運転時には冷媒循環用の搬送手段
として冷媒ポンプ、あるいは圧縮機を駆動しなければな
らず、熱搬送用動力として比較的大きな電気入力を消費
し、暖房能力4000Kcal/h程度で冷媒ポンプで50
〜60W、圧縮機で300〜400W程度暖房ランニン
グコストが高くなるという問題を有していた。
However, in the above configuration, a refrigerant pump or a compressor must be driven as a transport means for circulating the refrigerant during the heating operation, and a relatively large power for heat transport is required. It consumes electric input and has a heating capacity of about 4000 Kcal / h and a refrigerant pump of 50
There is a problem that the heating running cost is increased by about 60 to 60 W and about 300 to 400 W by the compressor.

【0006】本発明はかかる従来の課題を解決するもの
で、暖房時の熱搬送動力を極くわずかとして、かつ安定
した暖房運転を可能にすることを目的としている。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to minimize heat transfer power during heating and to enable a stable heating operation.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の熱搬送装置は、バーナを有する冷媒加熱器
とその上方に設けた気液分離器を配管接続した環状通路
と、前記気液分離器の上方に設けた受液器と、この受液
器と気液分離器を接続する第1逆止弁と、気液分離器と
受液器に連通する均圧管に設けた第1開閉弁と、前記受
液器の上流側に設けた第2逆止弁とを有する冷媒加熱熱
搬送部に室内側熱交換器を冷媒配管接続した暖房回路
と、流路切換弁などを介してこの暖房回路に付加接続し
た室外熱交換器と圧縮機を有する冷房回路と、前記バー
ナの最大燃焼時には第1開閉弁の開閉動作周期により第
2逆止弁を通る液冷媒の過冷却度を20deg ℃〜40de
g ℃の範囲に設定する開閉制御装置とを設けた構成を備
えたものである。
In order to solve the above-mentioned problems, a heat transfer device according to the present invention comprises an annular passage formed by pipe connection of a refrigerant heater having a burner and a gas-liquid separator provided above the refrigerant heater. A liquid receiver provided above the gas-liquid separator, a first check valve connecting the liquid receiver and the gas-liquid separator, and a second pressure equalizing pipe provided in the gas-liquid separator and the liquid receiver. A heating circuit in which an indoor heat exchanger is connected to a refrigerant pipe to a refrigerant heating and heat transfer unit having a first on-off valve and a second check valve provided upstream of the liquid receiver; A cooling circuit having an outdoor heat exchanger and a compressor additionally connected to the leverage heating circuit, and a supercooling degree of the liquid refrigerant passing through the second check valve by the opening / closing operation cycle of the first opening / closing valve at the time of the maximum combustion of the burner. 20deg ℃ -40de
An opening / closing control device for setting the temperature in the range of g ° C. is provided.

【0008】[0008]

【作用】本発明の熱搬送装置は上記した構成により、受
液器に通じる第1開閉弁の開成動作により受液器内を満
たした液冷媒を冷媒加熱器と環状通路で連結された気液
分離器へ落し込み、閉成動作により受液器内の飽和ガス
冷媒が冷媒加熱器で発生する蒸発圧力により押されるこ
とにより第2逆止弁を通って入った過冷却液冷媒の冷却
作用で凝縮し、この凝縮時の急速な減圧作用で新たな液
冷媒を受液器内に引き込む。この第1開閉弁の開閉サイ
クルは、室内側熱交換器と冷媒加熱搬送部を接続する冷
媒配管の長さの変化、熱搬送装置内の冷媒封入量の変
化、バーナの燃焼量の設定バラツキ、室内側熱交換器の
雰囲気温度変化および風量変化などの熱搬送運転条件の
種々の変動領域内において、第2逆止弁を通る液冷媒の
過冷却度を20deg ℃〜40deg ℃の範囲になるように
開閉時間設定することにより、異常過熱を発生させない
安定暖房運転を極くわずかの熱搬送動力で上記種々の変
動要因にかかわらず実現できるものである。
According to the heat transfer device of the present invention, the liquid refrigerant filled in the receiver by the opening operation of the first on-off valve communicating with the receiver is connected to the gas-liquid connected to the refrigerant heater by the annular passage. The saturated gas refrigerant in the receiver is pushed by the evaporation pressure generated in the refrigerant heater by the closing operation and the cooling operation of the supercooled liquid refrigerant that has entered through the second check valve. It condenses, and the new liquid refrigerant is drawn into the receiver by the rapid depressurizing action at the time of the condensation. The opening / closing cycle of the first on-off valve includes a change in the length of a refrigerant pipe connecting the indoor heat exchanger and the refrigerant heating / transporting section, a change in the amount of refrigerant charged in the heat transporting apparatus, a setting variation in a burner combustion amount, The supercooling degree of the liquid refrigerant passing through the second check valve is set in the range of 20 ° C. to 40 ° C. in various fluctuation ranges of the heat transfer operation conditions such as the change of the atmosphere temperature and the flow rate of the indoor heat exchanger. By setting the opening / closing time, stable heating operation that does not cause abnormal overheating can be realized with very little heat transfer power regardless of the above-mentioned various fluctuation factors.

【0009】[0009]

【実施例】以下、本発明の実施例を添付図面にもとづい
て説明する。1は冷媒加熱器、2は冷媒加熱器1の上方
に設けた気液分離器、3は冷媒加熱器1と気液分離器2
を環状に配管接続した環状通路、4は気液分離器2の上
方に設けた受液器、5は受液器4と気液分離器2とを接
続する管路に設けた第1逆止弁、6は気液分離器2と受
液器4に連通する均圧管7に設けた第1開閉弁、8は室
内送風機9を有する室内側熱交換器、10は気液分離器
2と室内側熱交換器8を連結するガス冷媒配管、11は
室内側熱交換器8と受液器4を連結する液冷媒配管、1
2は液冷媒配管11の受液器4の入口の上流側近傍に設
けた第2逆止弁、13はガス冷媒配管10の気液分離器
2側に設けた第3逆止弁、14は冷媒加熱器1に設けた
バーナ、15はバーナ14への燃料の流量制御部、16
は環状通路3の冷媒加熱器1の冷媒出口側に設けた温度
検知器、17は第1開閉弁6、温度検知器16、流量制
御部15と電気的に接続された開閉制御装置である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 is a refrigerant heater, 2 is a gas-liquid separator provided above the refrigerant heater 1, and 3 is a refrigerant heater 1 and a gas-liquid separator 2
, A liquid receiver provided above the gas-liquid separator 2, a first check valve provided in a pipe connecting the liquid receiver 4 and the gas-liquid separator 2. A valve, 6 is a first opening / closing valve provided in a pressure equalizing pipe 7 communicating with the gas-liquid separator 2 and the liquid receiver 4, 8 is an indoor heat exchanger having an indoor blower 9, and 10 is a gas-liquid separator 2 and a chamber. A gas refrigerant pipe connecting the inner heat exchanger 8, a liquid refrigerant pipe 11 connecting the indoor heat exchanger 8 and the receiver 4, 1
2 is a second check valve provided near the upstream side of the inlet of the liquid receiver 4 of the liquid refrigerant pipe 11, 13 is a third check valve provided on the gas refrigerant pipe 10 on the side of the gas-liquid separator 2, and 14 is A burner 15 provided in the refrigerant heater 1 is a fuel flow control unit for the burner 14, 16.
Is a temperature detector provided on the refrigerant outlet side of the refrigerant heater 1 in the annular passage 3, and 17 is an opening / closing control device electrically connected to the first opening / closing valve 6, the temperature detector 16, and the flow control unit 15.

【0010】18は圧縮機19、室外送風機20を有す
る室外熱交換器21、第1減圧装置22、第2開閉弁2
3、を有する冷房回路であり、一端は流路切換弁24を
介してガス冷媒配管10に接続すると共に、圧縮機19
の吐出管25を第4逆止弁26を介してガス冷媒配管1
0の第3逆止弁13と四方弁からなる流路切換弁24の
間に接続している。冷房回路18の他端は冷媒加熱器1
と均圧管7に連通している。27は環状通路3の冷媒加
熱器1の入口側と液冷媒配管11を連結し第3開閉弁2
8と第2減圧装置29を有する冷房回路である。
Reference numeral 18 denotes an outdoor heat exchanger 21 having a compressor 19, an outdoor blower 20, a first pressure reducing device 22, and a second on-off valve 2.
3, one end of which is connected to the gas refrigerant pipe 10 via the flow path switching valve 24 and the compressor 19
Of the gas refrigerant pipe 1 through the fourth check valve 26 through the discharge pipe 25
0 is connected between the third check valve 13 and the flow path switching valve 24 composed of a four-way valve. The other end of the cooling circuit 18 is the refrigerant heater 1
And the pressure equalizing pipe 7. 27 connects the inlet side of the refrigerant heater 1 of the annular passage 3 to the liquid refrigerant pipe 11 and connects the third on-off valve 2
8 and a cooling circuit having a second pressure reducing device 29.

【0011】配管接続された全冷媒回路のうち冷房回路
18、27を除いた残りが暖房回路である。30はガス
冷媒配管10に設けたガス側サービスバルブ、31は液
冷媒配管11に設けた液側サービスバルブ、32はガス
冷媒配管10の室内側熱交換器8側に設けたガス側継
手、33は液冷媒配管11の室内側熱交換器8側に設け
た液側継手であり、ガス側および液側サービスバルブ3
0、31とガス側および液側継手32、33の間が室外
側と室内側の設置距離に応じた接続冷媒配管の長さを任
意に設定できる。
The remaining refrigerant circuit except for the cooling circuits 18 and 27 is the heating circuit among all the refrigerant circuits connected by piping. 30 is a gas side service valve provided in the gas refrigerant pipe 10, 31 is a liquid side service valve provided in the liquid refrigerant pipe 11, 32 is a gas side joint provided on the indoor heat exchanger 8 side of the gas refrigerant pipe 10, 33 Is a liquid-side joint provided on the indoor heat exchanger 8 side of the liquid refrigerant pipe 11, and is a gas-side and liquid-side service valve 3.
The length of the connecting refrigerant pipe between 0, 31 and the gas-side and liquid-side joints 32, 33 can be arbitrarily set according to the installation distance between the outside and the inside of the room.

【0012】上記構成において、暖房は、冷媒加熱器1
でバーナ14での燃焼熱により加熱された液冷媒が気液
二相状態で気液分離器2に流入し、液冷媒は気液分離器
2の下方より再び冷媒加熱器1に流入する。一方、気液
分離されたガス冷媒はガス冷媒配管10を通って内側熱
交換器8に流入し、室内送風機9の運転により室内側に
放熱した冷媒は凝縮液化してさらに過冷却液となる。受
液器4に連通する均圧管7の第1開閉弁6が開閉制御装
置17により閉成すると、冷媒加熱器1での蒸発圧力に
よって押された過冷却液が第2逆止弁12を通って受液
器4内にわずかに流入し、受液器4内にあった飽和ガス
冷媒がわずかに流入した過冷却液により冷却されて凝縮
し、この凝縮時の急速な減圧作用により新たな過冷却液
冷媒が一気に流入して受液器4内を満液にする。次に第
1開閉弁6が開閉制御装置17により開成すると受液器
気液分離器2の圧力が均圧管7により連通され同圧
となり、受液器4内の液冷媒が重力により気液分離器2
に落下し、冷媒加熱器1に液冷媒が供給される。このよ
うに第1開閉弁6の閉成と開成を繰り返すことにより、
受液器4への液冷媒の流入と流出を繰り返して冷媒を循
環させる。この第1開閉弁6に電磁弁を使用すれば冷媒
を循環させるための搬送動力は電磁弁の消費電力だけで
良く、定格入力7W程度の電磁弁を開閉動作させること
で実質3〜4Wh程度の微小搬送動力で冷媒を循環でき
る。
In the above configuration, the heating is performed by the refrigerant heater 1.
The liquid refrigerant heated by the combustion heat in the burner 14 flows into the gas-liquid separator 2 in a gas-liquid two-phase state, and the liquid refrigerant flows into the refrigerant heater 1 again from below the gas-liquid separator 2. On the other hand, the gas refrigerant separated into gas and liquid flows into the inner heat exchanger 8 through the gas refrigerant pipe 10, and the refrigerant radiated to the indoor side by the operation of the indoor blower 9 is condensed and liquefied to further become a supercooled liquid. When the first opening / closing valve 6 of the pressure equalizing pipe 7 communicating with the liquid receiver 4 is closed by the opening / closing control device 17, the supercooled liquid pushed by the evaporation pressure in the refrigerant heater 1 passes through the second check valve 12. The saturated gas refrigerant in the receiver 4 slightly flows into the receiver 4 and is cooled and condensed by the slightly cooled supercooled liquid. The cooling liquid refrigerant flows at once, and fills the inside of the liquid receiver 4. Next, when the first opening / closing valve 6 is opened by the opening / closing control device 17, the pressure of the liquid receiver 4 and the gas-liquid separator 2 is communicated by the equalizing pipe 7 to become the same pressure, and the liquid refrigerant in the liquid receiver 4 is vaporized by gravity. Liquid separator 2
And the liquid refrigerant is supplied to the refrigerant heater 1. This
By repeating the closing and opening of the first on-off valve 6,
The refrigerant is circulated by repeating the inflow and outflow of the liquid refrigerant to the receiver 4.
Ring. If an electromagnetic valve is used for the first on-off valve 6, the refrigerant
The conveying power for circulating need only power consumption of the solenoid valve, can be circulated refrigerant in the order of substantially 3~4Wh small conveying power by opening and closing operation of the solenoid valve about the rated input 7W.

【0013】一方、冷房は流路切換弁24を図1破線方
向に切換え、第2開閉弁23と第3開閉弁28の開成と
圧縮機19と室内室外送風機9、20の運転により従来
方式の電動圧縮機駆動の冷房を行なう。
On the other hand, cooling is performed by switching the flow path switching valve 24 in the direction of the dashed line in FIG. 1 and opening the second opening / closing valve 23 and the third opening / closing valve 28 and operating the compressor 19 and the indoor / outdoor blowers 9 and 20. Cooling driven by the electric compressor is performed.

【0014】以上のように暖房と冷房のいずれも特性満
たす必要があり冷房特性を満たすには冷媒としてR22
等の気体時の比容積が比較的小さく圧損の小さな冷媒を
採用する必要がある。
As described above, it is necessary to satisfy the characteristics of both heating and cooling.
It is necessary to employ a refrigerant having a relatively small specific volume at the time of gas or the like and a small pressure loss.

【0015】この冷房特性をも満たす冷媒を使用した時
に、暖房運転時の動作特性について説明する。
The operation characteristics during the heating operation when a refrigerant that also satisfies the cooling characteristics is used will be described.

【0016】熱搬送運転条件の変化の中で主なものは、
室内および室外を結ぶ接続冷媒配管の長さの変化(以下
配管長変化と呼ぶ)、熱搬送装置内の冷媒量の変化(さ
らに厳密に言うと暖房回路内の冷媒量の変化)、バーナ
燃焼量の変化およびバラツキによる搬送熱量の変化、室
内側熱交換器における風量および室温等の放熱条件変化
などがある。本発明の熱搬送装置はこれら要因の変化に
対し、その変動領域内においてすべてに安定暖房運転を
実現させてこそ実用に供することができる。
The main changes in the heat transfer operating conditions are as follows:
Changes in the length of the connected refrigerant pipes connecting the indoor and outdoor areas (hereinafter referred to as pipe length changes), changes in the amount of refrigerant in the heat transfer device (more precisely, changes in the amount of refrigerant in the heating circuit), and burner combustion And the heat radiation conditions such as the air volume and room temperature in the indoor heat exchanger. The heat transfer device of the present invention can be put to practical use only when a stable heating operation is realized for all of these factors within the fluctuation range.

【0017】図2は配管長変化に対し、システムが動作
するために必要な必要最低過冷却度SCmin と冷媒加熱
器での蒸発温度TE の関係を示す。TE の上昇によりS
Cmin は増大し、配管長が増加するとSCmin は増大す
る。ここでLmax は最大配管長を、Lmin は最小配管長
を示す。この必要最低過冷却度SCmin は、液冷媒配管
11部の流路抵抗に打ち勝って受液器4内に第1開閉弁
6の閉成中に流入を完了するために必要な減圧作用の大
きさより決まるものである。また蒸発温度TE は室内側
熱交換器の風量低減および室温上昇、さらにバーナでの
燃焼量の増加により上昇する。
[0017] Figure 2 is relative to pipe length change shows a relationship between the evaporation temperature T E at the minimum required subcooling SCmin and refrigerant heater necessary for the system to operate. S due to the rise of T E
Cmin increases and SCmin increases as the pipe length increases. Here, Lmax indicates the maximum pipe length, and Lmin indicates the minimum pipe length. The required minimum supercooling degree SCmin is larger than the magnitude of the pressure reducing action required to overcome the flow path resistance of the liquid refrigerant pipe 11 and complete the inflow into the receiver 4 while the first on-off valve 6 is closed. It is decided. The evaporation temperature T E is the air volume reduction and room temperature increase in the indoor heat exchanger, further increased by increasing the amount of combustion in the burner.

【0018】図3は受液器4の内容積を一定とした時の
必要最低過冷却度SCmin の搬送熱量Qの影響を示す。
バーナの燃焼量の最大値およびバラツキによる最大値を
考慮した最大燃焼時の最大搬送熱量Qmax 時が、燃焼量
最小値でかつバラツキ幅の中の最小を考慮した最少搬送
熱量Qmin の時より必要最低過冷却度SCmin は大きく
なる。熱搬送装置内への初期冷却封入量は一定として各
変化要因の変動領域内でシステムバランスさせることが
非常に重要な要素である。
FIG. 3 shows the effect of the heat transfer Q on the required minimum supercooling degree SCmin when the internal volume of the liquid receiver 4 is fixed.
The maximum transfer heat amount Qmax at the time of maximum combustion taking into account the maximum value of the burner combustion amount and the maximum value due to variations is more necessary than the minimum transfer heat amount Qmin taking the minimum combustion amount and the minimum variation width into account. The degree of supercooling SCmin increases. It is a very important factor to keep the initial cooling sealing amount in the heat transfer device constant and to balance the system within the fluctuation range of each change factor.

【0019】図4は、暖房回路内の封入量を一定とした
時のシステム動作過冷却度SCS を示し、配管長が最小
のLmin の時は配管長が最大のLmax の時に対し過剰冷
媒量となりシステム動作過冷却度SCSが増大する。ま
た暖房回路内の冷媒量は初期冷媒封入量によりその上限
Gmax が決まるが、実用に際しては経年変化による冷媒
の熱搬送装置の外部への漏れ、あるいは冷房回路への冷
媒の溜り込みなどにより暖房回路内の最少冷媒量Gmin
が発生する。
[0019] Figure 4 shows a system operation supercooling degree SC S when the enclosed amount of the heating circuit is constant, excess refrigerant amount to when Lmax pipe length is greatest when the pipe length is minimum Lmin next system operation supercooling degree SC S increases. The upper limit Gmax of the amount of refrigerant in the heating circuit is determined by the initial amount of the charged refrigerant. However, in practical use, the refrigerant leaks to the outside of the heat transfer device due to aging, or the refrigerant accumulates in the cooling circuit. Minimum refrigerant amount Gmin
Occurs.

【0020】これら変動要因に対しシステムを安定動作
させるには、まず過冷却度の下限値SCL を守る必要が
あり、システム動作過冷却度SCS がすべての領域で必
要最低過冷却度SCmin と同等以上に制御せねばならな
い。
[0020] To stably operate the system for these variables, you must first protect the lower limit SC L of the supercooling degree, the system operating subcooling SC S requires minimum degree of supercooling SCmin in all areas It must be controlled at least equal.

【0021】図5はシステム動作過冷却度SCS と必要
最低過冷却度SCmin の同一図にまとめたもので、最大
搬送熱量Qmax 、最少冷媒量Gmin の場合を示しSCS1
≧SCmin1およびSCS2≧SCmin2が必要となる。この
図のように過冷却度の下限値SCB は最大配管長Lmax
で蒸発温度下限値TE min 時に存在する。
[0021] Figure 5 shows an summarizes the same view of the system operation supercooling degree SC S and the required minimum subcooling SCmin, maximum transport heat Qmax, if the minimum refrigerant quantity Gmin SC S1
≧ SCmin 1 and SC S2 ≧ SCmin 2 are required. Lower limit SC B supercooling degree as in this figure the maximum pipe length Lmax
And exists at the time of the evaporation temperature lower limit value T E min.

【0022】ここで最大配管長Lmax を10mとした場
合過冷却度下限値SCL は20deg℃が実験で得られ
た。
[0022] Here, if the maximum pipe length Lmax was 10m supercooling lower limit SC L has 20 deg ° C. were obtained in the experiment.

【0023】一方、過冷却度上限値SCH は最大冷媒量
Gmax 、最大配管長Lmax 、最大搬送熱量Qmax および
蒸発温度上限値TE max で定まる必要最低過冷却度SC
minを上回ることが条件であるが、システム動作過冷却
度SCS の最大は最少配管長Lmin の時となり必要最低
過冷却度SCmin を十分上回る。
On the other hand, subcooling limit SC H is the maximum amount of refrigerant Gmax, the maximum pipe length Lmax, the minimum necessary degree of supercooling SC determined by the maximum conveying heat Qmax and evaporation temperature upper limit T E max
It exceeds the min is condition, maximum system operating subcooling SC S is above the minimum requirements supercooling degree SCmin becomes when a minimum pipe length Lmin enough.

【0024】しかし、室内側熱交換器の放熱特性より過
冷却度上限値SCHが存在する。図6、室内側熱交換器
の放熱量Qと熱交換器出口過冷却度SCの関係を示し、
過冷却度SC=30deg ℃を越えると放熱能力の低下を
生じ始め、SC=40deg ℃を越えるとその放熱能力低
下は一層激しくなり、最大搬送熱量Qmax を放熱できな
くなる。
[0024] However, subcooling limit SC H from the heat dissipation characteristics of the indoor heat exchanger is present. FIG. 6 shows the relationship between the heat release amount Q of the indoor heat exchanger and the degree of subcooling SC of the heat exchanger outlet,
When the degree of supercooling exceeds SC = 30 ° C., the heat radiation ability starts to decrease. When the degree of supercooling exceeds SC = 40 ° C., the heat radiation ability decreases more severely, and the maximum heat transfer amount Qmax cannot be dissipated.

【0025】従って、過冷却度上限値SCH として40
deg ℃を守る必要がある。以上のように、暖房運転にお
いて流量制御部15で検知したバーナ14の燃焼量と、
冷媒加熱器1の冷媒出口側に設けた温度検知器16で検
知した蒸発温度を基に、開閉制御装置17により第1開
閉弁6を開閉動作させると共に、第2逆止弁12を通る
液冷媒の温度と温度検知器16との温度差から過冷却度
を求める。そして、この過冷却度が小さい場合(例えば
20deg ℃以下)は、開閉制御装置17により第1開閉
弁6の開閉動作の周期を長くして単位時間当りの開閉回
数を少なくして冷媒循環量を低減させ、室内側熱交換器
8での冷媒の滞留時間を長くして冷却促進を図り過冷却
度を増大させる。また、過冷却度が大きい場合(例えば
40deg ℃以上)は第1開閉弁6の開閉動作の周期を短
くして単位時間当りの開閉回数を多くして冷媒循環量を
増大させ、室内側熱交換器8での冷媒の滞留時間を短く
して過冷却度の低減を図る。このようにして、バーナ1
4の最大燃焼時には第2逆止弁12を通る液冷媒の過冷
却度を熱搬送条件の変動領域内で20deg ℃〜40deg
℃の範囲とすることにより変動領域内のすべての条件に
対して安定した暖房運転を極くわずかの熱搬送動力で実
現できるだけでなくシステムの信頼性が向上し、かつ変
動領域の拡大が図れ、実用性が向上する。
Therefore, the supercooling degree upper limit SCH is set to 40
It is necessary to keep deg ℃. As described above, in the heating operation, the combustion amount of the burner 14 detected by the flow control unit 15 and
Based on the evaporation temperature detected by the temperature detector 16 provided on the refrigerant outlet side of the refrigerant heater 1, the opening / closing control device 17 opens and closes the first opening / closing valve 6 and passes through the second check valve 12.
The degree of supercooling is determined from the difference between the temperature of the liquid refrigerant and the temperature of the temperature detector 16.
Ask for. When the degree of supercooling is small (for example,
20 ° C or less), the first opening / closing by the opening / closing controller 17
Opening / closing cycle per unit time by extending the opening / closing cycle of valve 6
Reduce the number of refrigerants by reducing the number
Supercooling by promoting cooling by extending the residence time of the refrigerant at 8
Increase the degree. When the degree of supercooling is large (for example,
(40 ° C or higher) shortens the cycle of the opening and closing operation of the first on-off valve 6.
In this way, the number of open / close operations per unit time
To shorten the residence time of the refrigerant in the indoor heat exchanger 8.
To reduce the degree of supercooling. Thus, burner 1
4 at the time of maximum combustion, the degree of supercooling of the liquid refrigerant passing through the second check valve 12 is set to 20 deg.
By setting the temperature in the range of ℃, stable heating operation can be realized with very little heat transfer power for all conditions in the fluctuation range, the reliability of the system is improved, and the fluctuation range can be expanded. Practicality is improved.

【0026】また、暖房は低ランニングコストで運転で
きる暖冷房一体機を提供することが可能となり利便性が
向上する。
In addition, it becomes possible to provide an integrated heating / cooling machine which can be operated at low running cost for heating, and the convenience is improved.

【0027】[0027]

【発明の効果】以上のように本発明の熱搬送装置によれ
ば、次の効果が得られる。 (1)液冷媒の過冷却度を20deg ℃〜40deg ℃の範
囲に設定しているので広い変動領域に対し安定した暖房
運転を極くわずかの熱搬送動力で実現でき、実用性が向
上するという効果がある。 (2)暖房は低ランニングコストで運転できる暖冷房一
体機が提供できるため、利便性が向上できる。
According to the heat transfer device of the present invention, the following effects can be obtained. (1) Since the degree of supercooling of the liquid refrigerant is set in the range of 20 ° C. to 40 ° C., stable heating operation can be realized with very little heat transfer power over a wide fluctuation range, and practicality is improved. effective. (2) Heating and cooling can be provided with an integrated heating and cooling machine that can be operated at low running cost, so that convenience can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱搬送装置のシステム構成図FIG. 1 is a system configuration diagram of a heat transfer device of the present invention.

【図2】配管長をパラメータとした必要最低過冷却度の
特性図
FIG. 2 is a characteristic diagram of a required minimum supercooling degree using a pipe length as a parameter.

【図3】熱搬送量をパラメータとした必要最低過冷却度
の特性図
FIG. 3 is a characteristic diagram of a required minimum supercooling degree with a heat transfer amount as a parameter.

【図4】冷媒量をパラメータとしたシステム動作過冷却
度特性図
FIG. 4 is a diagram of a system operation subcooling degree characteristic using a refrigerant amount as a parameter.

【図5】システム動作過冷却度と必要最低過冷却度の関
連図
FIG. 5 is a diagram showing the relationship between the degree of system operation subcooling and the required minimum degree of supercooling.

【図6】室内側熱交換器の過冷却度に対する放熱特性図FIG. 6 is a diagram showing heat radiation characteristics with respect to the degree of subcooling of the indoor heat exchanger.

【図7】冷媒加熱による暖房を行なう熱搬送装置の従来
例を示すシステム構成図
FIG. 7 is a system configuration diagram showing a conventional example of a heat transfer device that performs heating by refrigerant heating.

【符号の説明】[Explanation of symbols]

1 冷媒加熱器 2 気液分離器 3 環状通路 4 受液器 5 第1逆止弁 6 第1開閉弁 7 均圧管 8 室内側熱交換器 12 第2逆止弁 14 バーナ 17 開閉制御装置 18 冷房回路 19 圧縮機 21 室外熱交換器 24 流路切換弁 REFERENCE SIGNS LIST 1 refrigerant heater 2 gas-liquid separator 3 annular passage 4 liquid receiver 5 first check valve 6 first on-off valve 7 equalizing tube 8 indoor heat exchanger 12 second check valve 14 burner 17 opening / closing control device 18 cooling Circuit 19 Compressor 21 Outdoor heat exchanger 24 Flow switching valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 341 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 13/00 341

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バーナを有する冷媒加熱器とその上方に設
けた気液分離器を配管接続した環状通路と、前記気液分
離器の上方に設けた受液器と、この受液器と気液分離器
を接続する第1逆止弁と、気液分離器と受液器に連通す
る均圧管に設けた第1開閉弁と、前記受液器の上流側に
設けた第2逆止弁とを有する冷媒加熱熱搬送部に室内側
熱交換器を冷媒配管接続した暖房回路と、流路切換弁な
どを介してこの暖房回路に付加接続した室外熱交換器と
圧縮機を有する冷房回路と、前記バーナの最大燃焼時に
は前記第1開閉弁の開閉動作により第2逆止弁を通る液
冷媒の過冷却度を20deg ℃〜40deg ℃の範囲に設定
する開閉制御装置とを設けた熱搬送装置。
An annular passage connecting a refrigerant heater having a burner and a gas-liquid separator provided above the refrigerant heater; a liquid receiver provided above the gas-liquid separator; A first check valve for connecting the liquid separator, a first on-off valve provided on a pressure equalizing pipe communicating with the gas-liquid separator and the receiver, and a second check valve provided on the upstream side of the receiver A heating circuit in which an indoor heat exchanger is connected to a refrigerant heating and heat transfer section having a refrigerant pipe, and a cooling circuit having an outdoor heat exchanger and a compressor additionally connected to this heating circuit via a flow path switching valve or the like. A heat transfer device provided with an opening / closing control device for setting the degree of supercooling of the liquid refrigerant passing through the second check valve to a range of 20 deg. .
JP3257504A 1991-10-04 1991-10-04 Heat transfer device Expired - Lifetime JP3044868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257504A JP3044868B2 (en) 1991-10-04 1991-10-04 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257504A JP3044868B2 (en) 1991-10-04 1991-10-04 Heat transfer device

Publications (2)

Publication Number Publication Date
JPH0599528A JPH0599528A (en) 1993-04-20
JP3044868B2 true JP3044868B2 (en) 2000-05-22

Family

ID=17307217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257504A Expired - Lifetime JP3044868B2 (en) 1991-10-04 1991-10-04 Heat transfer device

Country Status (1)

Country Link
JP (1) JP3044868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697234B (en) * 2015-03-30 2016-11-23 特灵空调系统(中国)有限公司 Refrigerant-cycle systems and its control method

Also Published As

Publication number Publication date
JPH0599528A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
EP0502609B1 (en) Heat pump
CN101842645B (en) Refrigeration cycle device
US4454725A (en) Method and apparatus for integrating a supplemental heat source with staged compressors in a heat pump
US20200025396A1 (en) Regrigerant charge control system for heat pump systems
US20170067676A1 (en) Refrigerant charge management in an integrated heat pump
JP3443702B2 (en) Heat pump water heater
US4306420A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JP3044868B2 (en) Heat transfer device
US6865904B2 (en) Combined regeneration heating and cooling system
US4357805A (en) Method for integrating components of a refrigeration system
JP2002310497A (en) Heat pump hot-water supplier
JP3139099B2 (en) Heat transfer device
JP3475293B2 (en) Heat pump water heater
KR100304583B1 (en) Heat pump unit with injection cycle
KR100212677B1 (en) Apparatus for compensating evaporation temperature of heat pump
JP2827656B2 (en) Heat transfer device
JP2780546B2 (en) Heat transfer device
JP2827655B2 (en) Heat transfer device
JPS604039Y2 (en) air conditioner
JP3109212B2 (en) Heat transfer device
JPH06235556A (en) Air conditioner
JPH10205932A (en) Air conditioner
JPH06221705A (en) Air conditioner
CN116294257A (en) Refrigerating system and liquid return prevention control method thereof
JP3108933B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350