JP3044843B2 - Charged particle beam exposure method - Google Patents

Charged particle beam exposure method

Info

Publication number
JP3044843B2
JP3044843B2 JP3173525A JP17352591A JP3044843B2 JP 3044843 B2 JP3044843 B2 JP 3044843B2 JP 3173525 A JP3173525 A JP 3173525A JP 17352591 A JP17352591 A JP 17352591A JP 3044843 B2 JP3044843 B2 JP 3044843B2
Authority
JP
Japan
Prior art keywords
exposure
deflection
time
point
thermally stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3173525A
Other languages
Japanese (ja)
Other versions
JPH0521322A (en
Inventor
靖 高橋
章夫 山田
勲 西村
淳子 八田
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3173525A priority Critical patent/JP3044843B2/en
Publication of JPH0521322A publication Critical patent/JPH0521322A/en
Application granted granted Critical
Publication of JP3044843B2 publication Critical patent/JP3044843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子ビーム露光装置
に関し,特にビーム照射の熱的安定性を向上するための
未露光時のビームの偏向位置の決定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam exposure apparatus, and more particularly to a method for determining a beam deflection position before exposure for improving thermal stability of beam irradiation.

【0002】近年,荷電粒子ビーム露光装置はLSI のパ
ターン形成に使用されているが,LSI の高密度化, 微細
化に伴い高精度, 高解像性が要求されている。本発明は
この要求に対応した方法として利用できる。
In recent years, charged particle beam exposure apparatuses have been used for pattern formation of LSIs, but high precision and high resolution have been demanded as the densities and sizes of LSIs have increased. The present invention can be used as a method corresponding to this demand.

【0003】[0003]

【従来の技術】図9はビーム偏向の模式説明図である。
図において,1は荷電粒子ビーム,2は偏向コイル,3
と被露光物(ウエハやマスク基板)上の主偏向領域,4
は副偏向領域(露光フィールド),5は偏向順を示す矢
印である。
2. Description of the Related Art FIG. 9 is a schematic illustration of beam deflection.
In the figure, 1 is a charged particle beam, 2 is a deflection coil, 3
And the main deflection area on the object to be exposed (wafer or mask substrate), 4
Is an auxiliary deflection area (exposure field), and 5 is an arrow indicating the order of deflection.

【0004】実際の装置では,偏向コイル2はX方向偏
向用コイルとY方向偏向用コイルが複数段に配置されて
いるが,図では簡略して示している。ビームは偏向コイ
ル2に供給する電流値を変えることにより主偏向領域3
内において偏向可能であり,偏向順5に従って各副偏向
領域4の位置にビームを偏向する。
In an actual apparatus, the deflection coil 2 has an X-direction deflection coil and a Y-direction deflection coil arranged in a plurality of stages. The beam is supplied to the main deflection area 3 by changing the current value supplied to the deflection coil 2.
And deflects the beam to the position of each sub-deflection area 4 according to the deflection order 5.

【0005】偏向コイル2により各々の副偏向領域4に
偏向されたビームは,図示されない静電偏向器により副
偏向領域4内のパターン露光を行う。ここで,偏向コイ
ル2は主偏向領域内の偏向位置を決めるため通常主偏向
コイルと呼ばれている。
The beam deflected to the respective sub-deflection areas 4 by the deflection coil 2 performs pattern exposure in the sub-deflection areas 4 by an electrostatic deflector (not shown). Here, the deflection coil 2 is usually called a main deflection coil because it determines a deflection position in the main deflection area.

【0006】主偏向領域3の偏向位置は, 被露光物表面
の主偏向領域3の四隅に設けられたMDマークをビームで
スキャンして露光フィールドつなぎ用のフィールド補正
係数を求めて設定される。
The deflection position of the main deflection area 3 is set by scanning MD marks provided at the four corners of the main deflection area 3 on the surface of the exposure object with a beam to obtain a field correction coefficient for connecting exposure fields.

【0007】荷電粒子ビーム露光装置の偏向用コイルは
コラム下部の狭い空間(最終レンズの中)に配置されて
おり,ビーム偏向時には偏向コイルに電流を流すため当
然発熱する。
[0007] The deflection coil of the charged particle beam exposure apparatus is arranged in a narrow space (in the last lens) below the column, and when a beam is deflected, a current flows through the deflection coil to generate heat.

【0008】この発熱による温度上昇によってコイル自
体が熱変形を起こし,偏向位置に違いが生じる。また,
最悪の場合は最終レンズのボビンやポールピースに変形
を引起しレンズの軸ずれを生じる。
[0008] The coil itself undergoes thermal deformation due to the temperature rise due to this heat generation, resulting in a difference in the deflection position. Also,
In the worst case, the bobbin and the pole piece of the final lens are deformed, causing the lens to be misaligned.

【0009】実際に露光する際には,予め基本となるビ
ーム補正係数を求めておき,MDマークによる被露光物と
の重ね合わせ用のフィールド補正係数を求める操作と,
露光とを単位フィールド毎に繰り返している。
At the time of actual exposure, a basic beam correction coefficient is obtained in advance, and a field correction coefficient for superimposing on the object to be exposed by the MD mark is calculated.
Exposure is repeated for each unit field.

【0010】この際, 当然, 露光とフィールド補正係数
算出用ビーム偏向時とではビームの偏向のされ方が違う
ため, 偏向コイルの発熱量(熱的状態)が異なってい
る。その結果,当初求めた補正係数では偏向位置にずれ
を生じてしまい,高精度の露光はできなくなる。さら
に,最終レンズの軸ずれが起これば露光の高解像性も維
持できなくなる。
At this time, the amount of heat generation (thermal state) of the deflection coil is, of course, different between the exposure and the beam deflection for calculating the field correction coefficient because the beam is deflected differently. As a result, a deviation occurs in the deflection position with the correction coefficient obtained initially, and high-precision exposure cannot be performed. Further, if the axial displacement of the final lens occurs, high resolution of exposure cannot be maintained.

【0011】このため,露光時,および補正係数算出用
ビーム偏向時やビーム調整時や露光間等の未露光時に
も,要するにどのような時にも偏向コイルが熱的安定状
態にあるようにする必要がある。
For this reason, it is necessary that the deflection coil be in a thermally stable state at any time during exposure, during beam deflection for correction coefficient calculation, during beam adjustment, or during non-exposure such as during exposure. There is.

【0012】これに対する従来法は,未露光時にも露光
と同様なビーム偏向を行い,偏向コイルが常に熱的安定
状態にあるようにしていた。
In the conventional method, the beam is deflected in the same manner as in the exposure, even when the exposure is not performed, so that the deflection coil is always in a thermally stable state.

【0013】[0013]

【発明が解決しようとする課題】露光装置においては露
光時やビーム調整や補正係数算出のためのMDマークのス
キャン等においてはビームを使用するが,このようなビ
ームの使用を長時間行っていない場合には従来法は有効
であるが, 被露光物を載せたステージの移動時間や露光
間の待ち時間等の短い時間内に露光(時間が長い)と同
様なビーム偏向を行うことはできない。
In an exposure apparatus, a beam is used at the time of exposure and scanning of an MD mark for beam adjustment and calculation of a correction coefficient, but such a beam is not used for a long time. In this case, the conventional method is effective, but it is impossible to perform the same beam deflection as in the exposure (long time) within a short time such as the moving time of the stage on which the object is placed or the waiting time between the exposures.

【0014】そのために,短時間の未露光時における偏
向位置として熱的に安定な位置を求める必要がある。さ
らに,実際の装置では偏向コイルはX方向用とY方向用
とが独立しており,各々のコイルの形状や抵抗値や冷却
状態等は異なっている。従ってその偏向能力には若干の
差異がある。
For this purpose, it is necessary to find a thermally stable position as a deflection position in a non-exposure state for a short time. Further, in an actual device, the deflection coils for the X direction and the Y direction are independent, and the shape, resistance value, cooling state, and the like of each coil are different. Therefore, there is a slight difference in the deflection ability.

【0015】また,Xコイル,Yコイルの軸直交性や軸
回転によっても偏向能力が異なる。すなわち,Xコイ
ル,Yコイルが同等であるとして求めた熱的安定位置
は,精度の上で不充分である。
The deflection ability also differs depending on the axis orthogonality and the axis rotation of the X coil and the Y coil. That is, the thermally stable position obtained assuming that the X coil and the Y coil are equivalent is insufficient in accuracy.

【0016】そこで,Xコイル,Yコイルが同等である
として求めた熱的安定位置を基に,X方向,Y方向の熱
的安定性の比率を考慮してより厳密な安定位置を求める
必要がある。
Therefore, it is necessary to determine a more strict stable position in consideration of the thermal stability ratio in the X direction and the Y direction based on the thermal stable position determined that the X coil and the Y coil are equivalent. is there.

【0017】本発明は偏向コイルが熱的に常に安定状態
にあり且つ急激な熱的変化を防止し, 予め求めたビーム
補正係数で位置ずれの起こらない高精度, 高解像度の露
光方法の提供を目的とする。
The present invention provides a high-precision, high-resolution exposure method in which a deflection coil is always in a thermally stable state, prevents a rapid thermal change, and does not cause a positional shift with a beam correction coefficient obtained in advance. Aim.

【0018】[0018]

【課題を解決するための手段】上記課題の解決は, 1)露光フィールドのパターン密度が等しいと仮定し
て,未露光時に偏向コイルに流す電流として,露光時に
偏向コイルに流す最大電流Imax の3-1/2倍の電流値を
設定し, 該電流値に対応するビームの偏向位置を熱的安
定位置とし,該熱的安定位置の上の一点を未露光時のビ
ームの偏向位置とする荷電粒子ビーム露光方法,あるい
は 2)露光時におけるビーム偏向コイルに供給する電力量
の平均値を相互に重畳期間を有する時間間隔毎に漸次求
めて, 露光時の最終時間間隔の平均値が維持されるよう
に未露光時における偏向コイルに流す電流値を設定し,
該電流値に対応するビームの偏向位置を熱的安定位置と
し,該熱的安定位置の上の一点を未露光時のビームの偏
向位置とする荷電粒子ビーム露光方法,あるいは 3)請求項1で求めた熱的安定位置上の一点を基準点A
(x0,y0);(x0 =y0)として,該基準点より任意の
距離離れた2点B,Cを設定し,点B,Cおよびそれら
の周囲の点を未露光時のビーム偏向位置として,一定期
間露光を繰り返した後のフィールド補正量の変化量を算
出して,点B,Cより該変化量の少ない方向を見つけ
て,この方向にあらたに2点を設定して同様の処理を繰
り返し,該変化量の最も少ない位置を補正された熱的安
定点Z (x1,y1)とし,該熱的安定点を未露光時のビー
ムの偏向位置とする荷電粒子ビーム露光方法。,あるい
は 4)前記1)で求めた熱的安定位置に代えて,前記2)
で求めた熱的安定位置上の一点を基準点とする前記3)
記載の荷電粒子ビーム露光方法。 5)前記)2で求めた熱的安定点の座標を前記3)から
求まる比率で修正する,すなわち該座標にX方向はx1
/x0 ,Y方向はy1 /y0 の比率を掛けて修正する荷
電粒子ビーム露光方法,あるいは 6)前記未露光時のビーム偏向位置が,次の露光を開始
するビーム偏向位置に最も近い位置である前記1)乃至
5)の何れかに記載の荷電粒子ビーム露光方法により達
成される。
Resolving the Problems [Means for Solving the Problems] is 1) the pattern density of the exposure field assuming equal, as the current flowing through the deflection coils during unexposed, the maximum current I max flowing in the deflection coils during exposure A current value of 3 -1/2 times is set, a beam deflection position corresponding to the current value is set as a thermally stable position, and a point on the thermally stable position is set as a beam deflection position when not exposed. Charged particle beam exposure method, or 2) The average value of the amount of power supplied to the beam deflection coil at the time of exposure is gradually obtained for each time interval having a superposition period, and the average value of the final time interval at the time of exposure is maintained. The value of the current flowing through the deflection coil during non-exposure
3. A charged particle beam exposure method according to claim 1, wherein a deflection position of the beam corresponding to the current value is a thermally stable position, and a point on the thermally stable position is a deflection position of the beam when not exposed. One point on the obtained thermally stable position is the reference point A
As (x 0 , y 0 ); (x 0 = y 0 ), two points B and C are set at an arbitrary distance from the reference point. As a beam deflection position, a change amount of the field correction amount after repeating the exposure for a certain period is calculated, a direction having a smaller change amount is found from points B and C, and two points are newly set in this direction. The same processing is repeated, and the position where the amount of change is the least is set as the corrected thermal stable point Z (x 1 , y 1 ), and the charged particle beam is set as the deflection position of the beam when not exposed. Exposure method. Or 4) Instead of the thermally stable position determined in 1) above, 2)
The above 3) using one point on the thermally stable position obtained in step 3 as a reference point
The charged particle beam exposure method according to the above. 5) above) to correct the coordinates of the thermal stability point obtained in 2 in a ratio which is obtained from the 3), that is, the X direction in the coordinate x 1
/ X 0 , the charged particle beam exposure method in which the Y direction is corrected by multiplying by the ratio of y 1 / y 0 , or 6) the beam deflection position at the time of non-exposure is closest to the beam deflection position at which the next exposure starts This is achieved by the charged particle beam exposure method according to any one of 1) to 5) above.

【0019】[0019]

【作用】本発明では,露光時における偏向コイルに供給
する電力量の平均値を(相互に重畳期間を有する)時間
間隔毎に漸次求めて, 最終時間間隔の平均値が維持され
るように未露光時における偏向コイルに流す電流を設定
しているので, 偏向コイルは熱的には常に安定状態とな
る。
According to the present invention, the average value of the electric power supplied to the deflection coil at the time of exposure is gradually obtained for each time interval (having a mutually overlapping period), and the average value of the final time interval is maintained. Since the current flowing through the deflection coil during exposure is set, the deflection coil is always thermally stable.

【0020】なおかつ,この電流でビームは熱的安定位
置上の一定点に偏向されるので, ステージ移動等未露光
時の処理時間が短い場合にも,また長い場合にもビーム
をその位置に簡単に移すことが可能である。
Since the beam is deflected by this current to a fixed point on the thermally stable position, the beam can be easily moved to that position regardless of whether the processing time during non-exposure such as stage movement is short or long. It is possible to transfer to

【0021】また,熱的安定位置は複数箇所できるが
(図6参照),次の偏向位置の近くに設定することによ
り,偏向量を減らしてビームの静定時間を短くすること
ができる。
Although a plurality of thermally stable positions can be provided (see FIG. 6), by setting them near the next deflection position, the deflection amount can be reduced and the beam stabilization time can be shortened.

【0022】さらに,Xコイル,Yコイルの熱的安定性
の比率を求め,これよりそれぞれのコイルに流す電流値
を設定することにより,Xコイル,Yコイルの差異によ
る誤差の影響を受けない熱的安定状態を得ることができ
る。
Further, the ratio of the thermal stability of the X coil and the Y coil is determined, and the value of the current flowing through each coil is set based on the ratio. A stable state can be obtained.

【0023】[0023]

【実施例】(発明1):いま,図9を参照してまず,X
方向の偏向のみを考える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Invention 1): Referring now to FIG.
Consider only directional deflection.

【0024】図2は副偏向領域のパターン密度が同じで
ある場合の偏向コイルに流れる電流Iと時間tの関係を
示す図である。副偏向領域4内のパターン密度が同じで
あるとすると,偏向コイル2に流れる電流は図2のよう
になる。X方向に1列分だけ偏向したときの平均電力量
は次式で表される。
FIG. 2 is a diagram showing the relationship between the current I flowing through the deflection coil and the time t when the pattern density of the sub deflection area is the same. Assuming that the pattern density in the sub-deflection region 4 is the same, the current flowing through the deflection coil 2 is as shown in FIG. The average power when deflected by one column in the X direction is expressed by the following equation.

【0025】 ∫(Imax t/T)2Rdt/2T=Imax 2 R/3・・・(1) ここで,積分は時間−TからTまで行い,Imax は最大
に偏向したときの偏向コイルの電流値,Rは偏向コイル
の抵抗である。
∫ (I max t / T) 2 Rdt / 2T = I max 2 R / 3 (1) Here, integration is performed from time −T to T, and I max is a value obtained when deflection is maximized. The current value of the deflection coil, R is the resistance of the deflection coil.

【0026】すなわち,未露光時に偏向コイルにImax
の3-1/2倍の電流を流せば,露光時と同量の電力量とな
る。換言すれば,偏向位置と電流はリニアな関係にある
ので, 偏向位置は最大偏向位置の3-1/2の位置となり,
この位置が熱的安定位置となる。
That is, I max
If a current of 3 -1/2 times the current is applied, the same amount of power as during exposure is obtained. In other words, since the deflection position and the current are in a linear relationship, the deflection position is 3 -1/2 of the maximum deflection position,
This position is the thermally stable position.

【0027】Y方向の偏向についても同様である。この
ようにして求めた熱的安定位置の一点を未露光時のビー
ム偏向点とする。 (発明2,6):ところが,実際には,副偏向領域内の
パターン密度が異なっていたり,偏向しないところがあ
るので偏向コイルに流れる電流は図2のようにはならな
い。
The same applies to the deflection in the Y direction. One point of the thermal stable position thus obtained is set as a beam deflection point at the time of non-exposure. (Inventions 2 and 6) However, actually, the current flowing through the deflection coil does not become as shown in FIG. 2 because the pattern density in the sub-deflection area is different or there is a place where deflection is not performed.

【0028】従って,平均電力量は或る時間間隔におけ
る偏向位置(または偏向コイルに流れる電流値)を絶え
ずモニタし,積算して求める。露光装置においては,偏
向位置または偏向位置にビームを偏向するために必要な
偏向コイルに流すべき電流値は分かっているのでモニタ
は容易に行える。
Therefore, the average electric energy is obtained by constantly monitoring and integrating the deflection position (or the current value flowing through the deflection coil) at a certain time interval. In the exposure apparatus, monitoring can be easily performed since the deflection position or the current value required to flow through the deflection coil to deflect the beam to the deflection position is known.

【0029】露光時における偏向コイルに供給する電力
量の平均値を時間間隔毎に漸次求めて, 最終平均値が維
持されるように未露光時における偏向コイルに流す電流
を設定する。
The average value of the amount of power supplied to the deflection coil at the time of exposure is gradually obtained at each time interval, and the current flowing through the deflection coil at the time of non-exposure is set so that the final average value is maintained.

【0030】このようにして求めた熱的安定位置の一点
を未露光時のビーム偏向点とする。図1は本発明の実施
例1の説明図である。図は偏向コイルに流れる電流の時
間経過を示し,電流は常にモニタされていて,時間間隔
n 内の電流値をよみ, 積算して時間間隔内の電力量を
求めてその平均値を算出する。
One point of the thus obtained thermally stable position is defined as a beam deflection point at the time of non-exposure. FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention. Figure shows the time course of the current flowing through the deflection coil, the current is always being monitored, reading the current value of the time interval T n, and calculates the average value calculated amount of power in the time by integrating interval .

【0031】図のように, n は小刻みに順次移動し,
古いデータは削除して新しいデータを取り込んで平均電
力量を算出する。図のステージ移動時間には,時間間隔
5 の間の電流値をもとに平均電力量を算出し, 次の時
間間隔T6 の平均電力量が算出された時間間隔T5 の平
均電力量と等しくなるように偏向コイルに流すべき電流
値を設定する。
As shown in the figure , T n sequentially moves in small increments ,
The old data is deleted and the new data is imported to calculate the average power. The stage moving time of FIG calculates the average amount of electric power based on the current value during the time interval T 5, the average power of the time average power of interval T 6 next time is calculated interval T 5 The current value to be passed through the deflection coil is set so as to be equal to

【0032】ここでは, 偏向コイルに流す電流について
考えたが,偏向位置をモニタして偏向位置を設定しても
よい。時間間隔は, 設定自由であるので,1チップ露光
の時間でもよいし,1ウエハの露光時間でもよい。
Although the current flowing in the deflection coil has been considered here, the deflection position may be set by monitoring the deflection position. Since the time interval can be freely set, the time interval may be one chip exposure time or one wafer exposure time.

【0033】また,ステージ移動等の処理が行われない
ときは前回の露光時の値が設定される。実施例1では,
直前のTn によってその都度ステージ移動時の偏向位置
が設定されるので, 露光処理毎に未露光時の偏向位置
(熱的安定位置)が変化する。
When processing such as stage movement is not performed, the value of the previous exposure is set. In the first embodiment,
Since the deflection position of the respective time stage moved by T n immediately before is set, the deflection position at the unexposed (thermally stable position) changes for each of the exposure process.

【0034】図3 (A)〜(C) はステージ移動時の偏向位
置の例を示す平面図である。各々の図はそれぞれ露光処
理後のステージ移動時における偏向位置の例を示してい
る。
FIGS. 3A to 3C are plan views showing examples of deflection positions when the stage is moved. Each drawing shows an example of the deflection position when the stage moves after the exposure processing.

【0035】図4は偏向機能を説明する構成図である。
図において,11はコラム, 12はステージ, 13は試料(被
露光物),14はCPU,15は制御系, 16は主偏向用DAC (D/A
コンバータ), AMP (増幅器) でX/Y 両方の方向用を持
つ, 17は偏向位置を見る電流モニタ, 18は偏向位置の設
定電流を決める偏向位置決定回路である。
FIG. 4 is a block diagram for explaining the deflection function.
In the figure, 11 is a column, 12 is a stage, 13 is a sample (object to be exposed), 14 is a CPU, 15 is a control system, 16 is a main deflection DAC (D / A
A converter and an AMP (amplifier) for both X and Y directions, 17 is a current monitor that monitors the deflection position, and 18 is a deflection position determination circuit that determines the set current of the deflection position.

【0036】図5(A) (B) はそれぞれ通常の場合と実施
例の場合の偏向順序を示す平面図である。図5(A) は通
常の場合で主偏向領域内の露光が終わり,次の主偏向領
域に移動するときは偏向終了位置から直かに偏向開始位
置に移動する。
FIGS. 5A and 5B are plan views showing the deflection order in the normal case and the embodiment, respectively. In FIG. 5A, in the normal case, the exposure in the main deflection area is completed, and when moving to the next main deflection area, the light beam immediately moves from the deflection end position to the deflection start position.

【0037】図5(B) は実施例の場合で主偏向領域内の
露光が終わり,次の主偏向領域に移動するときに一旦熱
的安定位置に偏向し,ここから次の主偏向領域の偏向開
始位置に移動する。この際,図のように偏向開始位置に
近い熱的安定位置を選ぶことにより偏向量が少ないため
ビームの静定時間を短くできる。 (発明3):図6(A),(B) は本発明の実施例2の説明図
である。
FIG. 5B shows the case of the embodiment, in which the exposure in the main deflection area is completed, and when moving to the next main deflection area, it is once deflected to a thermally stable position, and from this point the next main deflection area is deflected. Move to the deflection start position. At this time, by selecting a thermally stable position close to the deflection start position as shown in the figure, the amount of deflection is small, so that the beam stabilization time can be shortened. (Invention 3): FIGS. 6A and 6B are explanatory diagrams of Embodiment 2 of the present invention.

【0038】図の座標はXコイル,Yコイルの電流(位
置)である。図6(A) において,露光フィールド(副偏
向領域)内のパターンの密度が同一であると,偏向コイ
ルの熱的安定位置は副偏向領域の中心Oを中心として半
径3-1/2×Imax の円周上の任意の点である。
The coordinates in the figure are the currents (positions) of the X coil and the Y coil. In FIG. 6A, if the density of the pattern in the exposure field (sub-deflection area) is the same, the thermally stable position of the deflecting coil becomes a radius of 3 -1 / 2 × I with the center O of the sub-deflection area as the center. Any point on the circumference of max .

【0039】この例では,次の露光開始位置を図の左下
に仮定すると,未露光時のビーム偏向位置は熱的安定位
置上のA点に決まる。この場合,Xコイル,Yコイルの
偏向特性は同じであるとしているため,両方のコイルに
よる偏向距離は同じである。すなわち,A (x0,y0);
0 =y0 である。
In this example, assuming that the next exposure start position is at the lower left of the figure, the beam deflection position at the time of non-exposure is determined to be point A on the thermally stable position. In this case, since the deflection characteristics of the X coil and the Y coil are the same, the deflection distance of both coils is the same. That is, A (x 0 , y 0 );
x 0 = y 0 .

【0040】実施例2ではXコイル,Yコイルの偏向特
性の差異を考慮して,より厳密な熱的安定点Z (x1,y
1); x1 ≠y1 を次のようにして求める。まず,上記の
A点を基準点とする。この場合,線分OImax は,Xコ
イル,Yコイルの偏向特性は同じであるという条件によ
り原点を通り座標軸に対して45°の直線となる。
In the second embodiment, a stricter thermal stability point Z (x 1 , y
1 ); x 1 ≠ y 1 is obtained as follows. First, the above point A is set as a reference point. In this case, the line segment OI max is, X coils, deflection characteristic of the Y coil is a straight line of 45 ° to the origin with respect to street axes by the condition that is the same.

【0041】次に,図6(B) において,点Aより任意の
距離 L1 離れた2点B,Cを測定基準点とする。この測
定基準点B,Cと各々の周囲の4点を合わせて,計2×
5の測定点を用いて熱的安定点Zを求める。
Next, in FIG. 6B, two points B and C, which are at an arbitrary distance L1 from the point A, are set as measurement reference points. The measurement reference points B and C are combined with the four points around each of them to give a total of 2 ×
The thermal stability point Z is determined using the measurement points of No. 5.

【0042】ここで,測定点とは未露光時のビーム偏向
位置とする位置で, 後記のように各測定点に対するフィ
ールド補正量の変化量を算出する。以下に測定点を用い
て熱的安定位置Zを求める方法を説明する。
Here, the measurement point is a position to be a beam deflection position at the time of non-exposure, and the amount of change of the field correction amount for each measurement point is calculated as described later. Hereinafter, a method of obtaining the thermally stable position Z using the measurement points will be described.

【0043】点B,Cおよびそれらの周囲の4点,計10
点を未露光時のビーム偏向位置としたとき,それぞれの
点に対するフィールド補正量の変化量を算出し,この変
化量の少なくなる方向に最も熱的に安定な点が存在す
る。
Points B and C and four points around them, a total of 10 points
Assuming that the points are the beam deflection positions at the time of non-exposure, the amount of change in the field correction amount for each point is calculated, and the most thermally stable point exists in the direction in which the amount of change decreases.

【0044】いま,矢印の方向がこの方向であったとす
ると,点Zは図の斜線部分に存在すると予想できる。次
に,斜線部の方向に基準点Aからの距離を L1 より小さ
くした2点について同様の処理を行う。同様の処理を順
次行って安定点の方向が変わったら,その点とその前の
測定点との間に求める熱的安定点Zが存在するはずであ
る。
Now, assuming that the direction of the arrow is this direction, it can be expected that the point Z exists in the hatched portion in the figure. Next, the same processing is performed for two points in which the distance from the reference point A in the direction of the oblique line is smaller than L1. If the direction of the stable point is changed by sequentially performing the same processing, there should be a thermal stable point Z to be found between that point and the previous measurement point.

【0045】そこで,測定のピッチを細かくして,例え
ばハード上のLSB(ハード上実現可能な最小単位) まで落
として処理をつづけ,最終的に決まった点が熱的安定点
Zとなる。
Therefore, the pitch of the measurement is made finer, and the processing is continued down to, for example, the LSB on hardware (the smallest unit that can be realized on hardware), and the processing is continued.

【0046】次に,フィールド補正量の変化量より, 各
測定点に対する熱的安定点の評価方法を説明する。ま
ず,測定点はビームの初期位置であるとし,露光やビー
ム調整等の処理終了時にはビームはこの位置(未露光時
の偏向位置)に戻る。すなわちこの位置まで偏向するだ
けの電流を偏向コイルに流し続ける。
Next, a description will be given of a method of evaluating the thermal stability point for each measurement point based on the amount of change in the field correction amount. First, it is assumed that the measurement point is the initial position of the beam, and the beam returns to this position (deflection position at the time of non-exposure) at the end of processing such as exposure and beam adjustment. In other words, the current that deflects to this position continues to flow through the deflection coil.

【0047】この状態における偏向コイルの特性変化を
判断する方法として,実施例2では上記のフィールド補
正係数(またはフィールド補正量)の変化量を用いる。
これは,前記のようにCPU から与えられたビーム位置
を, 制御部の補正レジスタにより偏向コイルに流す電流
を制御してフィールド補正を行う。
As a method for judging a change in the characteristics of the deflecting coil in this state, the second embodiment uses the above-mentioned change amount of the field correction coefficient (or the field correction amount).
As described above, the beam position given from the CPU is controlled by controlling the current flowing through the deflection coil by the correction register of the control unit to perform the field correction.

【0048】従って, 測定点に依存する補正係数の変化
量を任意の時間あるいは日数調査することにより, 測定
点でのコイルに流す電流の影響, すなわち熱的影響が分
かることになる。つまり,熱的安定点はフィールド補正
係数の変動が最も少ない点である。
Therefore, the effect of the current flowing through the coil at the measurement point, that is, the thermal effect can be determined by investigating the amount of change in the correction coefficient depending on the measurement point for an arbitrary time or number of days. That is, the thermal stability point is a point where the variation of the field correction coefficient is the smallest.

【0049】以上のような方法を用いると,熱的安定点
は基準点A (x0,y0)から点Z (x1,y1)に移動する。
次に, 上記フィールド補正係数の求め方を以下に説明す
る。
Using the above method, the thermal stable point moves from the reference point A (x 0 , y 0 ) to the point Z (x 1 , y 1 ).
Next, a method of obtaining the field correction coefficient will be described below.

【0050】いま,ビームへの入力位置をX,Y,出力
位置をX' ,Y' とすると, X' =Gx ・X+Rx ・Y+Hx ・X・Y+Ox ・・・・・(2) Y' =Gy ・Y+Ry ・X+Hy ・X・Y+Oy ・・・・・(3) ここで,Gx ,Gy は増幅率,Rx ,Ryは回転率,H
x ,Hy は平行率,Ox ,Oy はシフト量(オフセッ
ト)である。
[0050] Now, the input position of the beam X, Y, the output position X ', Y' When, X '= G x · X + R x · Y + H x · X · Y + O x ····· (2) Y '= G y · Y + R y · X + H y · X · Y + O y ····· (3) where, G x, G y is the amplification factor, R x, R y is turnover, H
x, H y parallel rate, O x, is O y is the shift amount (offset).

【0051】図7はフィールド補正係数を説明する露光
フィールドの平面図である露光フィールドの四隅の点
a,b,c,d(MDマーク) における位置ずれ量をそれ
ぞれΔXa , ΔYa ;ΔXb , ΔYb ;ΔXc , Δ
c ;ΔXd , ΔYd とし,これらを(2) ,(3)式に代
入して, フィールド補正係数を求めると以下のようにな
る。
[0051] Figure 7 is field a point of the four corners of the exposure field is a plan view of the exposure field describing the correction factor, b, c, d (MD mark) positional deviation amount of each [Delta] X in a, ΔY a; ΔX b , ΔY b ; ΔX c , Δ
Y c; and [Delta] X d, [Delta] Y d, these (2), (3) are substituted into equation is as follows seek field correction factor.

【0052】 Gx =(ΔXb −ΔXa +ΔXc −ΔYd )/4・xx Gy =(ΔYd −ΔYa +ΔYc −ΔYb )/4・yy Rx =(ΔXd −ΔXa +ΔXc −ΔXb )/4・yy Ry =(ΔYb −ΔYa +ΔYc −ΔYd )/4・xx Hx =(ΔXa −ΔXb +ΔXc −ΔXd )/4・xx・yy Hx =(ΔYa −ΔYb +ΔYc −ΔYd )/4・xx・yy Ox =(ΔXa +ΔXb +ΔXc +ΔXd )/4 Oy =(ΔYa +ΔYb +ΔYc +ΔYd )/4 次に,熱的安定位置を求める処理を流れ図に従って説明
する。
G x = (ΔX b −ΔX a + ΔX c −ΔY d ) / 4 · xx G y = (ΔY d −ΔY a + ΔY c −ΔY b ) / 4 · yy R x = (ΔX d −ΔX a + ΔX c −ΔX b ) / 4 · yy R y = (ΔY b −ΔY a + ΔY c −ΔY d ) / 4 · xx H x = (ΔX a −ΔX b + ΔX c −ΔX d ) / 4 · xx · yy H x = (ΔY a -ΔY b + ΔY c -ΔY d) / 4 · xx · yy O x = (ΔX a + ΔX b + ΔX c + ΔX d) / 4 O y = (ΔY a + ΔY b + ΔY c + ΔY d) / 4. Next, a process for obtaining a thermally stable position will be described with reference to a flowchart.

【0053】図8は実施例2の処理の流れ図である。ま
ず,1で基準点Aを設定する。2で測定基準点B,Cを
設定する。
FIG. 8 is a flowchart of the processing of the second embodiment. First, the reference point A is set at 1. In step 2, measurement reference points B and C are set.

【0054】3で測定基準点B,Cにそれぞれの周囲4
点を加えて,計10点によるデータを取得する。データ取
得後の処理は右側の31〜36のフローに従ってフィールド
補正値の変化量が算出される。
At 3, the measurement reference points B and C are
Add points and acquire data for a total of 10 points. In the processing after data acquisition, the amount of change in the field correction value is calculated according to the flows 31 to 36 on the right.

【0055】この結果をみて,4で最適位置であるかど
うかの判定を行う。4の判定がYES の場合は5の基準点
A (x0,y0)のX,Y座標を補正する比率x1 /x0
1 /y0を算出する。
Based on this result, it is determined at 4 whether or not the position is the optimum position. If the judgment of No. 4 is YES, the ratio x 1 / x 0 for correcting the X, Y coordinates of the reference point A (x 0 , y 0 ) of 5 ,
to calculate the y 1 / y 0.

【0056】4の判定がNOの場合は2に帰還して処理を
繰り返す。次に,データ取得後の処理の流れについて説
明する。31でデータの取得数とデータの取得周期(時間
または日数)を決める。
If the determination in 4 is NO, the process returns to 2 and the process is repeated. Next, the flow of processing after data acquisition will be described. 31 determines the number of data acquisitions and the data acquisition cycle (hours or days).

【0057】32で各測定点をビーム初期位置に設定す
る。33でフールド補正を行い, その結果をメモリに格納
する。34でデータ数が全部終了したかどうかの判定を行
う。
At 32, each measurement point is set to the beam initial position. A field correction is performed in step 33, and the result is stored in a memory. At 34, it is determined whether or not all the data has been completed.

【0058】34の判定がYES の場合は36でフールド補正
量の変化量を算出する。34の判定がNOの場合は35でデー
タを取得して33に帰還する。 (発明4):また,実施例2において基準点として露光
フィールドのパターン密度が等しいと仮定したときの熱
的安定位置上の一点を用いたが,これの代わりに実施例
1で求めた熱的安定位置上の一点を用いてもよい。 (発明5):実施例2では,補正された熱的安定点Zの
座標は,X方向にx1 /x0 ,Y方向にy1 /y0 の比
率を掛けた値となる。
If the determination at 34 is YES, then at 36, the amount of change in the field correction amount is calculated. If the determination at 34 is NO, data is acquired at 35 and the process returns to 33. (Invention 4): In the second embodiment, a point on the thermally stable position when the pattern density of the exposure field is assumed to be equal is used as a reference point. Instead of this, the thermal point obtained in the first embodiment is used. One point on the stable position may be used. (Invention 5): In the second embodiment, the coordinate of the corrected thermal stable point Z is a value obtained by multiplying the ratio of x 1 / x 0 in the X direction and the ratio of y 1 / y 0 in the Y direction.

【0059】実際の運用においては,実施例1で求めた
熱的安定位置を,この比率で修正してビームを補正して
もよい。上記各実施例により,常に偏向コイルが熱的に
安定になるような電流を流すことができる。
In actual operation, the beam may be corrected by correcting the thermally stable position obtained in the first embodiment by this ratio. According to each of the above embodiments, it is possible to always supply a current that makes the deflection coil thermally stable.

【0060】[0060]

【発明の効果】偏向コイルが常に熱的安定状態にあり且
つ急激な熱的変化を防止し, 予め求めたビーム補正係数
で位置ずれの起こらない高精度, 高解像度の露光方法が
得られた。
According to the present invention, a high-precision, high-resolution exposure method can be obtained in which the deflection coil is always in a thermally stable state and a rapid thermal change is prevented, and no positional displacement occurs with a beam correction coefficient obtained in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の説明図FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】 副偏向領域のパターン密度が同じである場合
の偏向コイルに流れる電流Iと時間tの関係を示す図
FIG. 2 is a diagram illustrating a relationship between a current I flowing through a deflection coil and a time t when the pattern density of a sub-deflection region is the same.

【図3】 ステージ移動時の偏向位置の例を示す平面図FIG. 3 is a plan view showing an example of a deflection position when the stage is moved.

【図4】 偏向機能を説明する構成図FIG. 4 is a configuration diagram illustrating a deflection function.

【図5】 通常の場合と実施例の場合の偏向順序を示す
平面図
FIG. 5 is a plan view showing a deflection order in a normal case and an embodiment.

【図6】 本発明の実施例2の説明図FIG. 6 is an explanatory view of Embodiment 2 of the present invention.

【図7】 フィールド補正係数を説明するフィールドの
平面図
FIG. 7 is a plan view of a field for explaining a field correction coefficient.

【図8】 実施例2の処理の流れ図FIG. 8 is a flowchart of a process according to a second embodiment.

【図9】 ビーム偏向の模式説明図FIG. 9 is a schematic illustration of beam deflection.

【符号の説明】[Explanation of symbols]

1 荷電粒子ビーム 2 偏向コイル 3 被露光物(ウエハやマスク基板)上の主偏向領域 4 副偏向領域(露光フィールド) 5 偏向順を示す矢印 11 コラム 12 ステージ 13 試料(被露光物) 14 CPU 15 制御系 16 主偏向用DAC (D/Aコンバータ),AMP ( 増幅器) 17 偏向位置を見る電流モニタ 18 偏向位置の設定電流を決める偏向位置決定回路 Reference Signs List 1 charged particle beam 2 deflection coil 3 main deflection area on exposure target (wafer or mask substrate) 4 sub deflection area (exposure field) 5 arrow indicating deflection order 11 column 12 stage 13 sample (exposure target) 14 CPU 15 Control system 16 Main deflection DAC (D / A converter), AMP (amplifier) 17 Current monitor that monitors deflection position 18 Deflection position determination circuit that determines deflection current setting current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八田 淳子 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 安田 洋 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junko Hatta 1015 Uedanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Hiroshi Yasuda 1015 Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited ( 58) Surveyed field (Int.Cl. 7 , DB name) H01L 21/027

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 露光フィールドのパターン密度が等しい
と仮定して,未露光時に偏向コイルに流す電流として,
露光時に偏向コイルに流す最大電流Imaxの3-1/2倍の
電流値を設定し, 該電流値に対応するビームの偏向位置
を熱的安定位置とし,該熱的安定位置の上の一点を未露
光時のビームの偏向位置とすることを特徴とする荷電粒
子ビーム露光方法。
Assuming that the pattern densities of an exposure field are equal, a current flowing through a deflection coil at the time of non-exposure is:
3 sets the current value of -1/2 times, a deflection position of the beam corresponding to the current value and thermal stable position, a point on the thermal stability the position of the maximum current I max flowing in the deflection coils during exposure Is the beam deflection position at the time of non-exposure.
【請求項2】 露光時におけるビーム偏向コイルに供給
する電力量の平均値を相互に重畳期間を有する時間間隔
毎に漸次求めて, 露光時の最終時間間隔の平均値が維持
されるように未露光時における偏向コイルに流す電流値
を設定し, 該電流値に対応するビームの偏向位置を熱的
安定位置とし,該熱的安定位置の上の一点を未露光時の
ビームの偏向位置とすることを特徴とする荷電粒子ビー
ム露光方法。
2. An average value of the amount of power supplied to the beam deflection coil at the time of exposure is gradually obtained for each time interval having a superposition period, so that the average value of the final time interval at the time of exposure is maintained. A current value to be supplied to the deflection coil at the time of exposure is set, a beam deflection position corresponding to the current value is set as a thermally stable position, and a point on the thermally stable position is set as a beam deflection position at the time of non-exposure. A charged particle beam exposure method, comprising:
【請求項3】 請求項1で求めた熱的安定位置上の一点
を基準点A (x0,y0); (x0 =y0)として,該基準点
より任意の距離離れた2点B,Cを設定し,点B,Cお
よびそれらの周囲の点を未露光時のビーム偏向位置とし
て,一定期間露光を繰り返した後のフィールド補正量の
変化量を算出して,点B,Cより該変化量の少ない方向
を見つけて,この方向にあらたに2点を設定して同様の
処理を繰り返し,該変化量の最も少ない位置を補正され
た熱的安定点Z (x1,y1)とし,該熱的安定点を未露光
時のビームの偏向位置とすることを特徴とする荷電粒子
ビーム露光方法。
3. A point on the thermally stable position obtained in claim 1 as a reference point A (x 0 , y 0 ); (x 0 = y 0 ), and two points separated by an arbitrary distance from the reference point. B and C are set, the points B and C and points around them are set as beam deflection positions at the time of non-exposure, and the amount of change in the field correction amount after repeating the exposure for a certain period is calculated. The direction in which the amount of change is smaller is found, two points are newly set in this direction, and the same processing is repeated, and the position in which the amount of change is the least is corrected to the corrected thermal stable point Z (x 1 , y 1) ), Wherein the thermally stable point is a beam deflection position at the time of non-exposure.
【請求項4】 請求項1で求めた熱的安定位置に代え
て,請求項2で求めた熱的安定位置上の一点を基準点と
することを特徴とする請求項3記載の荷電粒子ビーム露
光方法。
4. The charged particle beam according to claim 3, wherein a point on the thermally stable position determined in claim 2 is used as a reference point instead of the thermally stable position determined in claim 1. Exposure method.
【請求項5】 請求項2で求めた熱的安定点の座標を請
求項3から求まる比率で修正する,すなわち該座標にX
方向はx1 /x0 ,Y方向はy1 /y0 の比率を掛けて
修正することを特徴とする荷電粒子ビーム露光方法。
5. The coordinates of the thermally stable point determined in claim 2 are corrected at a ratio determined from claim 3, ie, X is added to the coordinates.
A charged particle beam exposure method, wherein the direction is corrected by multiplying the ratio by x 1 / x 0 and the Y direction is multiplied by a ratio of y 1 / y 0 .
【請求項6】 前記未露光時のビーム偏向位置が,次の
露光を開始するビーム偏向位置に最も近い位置であるこ
とを特徴とする請求項1乃至5の何れかに記載の荷電粒
子ビーム露光方法。
6. The charged particle beam exposure according to claim 1, wherein the beam deflection position at the time of non-exposure is a position closest to the beam deflection position at which the next exposure starts. Method.
JP3173525A 1991-07-15 1991-07-15 Charged particle beam exposure method Expired - Fee Related JP3044843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173525A JP3044843B2 (en) 1991-07-15 1991-07-15 Charged particle beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173525A JP3044843B2 (en) 1991-07-15 1991-07-15 Charged particle beam exposure method

Publications (2)

Publication Number Publication Date
JPH0521322A JPH0521322A (en) 1993-01-29
JP3044843B2 true JP3044843B2 (en) 2000-05-22

Family

ID=15962142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173525A Expired - Fee Related JP3044843B2 (en) 1991-07-15 1991-07-15 Charged particle beam exposure method

Country Status (1)

Country Link
JP (1) JP3044843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788243B2 (en) * 2011-06-28 2015-09-30 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and DAC amplifier stabilization method

Also Published As

Publication number Publication date
JPH0521322A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US7053984B2 (en) Method and systems for improving focus accuracy in a lithography system
JP2000133567A (en) Electron beam exposing method and electron beam exposure system
US5798528A (en) Correction of pattern dependent position errors in electron beam lithography
US6277532B1 (en) Charged-particle-beam microlithographic methods for correction of reticle distortions
EP0033138B1 (en) A method for correcting deflection distortions in an apparatus for charged particle lithography
JPWO2003046963A1 (en) Exposure method using complementary division mask, exposure apparatus, semiconductor device and manufacturing method thereof
US5912096A (en) Charged-particle-beam exposure method with temperature-compensated exposure to offset expansion and contraction of substrate
CN114578662A (en) Overlay mark
US6741732B2 (en) Exposure method and device manufacturing method using this exposure method
JP3044843B2 (en) Charged particle beam exposure method
JPH0352210B2 (en)
US6182369B1 (en) Pattern forming apparatus
JPH11121369A (en) Method and device for pattern drawing
JPS6234134B2 (en)
JP2962273B2 (en) Exposure / drawing apparatus, exposure / drawing method, and recording medium storing exposure / drawing processing program
US6861331B2 (en) Method for aligning and exposing a semiconductor wafer
US20040222386A1 (en) Method for detecting and compensating for positional displacements in photolithographic mask units and apparatus for carrying out the method
JP3721655B2 (en) Alignment error measurement method, exposure method, and overlay accuracy management method in semiconductor device manufacturing process
JP3914817B2 (en) Charged particle beam writing method
JPH0897120A (en) Charged particle beam exposure method
TWI691814B (en) Charged particle beam drawing device and charged particle beam drawing method
JP3377855B2 (en) Charged particle beam exposure method
JP2854660B2 (en) Electron beam exposure equipment
JP2000323372A (en) Proximity effect correcting method and manufacture of semiconductor element using the same
JPH06204127A (en) Determining method of heat compensation current in charged particle beam aligner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees