JP3034654B2 - Continuous measurement of trace mercury - Google Patents

Continuous measurement of trace mercury

Info

Publication number
JP3034654B2
JP3034654B2 JP3203212A JP20321291A JP3034654B2 JP 3034654 B2 JP3034654 B2 JP 3034654B2 JP 3203212 A JP3203212 A JP 3203212A JP 20321291 A JP20321291 A JP 20321291A JP 3034654 B2 JP3034654 B2 JP 3034654B2
Authority
JP
Japan
Prior art keywords
mercury
amount
nadph
solution
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3203212A
Other languages
Japanese (ja)
Other versions
JPH0523198A (en
Inventor
雅彦 沼田
基弘 宇尾
亮男 牧島
征夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP3203212A priority Critical patent/JP3034654B2/en
Publication of JPH0523198A publication Critical patent/JPH0523198A/en
Application granted granted Critical
Publication of JP3034654B2 publication Critical patent/JP3034654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微量の水銀を連続的に
定量することができる微量水銀の連続測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously measuring trace amounts of mercury, which can continuously determine trace amounts of mercury.

【0002】[0002]

【従来の技術】従来より水銀の測定にはいくつかの方法
が用いられてきたが、一般的に日本工業規格(JIS K010
1 および K0102)で指定されているジチゾン法(比色
法)および原子吸光法が広く用いられている。ジチゾン
法とは、水銀とジチゾンとの反応により形成される水不
溶性の錯体を有機溶媒によって抽出し、抽出液の 490nm
の吸光度を測定して分析するものである。一方、原子吸
光法とは、水銀イオンを含む試料溶液に酸性下で塩化第
一スズを加えて水銀イオンを還元し、この溶液をエアレ
ーションすることにより生成する金属水銀を気化させ、
253.7nm の原子吸光を測定して分析するものである。
2. Description of the Related Art Conventionally, several methods have been used for measuring mercury, but in general, Japanese Industrial Standards (JIS K010
1 and K0102), the dithizone method (colorimetric method) and the atomic absorption method are widely used. The dithizone method is a method in which a water-insoluble complex formed by the reaction between mercury and dithizone is extracted with an organic solvent.
Is measured and analyzed. On the other hand, with atomic absorption spectrometry, stannous chloride is added to a sample solution containing mercury ions under acidity to reduce mercury ions, and metal mercury generated by aeration of this solution is vaporized.
Atomic absorption at 253.7 nm is measured and analyzed.

【0003】上記方法は総合的に他の方法より優れる点
が多いため広く用いられてきたが、次のような問題点が
残されているため、その改善が望まれていた。まずジチ
ゾン法は、操作が煩雑である上サンプルの必要量が比較
的多いため、連続システムには適さない。また、原子吸
光法と比較して感度が低く、しかも銀や銅などの妨害成
分が比較的多く誤差が生じやすいため、微量の水銀を測
定する方法としては好ましくない。さらに、クロロホル
ムや塩酸ヒドロキシルアミンなどの有害薬品を使用する
ため危険が伴う。一方、原子吸光法は比較的多量のサン
プルを必要とするバッチ式操作によるものなので、連続
システムには適さない。また、塩化スズなどの有害薬品
を使用するため危険が伴うことなどがあげられる。
The above method has been widely used because it has many advantages over other methods in general, but it has been desired to improve it because the following problems remain. First, the dithizone method is not suitable for a continuous system because the operation is complicated and the required amount of the sample is relatively large. In addition, the sensitivity is lower than that of the atomic absorption method, and since there are relatively many interfering components such as silver and copper, errors tend to occur, which is not preferable as a method for measuring a trace amount of mercury. Furthermore, there is a danger in using harmful chemicals such as chloroform and hydroxylamine hydrochloride. On the other hand, the atomic absorption method is not suitable for a continuous system since it is based on a batch type operation requiring a relatively large amount of sample. In addition, there is a danger that a hazardous chemical such as tin chloride is used.

【0004】また、水銀の連続測定やオートサンプラー
等を利用した自動測定も試みられているが[Morita, H.
et al. (1990) Analytical Science 6, 91 〜, Ping,
L.et al. (1990) Anal. Chem. 62, 85〜]、測定系に気
体の流れを利用するため、装置が大がかりなものになる
という問題点があった。
[0004] In addition, continuous measurement of mercury and automatic measurement using an autosampler have been attempted [Morita, H. et al.
et al. (1990) Analytical Science 6, 91 〜, Ping,
L. et al. (1990) Anal. Chem. 62 , 85-], because the gas flow is used for the measurement system, there is a problem that the apparatus becomes large-scale.

【0005】多くの国では現在も農薬など様々な用途に
水銀を利用しており、これらに起因する水銀汚染は水、
大気および作物などを通じて極微量ずつながら各国に影
響を及ぼしている。例えば雨水には 0.0002ppm、海水に
は 0.0003ppm程度の水銀が含まれているといわれてい
る。わが国においては廃水放出の際の規制値が0.005ppm
に設定されているため、規制値程度の濃度の水銀であれ
ば上記従来の方法でも測定することはできるが、水銀濃
度のモニターとして利用するためには、感度や操作性の
点から充分なものであるとは言えなかった。そこで、極
微量の水銀でさえも感度良く連続的に測定することがで
きる方法の確立が求められていた。
[0005] In many countries, mercury is still used for various purposes such as pesticides, and mercury pollution resulting from these uses is limited to water,
It affects each country in trace amounts through the atmosphere and crops. For example, it is said that rainwater contains about 0.0002 ppm of mercury and seawater contains about 0.0003 ppm of mercury. In Japan, the regulation value for wastewater discharge is 0.005 ppm
Therefore, if the concentration of mercury is about the regulated value, it can be measured by the above-mentioned conventional method.However, in order to use it as a monitor of mercury concentration, it is sufficient in terms of sensitivity and operability. I couldn't say that. Therefore, there has been a demand for establishing a method capable of continuously measuring even a very small amount of mercury with high sensitivity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述の従来
技術の問題点を解決し、極微量の水銀でさえも感度良く
連続的に測定することができる微量水銀の連続測定方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a method for continuously measuring a very small amount of mercury in which even a very small amount of mercury can be continuously measured with high sensitivity. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、微量の水銀を含有す
るサンプル溶液にNADPHおよびメルカプト化合物を
所定量添加し、この溶液を多孔質の担体に固定化した水
銀イオン還元酵素と連続的に接触させ、接触後の溶液中
におけるNADPHの減少量またはNADP+ の増加量
を測定することにより、サンプル溶液中の水銀イオン濃
度を連続的に定量することができることを見い出し、本
方法を発明することができた。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, added a predetermined amount of NADPH and a mercapto compound to a sample solution containing a trace amount of mercury, and added this solution to a porous material. By continuously contacting with a mercury ion reductase immobilized on a carrier, and measuring the amount of decrease in NADPH or increase in NADP + in the solution after the contact, so that the concentration of mercury ions in the sample solution can be continuously measured. They found that they could be quantified and invented this method.

【0008】すなわち、本発明は、水銀イオン還元酵素
を固定化した多孔質の担体、例えば強度の高い多孔質ガ
ラスに水銀イオン還元酵素をジアゾ結合によって固定化
したものをカラムに充填し、このカラムに、微量の水銀
を含有するサンプル溶液にNADPH(ニコチンアミド
−アデニンジヌクレオチドリン酸)およびメルカプト化
合物を所定量添加した溶液を通すことにより、該溶液中
における2価の水銀イオン(Hg2+)を水銀イオン還元
酵素の触媒作用によって金属水銀(Hg0 )に還元する
と共に、これと等モル量のNADPHをNADP+ に酸
化する反応を連続的に進行させ、カラム通過後の溶液に
おけるNADPHの減少量またはNADP+ の増加量を
測定することにより、サンプル溶液中の水銀イオン濃度
を連続的に定量することを特徴とする微量水銀の連続測
定方法を提供するものである。
That is, according to the present invention, a column is filled with a porous carrier on which mercury ion reductase is immobilized, for example, a high strength porous glass in which mercury ion reductase is immobilized by a diazo bond. Then, a solution containing a predetermined amount of NADPH (nicotinamide-adenine dinucleotide phosphate) and a mercapto compound is passed through a sample solution containing a trace amount of mercury, whereby divalent mercury ions (Hg 2+ ) in the solution are added. Is reduced to metallic mercury (Hg 0 ) by the catalytic action of mercury ion reductase, and the reaction to oxidize an equimolar amount of NADPH to NADP + proceeds continuously to reduce NADPH in the solution after passing through the column. by measuring the increase in the amount or NADP +, to quantify the mercury ion concentration in the sample solution is continuously It is intended to provide a continuous method of measuring trace amounts of mercury characterized by.

【0009】また、本発明では、上記多孔質の担体に、
水銀イオン還元酵素と共にカタラーゼを固定化すること
により、測定感度をさらに向上させることができる。
Further, according to the present invention, the porous carrier is
By immobilizing catalase together with mercury ion reductase, the measurement sensitivity can be further improved.

【0010】本発明で用いられる水銀イオン還元酵素の
基質は、溶液中の遊離水銀イオン単独ではなく、そのメ
ルカプチドであるため、本発明ではサンプル溶液にメル
カプト化合物を添加している。また、本発明者等の実験
により該酵素の活性は、システアミンを用いた場合が最
も高く、システインがこれに次ぐことが確認された。な
お、水銀イオン還元酵素の存在する菌体をスクリーニン
グする方法は[Appl.Environ. Microbial. 54, 2871〜2
873,(1988)]で述べられている。
[0010] The substrate of the mercury ion reductase used in the present invention is not a free mercury ion in the solution but a mercaptide thereof. Therefore, in the present invention, a mercapto compound is added to the sample solution. In addition, experiments performed by the present inventors confirmed that the activity of the enzyme was highest when cysteamine was used, and that cysteine was second only to cysteine. The method for screening cells in which mercury ion reductase is present is described in Appl. Environ. Microbial. 54 , 2871-2.
873, (1988)].

【0011】本発明におけるNADPHの減少量は、例
えばNADPHの示す蛍光(励起波長 340nm、発光波長
470nm)を測定することにより分析できるが、他の好適
な方法を用いても何等問題はない。また、本発明法によ
り有機水銀の測定を行う場合には、サンプル溶液に既知
の前処理を施せば良い。
In the present invention, the amount of decrease in NADPH is determined, for example, by the fluorescence (excitation wavelength 340 nm, emission wavelength) indicated by NADPH.
470 nm), but there is no problem using other suitable methods. When measuring organic mercury according to the method of the present invention, a known pretreatment may be applied to the sample solution.

【0012】[0012]

【作用】本発明では、微量の水銀を含有するサンプル溶
液にNADPHおよびメルカプト化合物を添加した溶液
を、水銀イオン還元酵素を固定化させた多孔質の担体を
充填したカラムに通すことにより、該溶液と水銀イオン
還元酵素とを連続的に接触させ、化1に示す反応を進行
させている。この反応では、水銀イオン還元酵素の触媒
作用により、サンプル溶液中に含まれている2価の水銀
イオン(Hg2+)が金属水銀(Hg0 )に還元され、そ
れと同時に還元された水銀イオンと等モル量のNADP
HがNADP+ に酸化される。そのため、NADPHの
減少量またはNADP+ の増加量を測定することによ
り、水銀イオン含有量を定量することができるのであ
る。
According to the present invention, a solution obtained by adding NADPH and a mercapto compound to a sample solution containing a trace amount of mercury is passed through a column packed with a porous carrier on which mercury ion reductase is immobilized. And the mercury ion reductase are continuously contacted, and the reaction shown in Chemical Formula 1 is advanced. In this reaction, the divalent mercury ion (Hg 2+ ) contained in the sample solution is reduced to metallic mercury (Hg 0 ) by the catalytic action of the mercury ion reductase, and at the same time, the reduced mercury ion Equimolar amount of NADP
H is oxidized to NADP + . Therefore, the mercury ion content can be quantified by measuring the decrease in NADPH or the increase in NADP + .

【化1】 Embedded image

【0013】また、本発明においては、上記多孔質の担
体に、水銀イオン還元酵素と共にカタラーゼを固定化す
ることにより、測定感度がさらに向上する。これは、水
銀イオン還元酵素の触媒により2価の水銀イオン(Hg
2+)が金属水銀(Hg0 )に還元され、生成した金属水
銀が共存させたカタラーゼの触媒作用により再び酸化さ
れて2価の水銀イオンにもどされる再生反応が起こり、
水銀イオンの酸化・還元が繰り返されるサイクリング反
応系が確立されるためである。このサイクリング反応系
では、1サイクルでサンプル溶液中に含まれる水銀イオ
ンと当モル量のNADPHが減少し、当モル量のNAD
+ が生成される。したがって、このサイクリング反応
においては単位時間当たりのNADPHの減少量および
NADP+ の増加量は一定であり、これを時間経過と共
に見るとNADPHは直線的に減少し、NADP+ は直
線的に増加するような反応が酵素カラム中で起こる。そ
のため、単位時間当たりのNADPHの減少量またはN
ADP+ の増加量はカタラーゼが存在しない場合より大
きくなり、より感度良く水銀を定量することができるの
である。
In the present invention, the measurement sensitivity is further improved by immobilizing catalase together with mercury ion reductase on the porous carrier. This is because divalent mercury ions (Hg
2+ ) is reduced to metallic mercury (Hg 0 ), and a regenerative reaction occurs in which the produced metallic mercury is oxidized again by the catalytic action of the coexisting catalase to return to divalent mercury ions,
This is because a cycling reaction system in which oxidation and reduction of mercury ions are repeated is established. In this cycling reaction system, in one cycle, mercury ions contained in the sample solution and the equimolar amount of NADPH are reduced, and the equimolar amount of NADPH is reduced.
P + is generated. Therefore, in this cycling reaction, the amount of decrease in NADPH and the amount of increase in NADP + per unit time are constant, and when viewed over time, NADPH decreases linearly and NADP + increases linearly. Reaction occurs in the enzyme column. Therefore, the amount of decrease in NADPH per unit time or N
The increase in ADP + is greater than in the absence of catalase, and mercury can be quantified more sensitively.

【0014】上記サイクリング反応とは、酵素を用いる
高感度測定法である酵素的サイクリング法[Lowry, O.
H. et. al. (1961) J. Biol. Chem. 236, 2761〜]と同
質のものであり、測定すべき物質Aの反応系の他に物質
Aの再生系を設け、繰り返し反応に関与させることで増
幅を行わせるというものである。
The above-mentioned cycling reaction is an enzymatic cycling method [Lowry, O. et al.
H. et. Al. (1961) J. Biol. Chem. 236 , 2761-], and in addition to the reaction system of the substance A to be measured, a regeneration system for the substance A is provided to participate in the reaction repeatedly. By doing so, amplification is performed.

【0015】以下、実施例により本発明をさらに詳しく
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

【0016】[0016]

【実施例】本発明の微量水銀の測定方法の一実施例を図
1および図2を用いて説明する。本実施例では、図1に
示すフローシステムを用いて微量水銀の連続測定を行っ
た。なお、上記フローシステムにおける酵素カラム4
は、次のようにして作製した。水銀イオン還元酵素6.0n
mole(0.35mg)を、85mgの多孔質ガラス(細孔径1600
A、粒径 0.3〜 0.5mm、比表面積約50m2 /g、米国特許
3,843,341)に、ジアゾ結合[Mason, R. D. et al. (19
72) Biotechnol. and Bioeng. 14, 637 〜] で固定化
し、この固定化酵素に、85mgの多孔質ガラス、または
7.2mgのカタラーゼを上記同様にジアゾ結合で固定化し
た同量の多孔質ガラスを混合し、内径3mm、長さ50mmの
カラムに充填して作製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for measuring trace mercury of the present invention will be described with reference to FIGS. In this example, continuous measurement of trace amounts of mercury was performed using the flow system shown in FIG. In addition, the enzyme column 4 in the above-mentioned flow system
Was manufactured as follows. Mercury ion reductase 6.0n
mole (0.35mg), 85mg of porous glass (pore size 1600
A, particle size 0.3 to 0.5 mm, a specific surface area of about 50 m 2 / g, U.S. Patent
3,843,341) has a diazo bond [Mason, RD et al. (19
72) Biotechnol. And Bioeng. 14 , 637-], and 85 mg of porous glass or
The same amount of porous glass in which 7.2 mg of catalase was immobilized with a diazo bond in the same manner as described above was mixed, and packed into a column having an inner diameter of 3 mm and a length of 50 mm.

【0017】まず、NADPHを20μM含む 500mMト
リス−硫酸緩衝液3(pH 7.5)を、ポンプ9によって
0.2ml/minで流し、この流路と合流する流路に種々の濃
度の塩化第二水銀(HgCl2 )を含む4mMシステア
ミン水溶液(サンプル溶液1)を、ポンプ9によって
0.8ml/minで2〜3分間流した。その際、バルブ8によ
ってサンプル溶液1の流路に純水2を流し込むことによ
り、サンプル溶液1の濃度調整を行った。各流路が合流
してできた混合溶液は酵素カラム4中を通過し、フロー
セル5に達する。該溶液がフローセル5に達したところ
で励起光6を照射し、該溶液に含まれるNADPHの示
す蛍光7(励起波長 340nm、蛍光波長 470nm)の光度を
島津分光蛍光光度計RF−5000で測定した。
First, 500 mM Tris-sulfate buffer 3 (pH 7.5) containing 20 μM of NADPH was pumped by a pump 9.
At a flow rate of 0.2 ml / min, a 4 mM aqueous solution of cysteamine (sample solution 1) containing various concentrations of mercuric chloride (HgCl 2 ) was fed into
It flowed at 0.8 ml / min for 2-3 minutes. At this time, the concentration of the sample solution 1 was adjusted by flowing pure water 2 into the flow path of the sample solution 1 through the valve 8. The mixed solution formed by merging the flow paths passes through the enzyme column 4 and reaches the flow cell 5. When the solution reached the flow cell 5, the solution was irradiated with excitation light 6, and the luminous intensity of fluorescence 7 (excitation wavelength 340 nm, fluorescence wavelength 470 nm) of NADPH contained in the solution was measured by Shimadzu Spectrofluorometer RF-5000.

【0018】上記のようにして測定した蛍光光度からN
ADPHの減少量を求めたところ、NADPH濃度の減
少量とサンプル溶液中の塩化第二水銀濃度との間に図2
に示すような関係が得られた。図2からも分かるよう
に、水銀イオン還元酵素にカタラーゼを添加せずに単独
で固定化した場合は、塩化第二水銀とNADPHとがほ
ぼ1:1のモル比で反応しているが、水銀イオン還元酵
素にカタラーゼを添加して固定化した場合(酵素サイク
リング法)は、NADPHの反応する量が増大し、感度
が向上した。また、カタラーゼを存在させた上記酵素サ
イクリング法においては、サンプルおよびNADPH溶
液の流速を下げることにより、さらに感度が向上するこ
とが確認された。
From the fluorescence intensity measured as described above, N
When the amount of decrease in ADPH was determined, the difference between the amount of decrease in NADPH concentration and the concentration of mercuric chloride in the sample solution was determined as shown in FIG.
The relationship shown in Fig. 7 was obtained. As can be seen from FIG. 2, when immobilized alone without adding catalase to mercury ion reductase, mercuric chloride and NADPH react at a molar ratio of about 1: 1. When catalase was added to the ion reductase and immobilized (enzyme cycling method), the amount of NADPH reacted increased and the sensitivity was improved. Further, in the enzyme cycling method in the presence of catalase, it was confirmed that the sensitivity was further improved by reducing the flow rates of the sample and the NADPH solution.

【0019】なお本実施例では、水銀イオン還元酵素と
して Orange A Matrex gel (Amicon社製)を使用し、こ
れをアフィニティークロマトグラフィー法[Fox, B. et
al.(1982) J. Biol. Chem. 257, No.5, 2498〜]によ
って精製したものを用いた。また、カタラーゼは、東京
化成製(beef liver由来)のものを用いた。
In this example, Orange A Matrex gel (manufactured by Amicon) was used as a mercury ion reductase, and this was subjected to affinity chromatography [Fox, B. et al.
al. (1982) J. Biol. Chem. 257 , No. 5, 2498-]. Catalase was manufactured by Tokyo Kasei (derived from beef liver).

【0020】[0020]

【比較例1】塩化第二水銀を 0、 0.1、 0.2、 0.5、
0.7および 1.0μM含有する溶液を用意し、従来の技術
である原子吸光法および本発明の酵素サイクリング法に
より測定を行った。なお、原子吸光法については、上記
溶液を 0.5mlずつ 200mlの三角フラスコに取り、日本工
業規格 (JIS K0102)に規定された方法で前処理および測
定を行い、酵素サイクリング法については、上記実施例
と同様にして測定を行った。その結果、図3に示すよう
に両測定値の間にはほとんど差がなく、精度良く定量さ
れていた。
[Comparative Example 1] Mercuric chloride was added at 0, 0.1, 0.2, 0.5,
Solutions containing 0.7 and 1.0 μM were prepared, and the measurement was carried out by the conventional techniques of atomic absorption spectrometry and the enzyme cycling method of the present invention. For the atomic absorption method, 0.5 ml of the above solution was placed in a 200 ml Erlenmeyer flask and subjected to pretreatment and measurement according to the method specified in Japanese Industrial Standards (JIS K0102). The measurement was performed in the same manner as described above. As a result, as shown in FIG. 3, there was almost no difference between the two measured values, and the quantification was accurate.

【0021】[0021]

【発明の効果】本発明の開発により、水銀イオン濃度の
検出下限が、カタラーゼを存在させなかった場合 0.2〜
0.3μM(40〜60ppb Hg)、カタラーゼを存在させた場
合では実に 0.1μM(20ppb Hg)以下の超微量連続分析
が可能になった。また、本発明法は従来の方法のよう
に、還元剤などとして重金属塩や塩酸ヒドロキシアミン
等の有害物質を使用せずに測定することができるため、
環境保全および安全面からみて非常に好ましいものであ
る。さらに、本発明法における水銀イオン還元酵素は、
高い基質特異性を有しているためHg2+のみに特異的
に反応し、他のイオン毎の選択性も高いため他の物質に
よる妨害が少い。
According to the development of the present invention, the lower limit of detection of mercury ion concentration is 0.2 to 0.2 when catalase is not present.
In the presence of 0.3 μM (40-60 ppb Hg) and catalase, ultra-micro continuous analysis of 0.1 μM (20 ppb Hg) or less was possible. Further, since the method of the present invention can be measured without using harmful substances such as heavy metal salts and hydroxyamine hydrochloride as a reducing agent, as in the conventional method,
It is very favorable from the viewpoint of environmental protection and safety. Further, the mercury ion reductase in the method of the present invention,
Since it has high substrate specificity, it specifically reacts only with Hg2 +, and since it has high selectivity for other ions, there is little interference with other substances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた本発明法におけるフローシステ
ムの概念図である。
FIG. 1 is a conceptual diagram of a flow system in the method of the present invention used in an embodiment.

【図2】本発明の方法により微量水銀の測定を行った際
のNADPH濃度の減少量とHgCl2 濃度との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the decrease amount of the NADPH concentration and the HgCl 2 concentration when measuring a trace amount of mercury according to the method of the present invention.

【図3】従来の微量水銀の測定法の一つである原子吸光
法と、本発明の方法による微量水銀の測定値の相関を表
すグラフである。
FIG. 3 is a graph showing a correlation between an atomic absorption method, which is one of the conventional methods for measuring trace mercury, and a measured value of trace mercury according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1‥‥‥サンプル溶液 2‥‥‥純水 3‥‥‥NADPHを含むトリス−硫酸緩衝液 4‥‥‥酵素カラム 5‥‥‥フローセル 6‥‥‥励起光 7‥‥‥蛍光 8‥‥‥バルブ 9‥‥‥ポンプ 1 ‥‥‥ Sample solution 2 ‥‥‥ Pure water 3 硫酸 Tris-sulfate buffer containing NADPH 4 ‥‥‥ Enzyme column 5 ‥‥‥ Flow cell 6 ‥‥‥ Excitation light 7 ‥‥‥ Fluorescence 8 ‥‥‥ Valve 9 ‥‥‥ pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇尾 基弘 東京都江戸川区清新町1−3−3−505 (72)発明者 牧島 亮男 茨城県つくば市下広岡500−10 (72)発明者 軽部 征夫 神奈川県川崎市宮前区東有馬1−3−16 (58)調査した分野(Int.Cl.7,DB名) C12Q 1/25 - 1/66 BIOSIS(DIALOG) CA(STN) WPI(DIALOG)──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Motohiro Uo 1-3-3-505, Kiyoshinmachi, Edogawa-ku, Tokyo (72) Inventor Ryoo Makishima 500-10 Shimohirooka, Tsukuba City, Ibaraki Prefecture (72) Inventor Karube Yasuo 1-3-16 Higashi-Arima, Miyamae-ku, Kawasaki-shi, Kanagawa Prefecture (58) Field surveyed (Int. Cl. 7 , DB name) C12Q 1/25-1/66 BIOSIS (DIALOG) CA (STN) WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微量の水銀を含有するサンプル溶液にN
ADPHおよびメルカプト化合物を添加し、固定化水銀
イオン還元酵素に接触させることにより、該溶液中にお
ける2価の水銀イオン(Hg2+)を金属水銀(Hg0
に還元すると共に、これと等モル量のNADPHをNA
DP+ に酸化する反応を連続的に進行させ、カラム通過
後の溶液におけるNADPHの減少量またはNADP+
の増加量を測定することにより、サンプル溶液中の水銀
イオン濃度を連続的に定量することを特徴とする微量水
銀の連続測定方法。
1. A sample solution containing a trace amount of mercury contains N
By adding ADPH and a mercapto compound and bringing them into contact with immobilized mercury ion reductase, divalent mercury ions (Hg 2+ ) in the solution can be converted to metallic mercury (Hg 0 ).
To an equivalent amount of NADPH to NA
The reaction of oxidizing to DP + is continuously progressed, and the amount of NADPH reduction or NADP + in the solution after passing through the column is reduced.
A continuous measurement method for a trace amount of mercury, wherein the concentration of mercury ions in a sample solution is continuously quantified by measuring an increase amount of the mercury.
【請求項2】 上記固定化酵素に、水銀イオン還元酵素
とカタラーゼを共存させ上記反応を増幅させた場合の請
求項1記載の微量水銀の連続測定方法。
2. The method according to claim 1, wherein a mercury ion reductase and catalase are present in the immobilized enzyme to amplify the reaction.
JP3203212A 1991-07-19 1991-07-19 Continuous measurement of trace mercury Expired - Fee Related JP3034654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203212A JP3034654B2 (en) 1991-07-19 1991-07-19 Continuous measurement of trace mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203212A JP3034654B2 (en) 1991-07-19 1991-07-19 Continuous measurement of trace mercury

Publications (2)

Publication Number Publication Date
JPH0523198A JPH0523198A (en) 1993-02-02
JP3034654B2 true JP3034654B2 (en) 2000-04-17

Family

ID=16470325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203212A Expired - Fee Related JP3034654B2 (en) 1991-07-19 1991-07-19 Continuous measurement of trace mercury

Country Status (1)

Country Link
JP (1) JP3034654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9315183D0 (en) * 1993-07-22 1993-09-08 British Nuclear Fuels Plc Biosensors

Also Published As

Publication number Publication date
JPH0523198A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
Aiken Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method
Kieber et al. Two-method verification of hydrogen peroxide determinations in natural waters
Magnuson et al. Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium (VI) to selenium (IV) with hydride generation inductively coupled plasma mass spectrometric detection
Gürkan et al. Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry
Türker et al. Use of Escherichia coli immobilized on amberlite XAD-4 as a solid-phase extractor for metal preconcentration and determination by atomic absorption spectrometry
Vallejo-Pecharromán et al. Determination of cyanide by a pervaporation–UV photodissociation–potentiometric detection approach
Ohno et al. Successive determination of copper and iron by a flow injection-catalytic photometric method using a serial flow cell
Papoff et al. Speciation of selenium in natural waters and snow by DPCSV at the hanging mercury drop electrode
JP3034654B2 (en) Continuous measurement of trace mercury
JP2969226B2 (en) Trace mercury measurement method
Wei et al. Application of sample pre-oxidation of arsenite in human urine prior to speciation via on-line photo-oxidation with membrane hydride generation and ICP-MS detection
Rosentreter et al. Trace determination and speciation of cyanide ion by atomic absorption spectroscopy
Gifford et al. Pneumatoamperometric determination of parts-per-billion dissolved species by gas evolving reactions
Kamei et al. Polyamine detection system for high-performance liquid chromatography involving enzymic and chemiluminescent reactions
Liu et al. Portable smartphone-integrated paper sensors for fluorescence detection of As (III) in groundwater
Tang et al. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2, 6-dichloroindophenol as a redox coupling agent
Pyrzyńska Spectrophotometric determination of selenium with 1-naphthyloamine-7-sulfonic acid
Miura et al. Ion chromatographic determination of sulfide, sulfite and thiosulfate in mixtures by means of their postcolumn reactions with iodine
Cai et al. Differential pulse stripping voltammetric determination of thallium with an 8‐hydroxyquinoline‐modified carbon paste electrode
Labuda et al. Applicability of chemically modified electrodes for determination of copper species in natural waters
Yamada et al. Chemiluminescence method for selective determination of iron (II) and chromium (III) with single reaction system
CN112697780B (en) Mercury ion colorimetric detection method based on osmium nanoparticle oxidase activity
Lu et al. Vapor and liquid phase detection of cyanide on a microchip
Fávero et al. Semi-quantitative “spot-test” of cyanide
Nakano et al. Catalytic determination of ultratrace amounts of Cu (II) by the oxidative coupling reaction of 3-methyl-2-benzothiazolinone hydrazone with N, N-dimethylaniline

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees