JP3033257B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3033257B2
JP3033257B2 JP3171120A JP17112091A JP3033257B2 JP 3033257 B2 JP3033257 B2 JP 3033257B2 JP 3171120 A JP3171120 A JP 3171120A JP 17112091 A JP17112091 A JP 17112091A JP 3033257 B2 JP3033257 B2 JP 3033257B2
Authority
JP
Japan
Prior art keywords
liquid crystal
antiferroelectric
voltage
phase
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3171120A
Other languages
Japanese (ja)
Other versions
JPH0519261A (en
Inventor
譲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3171120A priority Critical patent/JP3033257B2/en
Publication of JPH0519261A publication Critical patent/JPH0519261A/en
Application granted granted Critical
Publication of JP3033257B2 publication Critical patent/JP3033257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1412Antiferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は表示装置に関し、特に液
晶を用いた表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device, and more particularly to a display device using a liquid crystal.

【0002】[0002]

【従来の技術】近年、薄型の液晶表示装置が実現された
ことによって、ラップトップコンピューター等が広く普
及してきた。現在、その表示装置として主に使われてい
るのはバックライトを用いる透過型液晶表示装置であ
る。しかし、透過型液晶表示装置はバックライトによる
消費電力が高いため、バッテリーによる長時間の使用
(携帯型)には適していない。そこで、バックライトが
不要で薄型・軽量の反射型液晶表示装置の需要が高まっ
ている。さらに、対角14インチ〜20インチ・1000ラ
イン以上の大型高精細液晶表示装置の実現も期待されて
いる。
2. Description of the Related Art In recent years, with the realization of thin liquid crystal display devices, laptop computers and the like have become widespread. Currently, a transmissive liquid crystal display device using a backlight is mainly used as the display device. However, a transmissive liquid crystal display device consumes a large amount of power due to a backlight, and is not suitable for long-term use (portable type) using a battery. Therefore, a demand for a thin and lightweight reflective liquid crystal display device that does not require a backlight is increasing. Further, it is expected that a large-sized high-definition liquid crystal display device having a diagonal of 14 inches to 20 inches / 1000 lines or more will be realized.

【0003】従来の液晶表示装置としては、単純マトリ
クス駆動されるスーパーツイストネマチック型液晶素子
に光学補償セルを組み合わせたDSTNや光学補償フィ
ルムを組み合わせたFTNが実用化されている。また、
DSTNやFTNよりも高精細な表示が可能な反強誘電
性液晶を用いた表示装置の開発も進められている。
As a conventional liquid crystal display device, a DSTN in which a super-twisted nematic liquid crystal element driven by a simple matrix is combined with an optical compensation cell and an FTN in which an optical compensation film is combined have been put to practical use. Also,
A display device using an antiferroelectric liquid crystal capable of displaying a higher definition than DSTN or FTN is also being developed.

【0004】「Y. Yamada et al.:Jpn. J. Appl. Phys.
29 (1990) 1757」 に開示された反強誘電性液晶表示装置
の表示方法を図4、図5、図6を用いて説明する。図4
は液晶の光軸と偏光板の関係を示す図である。基板はX
Y平面内にあり、電圧は±Z軸方向に印加される。OA
は電圧を印加していない時、すなわち反強誘電相での光
軸であり、OF(+)とOF(-)はそれぞれ、十分高い正電圧
と負電圧を印加して強誘電相に転移させた時の光軸であ
る。なお、正電圧を印加したときの強誘電相と負電圧を
印加した時の強誘電相を、それぞれ強誘電相(+) 、強誘
電相(-) と呼ぶことにする。OF(+)またはOF(-)とOA
のなす角はティルト角と呼ばれており、θで表す。ここ
で、一方の偏光板の光吸収軸P1 をOA と平行にセット
し、他方の偏光板の光吸収軸P2 をP1 と直交させる。
電圧を印加していない時、光軸はP1 と平行なOA であ
るため光が透過しないオフ状態となり、電圧を印加すれ
ば光軸はP1 と平行ではないOF(+)またはOF(-)となる
ため、光が透過するオン状態となる。反強誘電相と強誘
電相における光透過率をそれぞれIA とIF で表せば、
IA <IF である。また、隣接する画素間には電圧が印
加されないため、画素間は常にオフ状態になっている。
[0004] "Y. Yamada et al .: Jpn. J. Appl. Phys.
29 (1990) 1757 ", a display method of the antiferroelectric liquid crystal display device will be described with reference to FIGS. 4, 5 and 6. FIG. FIG.
FIG. 3 is a diagram showing a relationship between an optical axis of a liquid crystal and a polarizing plate. The substrate is X
The voltage is in the Y plane and is applied in the ± Z axis directions. OA
Is the optical axis when no voltage is applied, that is, in the antiferroelectric phase, and OF (+) and OF (-) are transferred to the ferroelectric phase by applying sufficiently high positive and negative voltages, respectively. It is the optical axis when it is. The ferroelectric phase when a positive voltage is applied and the ferroelectric phase when a negative voltage is applied are called a ferroelectric phase (+) and a ferroelectric phase (-), respectively. OF (+) or OF (-) and OA
Is called a tilt angle, and is represented by θ. Here, the light absorption axis P1 of one polarizing plate is set parallel to OA, and the light absorption axis P2 of the other polarizing plate is orthogonal to P1.
When no voltage is applied, the optical axis is OA which is parallel to P1 and is in an off state where light is not transmitted. When a voltage is applied, the optical axis is OF (+) or OF (-) which is not parallel to P1. Therefore, the light is in an on state where light is transmitted. If the light transmittance in the antiferroelectric phase and the ferroelectric phase is represented by IA and IF, respectively,
IA <IF. Further, since no voltage is applied between adjacent pixels, the pixels are always off.

【0005】図5は、電場誘起反強誘電−強誘電相転移
におけるヒステリシス特性を示す図である。OA とP1
が平行なため、前述したように印加電圧が0の時はオフ
状態である。正の電圧を増加させた場合、電圧がしきい
値V(A-F)tよりも高くなると反強誘電相から強誘電相
(+) への相転移が始まり、矢印1のように光透過率が増
加する。そして、電圧が飽和値V(A-F)sに達したところ
で相転移が完了し、光透過率の変化が飽和する。次に、
オン状態から電圧を減少させていけば、電圧がV(F-A)t
に達するまでは強誘電相(+) が保持されるため光透過率
は変化せずオン状態のままであり、電圧がV(F-A)tより
も低くなると反強誘電相への相転移が始まり、光透過率
が矢印2のように変化する。そして、電圧が0になった
ところで完全に反強誘電相(オフ状態)に戻る。負の電
圧を印加した場合も同様に、矢印3と矢印4にしたがっ
て光透過率が変化する。
FIG. 5 is a diagram showing a hysteresis characteristic in an electric field induced antiferroelectric-ferroelectric phase transition. OA and P1
Are parallel to each other, so that when the applied voltage is 0 as described above, it is in the off state. When the positive voltage is increased, when the voltage becomes higher than the threshold value V (AF) t, the phase shifts from the antiferroelectric phase to the ferroelectric phase.
The phase transition to (+) starts, and the light transmittance increases as indicated by arrow 1. When the voltage reaches the saturation value V (AF) s, the phase transition is completed, and the change in light transmittance is saturated. next,
If the voltage is reduced from the ON state, the voltage will be V (FA) t
Until the ferroelectric phase (+) is held, the light transmittance does not change and remains on, and when the voltage becomes lower than V (FA) t, the phase transition to the antiferroelectric phase starts. , The light transmittance changes as shown by the arrow 2. Then, when the voltage becomes 0, it completely returns to the antiferroelectric phase (off state). Similarly, when a negative voltage is applied, the light transmittance changes according to arrows 3 and 4.

【0006】図6は、図5に示したヒステリシス特性を
もつ反強誘電性液晶を単純マトリクス駆動するための駆
動方法の一例である。図6(a) のVtとVdはそれぞれ
走査電極と信号電極に印加する電圧波形、図6(b) はそ
れらの合成波形であり、この合成波形が液晶層へ印加さ
れる。一つのフレームはSとNSで示した選択期間と非
選択期間から成り、選択期間Sは、RとWで示したリセ
ット期間と書き込み期間から成っている。リセット期間
には液晶層へ0ボルトを印加することによってオフ状態
へリセットする。そして、オン状態を選択する場合は、
書き込み期間の後半にV(A-F)sよりも大きい電圧を印加
してオン状態へスイッチした後、単極性の維持電圧波形
(V0−V2〜V0+V2)を印加して、オン状態を維持す
る。また、オフ状態を選択する場合には、書き込み期間
の後半にV(A-F)t以下の電圧を印加した後、単極性の維
持電圧波形を印加して、オフ状態を維持する。
FIG. 6 shows an example of a driving method for driving the antiferroelectric liquid crystal having the hysteresis characteristic shown in FIG. 5 in a simple matrix. Vt and Vd in FIG. 6A are voltage waveforms applied to the scanning electrode and the signal electrode, respectively, and FIG. 6B is a composite waveform thereof, and the composite waveform is applied to the liquid crystal layer. One frame includes a selection period and a non-selection period indicated by S and NS, and the selection period S includes a reset period and a writing period indicated by R and W. During the reset period, the liquid crystal layer is reset to an off state by applying 0 volt to the liquid crystal layer. And when selecting the ON state,
After a voltage greater than V (AF) s is applied in the latter half of the writing period to switch to the ON state, a unipolar sustain voltage waveform (V0-V2 to V0 + V2) is applied to maintain the ON state. When the off state is selected, a voltage of V (AF) t or less is applied in the latter half of the writing period, and then a unipolar sustain voltage waveform is applied to maintain the off state.

【0007】液晶層へ直流電圧を印加したり、液晶が持
っている自発分極をいつも同じ方向に留めておくと、液
晶層の内部で電荷の偏りが生じて、ヒステリシス特性に
悪影響を及ぼす。そこで、液晶層へ印加する電圧波形の
極性をフレーム毎に反転すれば、印加電圧を交流化する
ことができる。さらに、自発分極の方向が平均的に偏ら
ないようにするために、連続する2フレームをセットに
して、強誘電相が選択されるときには必ず強誘電相(+)
と強誘電相(-) が選択されるようにする。強誘電相(+)
が選択されたときも強誘電相(-) が選択されたときも、
それらの光軸OF(+)、OF(-)とPのなす角はいずれもθ
であるため、それらの光透過率は互いに等しく、光学的
には等価である。
[0007] If a DC voltage is applied to the liquid crystal layer or the spontaneous polarization of the liquid crystal is always kept in the same direction, an electric charge is biased inside the liquid crystal layer, which adversely affects the hysteresis characteristics. Therefore, if the polarity of the voltage waveform applied to the liquid crystal layer is inverted for each frame, the applied voltage can be converted to an alternating current. Furthermore, in order to prevent the direction of spontaneous polarization from being biased on average, two consecutive frames are set, and when a ferroelectric phase is selected, the ferroelectric phase (+)
And the ferroelectric phase (-) are selected. Ferroelectric phase (+)
Is selected and when the ferroelectric phase (-) is selected,
The angle between the optical axes OF (+), OF (-) and P is θ
Therefore, their light transmittances are equal to each other and optically equivalent.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の方法に
は次に述べるような課題がある。
However, the conventional method has the following problems.

【0009】DSTNとFTNは、走査線数を多くする
にしたがって、コントラスト比が低下するとともに斜め
から見たときの表示品位が著しく低下するため、高精細
表示には適さない。また、色付きを軽減するために光学
補償セルや光学補償フィルムを使用しているが、まだ完
全な白黒表示は実現されておらず、見栄えはあまり良い
ものではない。
DSTN and FTN are not suitable for high-definition display because the contrast ratio decreases and the display quality when viewed obliquely decreases as the number of scanning lines increases. Further, although an optical compensation cell or an optical compensation film is used to reduce coloring, a perfect black and white display has not yet been realized, and the appearance is not very good.

【0010】次に、従来技術による反強誘電性液晶表示
装置には、以下に述べるように種々の課題がある。
Next, the antiferroelectric liquid crystal display device according to the prior art has various problems as described below.

【0011】(1) バックライトが不要で低消費電力の反
射型で使用する場合、周囲の光を照明光として利用する
ため、十分な明るさを得られることは少ない。従来の反
強誘電性液晶表示体を反射型で使用すれば、既に述べた
ように電圧が印加されない画素間は常にオフ状態である
ため、画面全体が暗くなって見にくいものになってしま
う。
(1) When the backlight is used in a reflection type which requires no backlight and consumes low power, sufficient brightness is rarely obtained because ambient light is used as illumination light. If a conventional antiferroelectric liquid crystal display is used in a reflection type, the entire screen is dark and difficult to see because pixels between which no voltage is applied are always in an off state as described above.

【0012】(2) 反射型で使用する場合には、表示を見
やすくするためにコントラスト比よりもむしろオン状態
の明るさが重視される。反射型でのコントラスト比とオ
ン状態の光透過率をそれぞれCRr,Ir、透過型でのそ
れらをそれぞれCRt,Itで表せば、次式が成り立つ。
(2) When used in a reflection type, importance is placed on the brightness in the ON state rather than the contrast ratio in order to make the display easier to see. The light transmittance of the contrast ratio and ON state of a reflection type, respectively CR r, I r, they each CR t of a transmission type, if indicated by I t, the following equation holds.

【0013】 CRr=(CRt2>1 (1) Ir=(It2<1 (2) すなわち、透過型でのコントラスト比CRt が比較的低
くても、反射型にすれば十分なコントラスト比を得るこ
とができる。また、光透過率は1より小さな値であるか
ら、反射型で十分な明るさを得るためには、透過型での
光透過率It をなるべく1に近づけなければならない。
オン状態の光透過率はsin2(2θ) に比例するため、It
を1に近づけるためにはθ=45°が望ましい。しか
し、図4からわかるように、強誘電相(+) と強誘電相
(-) が選択されたときの明るさを等しくするためには、
OA とP1 は必ず平行でなければならない。また、ティ
ルト角θは液晶材料の性質によって決まる値であり、自
由に設定できる性質のものではない。そのため、従来技
術は反射型には不利である。
CR r = (CR t ) 2 > 1 (1) I r = (I t ) 2 <1 (2) That is, even if the contrast ratio CR t in the transmissive type is relatively low, the reflective type may be used. Thus, a sufficient contrast ratio can be obtained. Further, since the light transmittance is smaller than 1, in order to obtain a sufficient brightness in reflection type must close as possible to 1 the light transmittance I t in the transmission type.
Since the light transmittance in the ON state is proportional to sin 2 (2θ), I t
Is preferably set to θ = 45 ° in order to make close to 1. However, as can be seen from FIG. 4, the ferroelectric phase (+) and the ferroelectric phase
To make the brightness equal when (-) is selected,
OA and P1 must be parallel. Further, the tilt angle θ is a value determined by the properties of the liquid crystal material, and is not a property that can be freely set. Therefore, the prior art is disadvantageous for the reflection type.

【0014】(3) θは温度によって変化するため、画面
の明るさが温度によって変化する。このことは、明るさ
が重視される反射型には好ましくない。
(3) Since θ changes with temperature, the brightness of the screen changes with temperature. This is not preferable for the reflection type in which brightness is emphasized.

【0015】本発明は上記課題を解決するためのもので
あり、その目的とするところは、反射型で使用しても画
面が明るくて見栄えが良く、その明るさは温度によって
変化しない大型高精細液晶表示装置を提供するところに
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a large-sized high-definition screen which is bright and has a good appearance even when used in a reflection type, and whose brightness does not change with temperature. A liquid crystal display device is provided.

【0016】[0016]

【課題を解決するための手段】本発明の液晶表示装置
は、一対の基板間に反強誘電性液晶を挟持してなる液晶
素子と偏光板とを有する液晶表示装置において、前記反
強誘電性液晶の反強誘電相における光透過率が強誘電相
における光透過率より高くなるように前記偏光板が配置
されてなることを特徴とする。
According to the present invention, there is provided a liquid crystal display device comprising a polarizing plate and a liquid crystal element having an antiferroelectric liquid crystal sandwiched between a pair of substrates. The polarizing plate is arranged so that the light transmittance of the liquid crystal in the antiferroelectric phase is higher than the light transmittance of the ferroelectric phase.

【0017】[0017]

【実施例】以下、実施例によって本発明を詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0018】図2に本実施例で用いた液晶表示装置の概
略図を示す。ガラス基板21の上に透明電極22を形成し、
さらに液晶配向膜23としてポリイミドを塗布した。さら
に、ラビング法によって一軸配向処理を施した。ただ
し、2枚のガラス基板ともに液晶配向膜を塗布して一軸
配向処理を施すかどうかは任意である。また、液晶配向
膜と透明電極との間に絶縁層を設けてもよい。このよう
な2枚の基板間に反強誘電性液晶24を封入して液晶素子
を作成する。そして、この液晶素子を2枚の偏光板25で
挟み、さらに反射板26を設置する。
FIG. 2 is a schematic diagram of the liquid crystal display device used in this embodiment. Form a transparent electrode 22 on a glass substrate 21,
Further, polyimide was applied as a liquid crystal alignment film 23. Further, a uniaxial orientation treatment was performed by a rubbing method. However, it is optional whether or not the two glass substrates are coated with a liquid crystal alignment film and subjected to a uniaxial alignment treatment. Further, an insulating layer may be provided between the liquid crystal alignment film and the transparent electrode. An antiferroelectric liquid crystal 24 is sealed between such two substrates to form a liquid crystal element. Then, this liquid crystal element is sandwiched between two polarizing plates 25, and a reflecting plate 26 is further provided.

【0019】図1は本発明による表示方法を示す図であ
る。P1 とOAのなす角は従来の方法とは異なり、45
°である。電圧を印加しなければ反強誘電相であり、光
軸はP1 と45°の角をなすOA であるため、オン状態
となる。また、電圧を印加すれば強誘電相(+)または強
誘電相(-)となり、光軸はP1 またはP2 と45°−θ
の角をなすOF(+)またはOF(-)となるため、光透過率が
低いオフ状態となる。そして、電圧を印加することがで
きない画素間は常にオン状態である。従来技術ではIA
<IF であったが、本発明ではIA >IF である。
FIG. 1 is a diagram showing a display method according to the present invention. The angle between P1 and OA is different from the conventional method,
°. If a voltage is not applied, the phase is an antiferroelectric phase and the optical axis is OA forming an angle of 45 ° with P1, so that the optical axis is turned on. When a voltage is applied, the ferroelectric phase (+) or the ferroelectric phase (-) is obtained, and the optical axis is 45 ° -θ with P1 or P2.
OF (+) or OF (−) forming an angle of the above, so that the light is in an off state with low light transmittance. Then, between pixels to which no voltage can be applied is always on. In the prior art, IA
<IF, but in the present invention, IA> IF.

【0020】温度が変化したとき、OF(+)またはOF(-)
とP1 のなす角は変化するが、OAとP1 がなす角は変
化しないため、オン状態(非表示部)の明るさは常に一
定である。ただし、コントラスト比は温度によって変化
する。一般的には温度が高いほどθが小さくなるため、
オフ状態の光透過率が高くなってコントラスト比が低下
する。しかし、前述したように反射型ではコントラスト
比が見かけ上高くなるため、コントラスト比の低下より
も画素間を含めた画面の明るさのメリットのほうが大き
い。
When the temperature changes, OF (+) or OF (-)
Although the angle between P1 and P1 changes, the angle between OA and P1 does not change, so that the brightness in the ON state (non-display portion) is always constant. However, the contrast ratio changes with temperature. Generally, the higher the temperature, the smaller θ becomes,
The light transmittance in the off state increases, and the contrast ratio decreases. However, as described above, since the contrast ratio is apparently higher in the reflection type, the merit of the brightness of the screen including pixels is greater than the decrease in the contrast ratio.

【0021】液晶の注入方法としては、内部を排気した
後、液晶を注入口に滴下して毛管現象で液晶を注入する
方法がとられている。基板間距離(液晶層厚:d)が小
さくなればなるほど注入すべき液晶の総量は少なくなる
けれども、注入速度は逆に遅くなる。また、液晶が完全
に入りきらずに気泡が残ったり、ごみが混入して基板間
距離にむらが生じる可能性も高くなり、歩留りが低下す
る。そのため、製造上は基板間距離が大きければ大きい
ほどよい。しかし、反強誘電性液晶層は単なる複屈折性
媒体であり、反強誘電性液晶を2枚の偏光板で挟んだ場
合の透過光スペクトルは、レターデーションd・△n
(△nは液晶層の複屈折)によって図3のように変化す
る。そのため、白黒表示を行うためにはオン状態でのd
・△nの値が約0.25μmとなるようにdを設定しなけれ
ばならず、dを大きくすれば色付いてしまう。△nは相
によって異なるので、反強誘電性液晶の反強誘電相と強
誘電相での△nをそれぞれ△n(A)と△n(F)で表すこと
にする。それらの値は液晶材料によって異なるが、例え
ば△n(A)=0.088、△n(F)=0.113であり、一般的に、
△n(A)<△n(F)である。したがって、強誘電相によっ
てオン状態を与える場合(従来技術)と反強誘電相によ
ってオン状態を与える場合(本発明)とでは、dの最適
値が異なる。従来技術と本発明での最適値をそれぞれd
(F)とd(A) で表せば、d(A)=d(F)×0.113/0.088 と
なり、本発明での最適値の方が大きい。このように、本
発明によれば液晶層の厚さ(基板間距離)を従来技術よ
りも厚くすることができるため、基板間に液晶を注入す
るための時間が短縮され、液晶が入りきらずに気泡が残
ったり基板間距離にむらが生じる可能性も低くなり、歩
留りが高くなる。以下の実施例では、いずれも白黒表示
が可能なように液晶層の厚さを設定した。
As a method of injecting the liquid crystal, a method is used in which after the inside is evacuated, the liquid crystal is dropped into an injection port and the liquid crystal is injected by a capillary phenomenon. The smaller the inter-substrate distance (liquid crystal layer thickness: d), the smaller the total amount of liquid crystal to be injected, but the lower the injection speed. In addition, there is a high possibility that the liquid crystal does not completely enter and air bubbles remain, or dust is mixed in, resulting in unevenness in the distance between the substrates, thereby lowering the yield. Therefore, in manufacturing, the larger the distance between the substrates, the better. However, the antiferroelectric liquid crystal layer is merely a birefringent medium, and the transmitted light spectrum when the antiferroelectric liquid crystal is sandwiched between two polarizing plates has a retardation d · Δn
(Δn is the birefringence of the liquid crystal layer) as shown in FIG. Therefore, in order to perform monochrome display, d
D must be set so that the value of Δn is about 0.25 μm, and if d is increased, the color will be colored. Since Δn varies depending on the phase, Δn in the antiferroelectric phase and the ferroelectric phase of the antiferroelectric liquid crystal are represented by Δn (A) and Δn (F), respectively. Although the values differ depending on the liquid crystal material, for example, Δn (A) = 0.088, Δn (F) = 0.113.
Δn (A) <Δn (F). Therefore, the optimum value of d is different between the case where the ON state is given by the ferroelectric phase (prior art) and the case where the ON state is given by the antiferroelectric phase (the present invention). The optimal values in the prior art and the present invention are d
When expressed by (F) and d (A), d (A) = d (F) × 0.113 / 0.088, and the optimum value in the present invention is larger. As described above, according to the present invention, the thickness of the liquid crystal layer (distance between the substrates) can be made larger than that of the related art, so that the time for injecting the liquid crystal between the substrates is reduced, and the liquid crystal does not enter completely. The possibility that bubbles remain or unevenness in the distance between the substrates is reduced, and the yield increases. In the following examples, the thickness of the liquid crystal layer was set so that monochrome display was possible.

【0022】(実施例1)本実施例では液晶材料とし
て、(S)-4-(1-trifluoromethylheptyloxycarbonyl)-phe
nyl 4-(5-dodecyloxypyrimidin-2-yl) benzoate (TF
MHPDOPB)を用いて、環境温度を反強誘電相とな
るように設定した。表1に各温度でのコントラスト比
(CR)と明るさを示す。ただし、反射型での各値は式
(1)と式(2)より求めた値である。また、比較のた
めに、従来技術によって作成した液晶表示装置の特性を
表2に示す。両者を比較すれば、比較例の方が非常にコ
ントラスト比が高い。しかし、コントラスト比としては
1:15以上ならば、実用上その違いはほとんど区別で
きない。一方、オン状態の明るさは本発明の方が明る
く、画素間も常にオン状態となっているため、画面全体
が明るく見やすい。また、従来例ではオン状態の明るさ
が温度によって変化しているが、本発明によれば温度に
よらず一定である。
Example 1 In this example, (S) -4- (1-trifluoromethylheptyloxycarbonyl) -phe was used as a liquid crystal material.
nyl 4- (5-dodecyloxypyrimidin-2-yl) benzoate (TF
Using MHPDOPB), the ambient temperature was set to be an antiferroelectric phase. Table 1 shows the contrast ratio (CR) and the brightness at each temperature. However, each value in the reflection type is a value obtained from Expressions (1) and (2). For comparison, Table 2 shows the characteristics of the liquid crystal display device manufactured by the conventional technique. Comparing the two, the comparative example has a much higher contrast ratio. However, if the contrast ratio is 1:15 or more, the difference can hardly be distinguished in practical use. On the other hand, the brightness in the ON state is brighter in the present invention, and since the pixels are always in the ON state, the entire screen is bright and easy to see. Further, in the conventional example, the brightness in the ON state changes depending on the temperature, but according to the present invention, the brightness is constant regardless of the temperature.

【0023】DSTNやFTNは、表示画面を正面から
見たときのコントラスト比は高いが、見る角度を傾けて
いくとコントラスト比が急激に低下する。しかし、反強
誘電性液晶を用いれば画面の法線から50°傾いた方向
から観察してもコントラスト比はほとんど変化せず、非
常に見やすい表示が可能である。
DSTN and FTN have a high contrast ratio when the display screen is viewed from the front, but the contrast ratio sharply decreases as the viewing angle is inclined. However, when the antiferroelectric liquid crystal is used, the contrast ratio hardly changes even when viewed from a direction inclined by 50 ° from the normal line of the screen, and a very easy-to-view display is possible.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例2)ここでは液晶材料として、4-
(1-methylheptyloxycarbonyl)-phenyl 4'-octyl-oxybip
henyl-4-carboxylate を用いて、環境温度を反強誘電相
となるように設定した。表3に各温度でのコントラスト
比と明るさを示す。また、従来技術によって作成した液
晶表示装置の特性を表4に示す。本発明による液晶表示
装置のコントラスト比は非常に低い値である。しかし、
照明光として周囲の光しか利用できない反射型として利
用する場合、従来技術による液晶表示装置のオン状態の
明るさが本発明による液晶表示装置のオフ状態の明るさ
とほぼ同じレベルである、ということに注目すべきであ
る。従来技術による液晶表示装置は、ここで使用した液
晶材料のθが小さいために、コントラスト比は高いけれ
ども非常に暗くて使用不可能である。これに対して、本
発明をこの液晶材料に適用すれば、コントラスト比は低
いけれども画面が明るいため、使用に耐えることができ
る。
(Example 2) Here, a liquid crystal material was
(1-methylheptyloxycarbonyl) -phenyl 4'-octyl-oxybip
Using henyl-4-carboxylate, the environmental temperature was set to be an antiferroelectric phase. Table 3 shows the contrast ratio and brightness at each temperature. Table 4 shows the characteristics of the liquid crystal display device manufactured by the conventional technique. The contrast ratio of the liquid crystal display according to the present invention is a very low value. But,
When used as a reflection type in which only ambient light can be used as illumination light, the brightness of the on state of the liquid crystal display device according to the prior art is substantially the same level as the brightness of the off state of the liquid crystal display device according to the present invention. It should be noted. The liquid crystal display device according to the prior art has a high contrast ratio because the liquid crystal material used here has a small θ, but is very dark and cannot be used. On the other hand, if the present invention is applied to this liquid crystal material, it can be used because the contrast ratio is low but the screen is bright.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】(実施例3)実施例1で作成した液晶表示
装置から反射板に隣接する偏光板25を取り去ったものを
用いた。使用した液晶材料はTFMHPDOPBであ
る。ただし、実施例1と同様な白黒表示を実現するため
に、液晶層の厚さを実施例1の場合の1/2とした。こ
の場合、偏光板を1枚しか設置していないため、その表
示特性は実質的には透過型と等価である。表1からわか
るように、透過型でのコントラスト比は反射型でのコン
トラスト比よりも低くなるが、画面はより明るくなる。
本実施例では2枚の透明基板を用いて反射板を独立に設
置したが、そのかわりに、偏光板を設置しない側の基板
または電極に光反射性のものを用いてもよい。
(Embodiment 3) The liquid crystal display device prepared in Embodiment 1 was obtained by removing the polarizing plate 25 adjacent to the reflection plate. The liquid crystal material used is TFMHPDOB. However, in order to realize the same monochrome display as in the first embodiment, the thickness of the liquid crystal layer was set to 1 / of that in the first embodiment. In this case, since only one polarizing plate is provided, the display characteristics are substantially equivalent to the transmission type. As can be seen from Table 1, the contrast ratio in the transmission type is lower than that in the reflection type, but the screen is brighter.
In this embodiment, the reflection plate is independently provided using two transparent substrates. Alternatively, a light-reflective substrate or electrode on the side where no polarizing plate is provided may be used.

【0030】以上の実施例では、いずれも反射型として
用いたが、もちろん透過型として用いることもできる。
In each of the above embodiments, the reflection type is used, but the transmission type can be used.

【0031】[0031]

【発明の効果】以上述べたように本発明によれば、反射
型で使用しても画面が明るくて見栄えが良く、その明る
さは温度によって変化せず、さらに、基板間距離を大き
くすることができるため、液晶の注入時間が短縮され、
歩留りも向上するという効果を有する。
As described above, according to the present invention, the screen is bright and has a good appearance even when used in a reflection type, the brightness does not change with temperature, and the distance between the substrates is increased. The liquid crystal injection time is shortened,
This has the effect of improving the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による表示方法を示す図である。FIG. 1 is a diagram showing a display method according to the present invention.

【図2】実施例で用いた液晶表示装置の該略図である。FIG. 2 is a schematic view of a liquid crystal display device used in an example.

【図3】透過光スペクトルを示す図である。FIG. 3 is a diagram showing a transmitted light spectrum.

【図4】従来方法による液晶の光軸と偏光板の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between an optical axis of a liquid crystal and a polarizing plate according to a conventional method.

【図5】電場誘起反強誘電−強誘電相転移におけるヒス
テリシス特性を示す図である。
FIG. 5 is a diagram showing hysteresis characteristics in an electric field induced antiferroelectric-ferroelectric phase transition.

【図6】図5に示したヒステリシス特性をもつ反強誘電
性液晶を単純マトリクス駆動するための駆動方法の一例
を示す図である。
FIG. 6 is a diagram showing an example of a driving method for driving the antiferroelectric liquid crystal having the hysteresis characteristic shown in FIG. 5 in a simple matrix.

【符号の説明】[Explanation of symbols]

OA ・・・・反強誘電相における光軸 OF(+)・・・強誘電相(+)における光軸 OF(-)・・・強誘電相(-)における光軸 P1 ,P2・・偏光板の光吸収軸 21・・・・・ガラス基板 22・・・・・透明電極 23・・・・・液晶配向膜 24・・・・・反強誘電性液晶層 25・・・・・偏光板 26・・・・・反射板 OA: Optical axis in antiferroelectric phase OF (+): Optical axis in ferroelectric phase (+) OF (-): Optical axis in ferroelectric phase (-) P1, P2, polarization Plate light absorption axis 21 Glass substrate 22 Transparent electrode 23 Liquid crystal alignment film 24 Antiferroelectric liquid crystal layer 25 Polarizing plate 26 ... Reflector

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/141 G02F 1/1337 G02F 1/1335 G02F 1/133 G09F 9/30 G09G 3/36 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02F 1/141 G02F 1/1337 G02F 1/1335 G02F 1/133 G09F 9/30 G09G 3/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の基板間に反強誘電性液晶を挟持して
なる液晶素子と偏光板とを有する液晶表示装置におい
て、 前記反強誘電性液晶の反強誘電相における光透過率が強
誘電相における光透過率より高くなるように前記偏光板
が配置されてなることを特徴とする液晶表示装置。
1. A liquid crystal display device comprising a polarizing plate and a liquid crystal element having an antiferroelectric liquid crystal sandwiched between a pair of substrates, wherein the antiferroelectric liquid crystal has a high light transmittance in an antiferroelectric phase. A liquid crystal display device, wherein the polarizing plate is arranged so as to have a higher light transmittance in a dielectric phase.
JP3171120A 1991-07-11 1991-07-11 Liquid crystal display Expired - Fee Related JP3033257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171120A JP3033257B2 (en) 1991-07-11 1991-07-11 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171120A JP3033257B2 (en) 1991-07-11 1991-07-11 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0519261A JPH0519261A (en) 1993-01-29
JP3033257B2 true JP3033257B2 (en) 2000-04-17

Family

ID=15917355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171120A Expired - Fee Related JP3033257B2 (en) 1991-07-11 1991-07-11 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3033257B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589966A (en) * 1993-05-11 1996-12-31 Mitsui Petrochemical Industries, Ltd. Antiferroelectric liquid crystal light modulation device
JP3736856B2 (en) * 1996-03-29 2006-01-18 シチズン時計株式会社 Liquid crystal display
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
EP1107050B1 (en) * 1997-03-31 2005-08-31 Citizen Watch Co. Ltd. Antiferroelectric liquid crystal device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0519261A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP3162210B2 (en) Liquid crystal display
US8576356B2 (en) Liquid crystal display device with controlled viewing angle panel and driving method thereof
KR100241815B1 (en) Liquid crystal electronic optical apparatus
EP0448124A2 (en) Optical modulation device and display apparatus
JPH06331979A (en) Normally white liquid-crystal display and method for compensation of its phase delay
JPH052166A (en) Liquid crystal display device
US7057680B2 (en) Liquid crystal device having discotic liquid crystal and rod-shaped liquid crystal in mutually separate phases
JPH02176625A (en) Liquid crystal display device
US6067142A (en) Vertically aligned pi-cell LCD having on-state with mid-plane molecules perpendicular to the substrates
JP3497986B2 (en) Driving method of liquid crystal display element and liquid crystal display device
JP3948914B2 (en) Liquid crystal display element
JP3033257B2 (en) Liquid crystal display
US20060061528A1 (en) Liquid crystal display device with reduced power consumption in standby mode
US6646710B2 (en) Light modulator
KR20010065169A (en) Liquid crystal display device
US6603522B1 (en) Liquid crystal shutter
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
JP2713328B2 (en) Twisted nematic liquid crystal display device
US7567320B2 (en) Electro-optical device with liquid crystal
JP4086462B2 (en) Liquid crystal display device and liquid crystal display method
JP3365587B2 (en) Liquid crystal device
US6876424B1 (en) Liquid crystal display having a spontaneous polarization
JP3103223B2 (en) Color liquid crystal display
JP2860806B2 (en) LCD color display
JP2858142B2 (en) LCD color display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees