JP3032309B2 - Method for producing lithium ion conductive solid electrolyte - Google Patents
Method for producing lithium ion conductive solid electrolyteInfo
- Publication number
- JP3032309B2 JP3032309B2 JP3028559A JP2855991A JP3032309B2 JP 3032309 B2 JP3032309 B2 JP 3032309B2 JP 3028559 A JP3028559 A JP 3028559A JP 2855991 A JP2855991 A JP 2855991A JP 3032309 B2 JP3032309 B2 JP 3032309B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- lithium ion
- ion conductive
- conductive solid
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y02E60/12—
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電池及びコンデンサー等
の電気化学素子に用いる固体電解質の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte used in electrochemical devices such as batteries and capacitors.
【0002】[0002]
【従来の技術】固体電解質を用いた全固体電池は漏液の
心配のない高信頼性の電池を実現するものとして大きく
注目されており、特にリチウムを用いたものは高容量を
有する電池として期待されている。既に(化1)に示す
化学式の化合物系のリチウムイオン伝導性固体電解質
は、心臓のペースメーカーの駆動用電源を構成する際の
固体電解質として用いられている。2. Description of the Related Art An all-solid battery using a solid electrolyte has attracted a great deal of attention for realizing a highly reliable battery with no fear of liquid leakage. In particular, a battery using lithium is expected as a battery having a high capacity. Have been. The lithium ion conductive solid electrolyte of the compound represented by the chemical formula shown in Chemical Formula 1 has already been used as a solid electrolyte when constituting a power supply for driving a cardiac pacemaker.
【0003】[0003]
【化1】 Embedded image
【0004】しかしながら、このようにリチウムイオン
伝導性固体電解質が実用素子として用いられている例は
少なく、その原因はリチウムイオン伝導性固体電解質の
イオン伝導度の低さによるものである。このような問題
点を克服するため、比較的高いイオン伝導度を有する固
体電解質として、(化2)に示す化学式の化合物に代表
される酸素酸塩系のリチウムイオン伝導性固体電解質が
提案されている。[0004] However, there are few examples in which the lithium ion conductive solid electrolyte is used as a practical element as described above, and this is due to the low ionic conductivity of the lithium ion conductive solid electrolyte. In order to overcome such problems, as a solid electrolyte having a relatively high ionic conductivity, an oxyacid salt-based lithium ion conductive solid electrolyte represented by a compound represented by the following chemical formula (2) has been proposed. I have.
【0005】[0005]
【化2】 Embedded image
【0006】この固体電解質は、各原材料を所定量混合
し、アルゴン等の不活性ガス雰囲気中でガラス封管し、
加熱融解した後、自然放冷または、液体窒素中で急冷す
る手法が固体イオニクス(講談社 1986年発行 P
77)で述べられている。The solid electrolyte is prepared by mixing a predetermined amount of each raw material and sealing the glass in an inert gas atmosphere such as argon.
After heating and melting, solid ionics is a method of allowing natural cooling or rapid cooling in liquid nitrogen (Kodansha 1986
77).
【0007】[0007]
【課題を解決するための手段】この課題を解決するため
本発明のリチウムイオン伝導性固体電解質の製造方法
は、遷移金属と酸素による酸素酸のリチウム塩であり、
前記酸素酸を構成する遷移金属の原子価は単一原子価で
あり、かつ前記リチウム塩は化学的量論組成を有するリ
チウムイオン伝導性固体電解質の製造方法であって、遷
移金属と酸素による前記リチウム塩の融解物、または前
記リチウム塩を構成する原材料の融解物を、酸素雰囲気
中、10 5 ℃/秒以上でかつ10 7 ℃/秒以下の速度で急
冷することにより、電子伝導性を低減したことを特徴と
する。 In order to solve this problem, a method for producing a lithium ion conductive solid electrolyte according to the present invention comprises a lithium salt of an oxyacid with a transition metal and oxygen,
The valence of the transition metal constituting the oxyacid is a single valence.
And the lithium salt has a stoichiometric composition.
A method for producing a solid electrolyte of titanium ion, comprising:
Melt of said lithium salt by metal transfer and oxygen, or before
The molten raw material that constitutes the lithium salt is placed in an oxygen atmosphere.
Medium, at a rate of 10 5 ° C / sec or more and 10 7 ° C / sec or less
The feature is that electron conductivity is reduced by cooling.
I do.
【0008】[0008]
【課題を解決するための手段】この課題を解決するため
本発明の固体電解質の製造法は、酸素酸塩系リチウムイ
オン伝導性固体電解質において、酸素酸を構成する遷移
金属の原子価が単一原子価である固体電解質とし、さら
に酸素酸塩系リチウムイオン伝導性固体電解質またはそ
れを構成する原材料の融解物を、酸素雰囲気中で急冷す
ることにより製造するものである。Means for Solving the Problems To solve this problem, the method for producing a solid electrolyte according to the present invention is characterized in that the oxyacid-based lithium ion conductive solid electrolyte has a single valence of the transition metal constituting the oxyacid. It is produced by rapidly cooling in an oxygen atmosphere a valence solid electrolyte and a molten oxylate-based lithium ion conductive solid electrolyte or a raw material constituting the same.
【0009】[0009]
【作用】上述の課題に対し、発明者らは、前記固体電解
質の融解物を酸素雰囲気中で急冷すると、電子伝導性が
著しく低下し、また同時にイオン伝導度が向上すること
を見いだした。これは、以下の作用にもとずくものと考
えられる。In order to solve the above-mentioned problems, the present inventors have found that when the melt of the solid electrolyte is quenched in an oxygen atmosphere, the electron conductivity is remarkably reduced and the ionic conductivity is improved at the same time. This is considered to be based on the following operation.
【0010】つまり、(化2)に示す化学式の化合物に
代表されるリチウムイオン伝導性固体電解質は、従来の
技術で記載した製造法に従うと、その組成である酸素酸
の部分に若干の非化学量論組成部分を有し、そのため酸
素酸を形成するV等の遷移金属は混合原子価数となり、
この混合原子価の部分を電子がホッピング伝導し、これ
が、固体電解質の電子伝導性を生むと考えられる。たと
えば、上述の(化2)に示す化学式の化合物はアルゴン
等の不活性ガス雰囲気中またはガラス封管中で融解し、
自然放冷、または液体窒素中で急冷するとVの原子価は
4価と5価の混合物となり、そこを経路とする電子伝導
性が発生する。ところが、この融解物を酸素雰囲気中で
急冷するとVの原子価が、5価に統一され上述のホッピ
ングによる電子伝導性が消滅し、電子伝導度の低いリチ
ウムイオン伝導性固体電解質を得ることとなる。That is, according to the production method described in the prior art, the lithium ion conductive solid electrolyte represented by the compound of the chemical formula (2) has a slight non-chemical A transition metal such as V having a stoichiometric composition and thus forming an oxyacid has a mixed valence,
It is believed that electrons conduct hopping conduction in the mixed valence portion, which gives rise to electron conductivity of the solid electrolyte. For example, the compound of the chemical formula shown in the above (Chemical Formula 2) is melted in an atmosphere of an inert gas such as argon or in a glass sealed tube,
When allowed to cool naturally or quenched in liquid nitrogen, the valence of V becomes a mixture of tetravalent and pentavalent, and electron conductivity is generated through this mixture. However, when the melt is rapidly cooled in an oxygen atmosphere, the valence of V is unified to pentavalent, the electron conductivity due to the above-mentioned hopping disappears, and a lithium ion conductive solid electrolyte having low electron conductivity is obtained. .
【0011】以下本発明の一実施例の固体電解質の製造
法について図面に基づいて具体的に説明する。 Production of a solid electrolyte according to one embodiment of the present invention
The method will be specifically described with reference to the drawings.
【0012】(実施例1)図1において、(化3)に示
す化学式の化合物の粉体を17:4:3のモル比で定
量、ノルマルヘキサンに分散し、乾燥空気中600℃で
3時間加熱後、室温まで放冷する。Example 1 In FIG. 1, powder of a compound of the chemical formula shown in Chemical Formula 3 was quantified in a molar ratio of 17: 4: 3, dispersed in normal hexane, and dried in dry air at 600 ° C. for 3 hours. After heating, allow to cool to room temperature.
【0013】[0013]
【化3】 Embedded image
【0014】その後、これをグラッシーカーボン製の容
器1にいれ、その後、酸素を1体積%含有するアルゴン
ガスをフローした赤外線イメージ炉2の中で、約700
℃まで加熱することにより前記調整材料を融解する。こ
れを、チタニウムを表面にコートした十分な熱容量を有
する回転ローラー3上に、滴下することにより前記融解
物を105℃/秒の冷却速度で急冷し、ガラス製容器4
に採取する。融解物が急冷される回転ローラ3およびそ
の周囲の雰囲気は、酸素導入口5より導入される酸素に
より、酸素雰囲気に保たれている。最後に、これを乾燥
空気雰囲気中で粉砕しリチウムイオン伝導性固体電解質
Aを得た。これに対する比較例として、(化3)に示す
化学式の化合物の粉体を17:4:3のモル比で定量、
ノルマルヘキサンに分散し、乾燥空気中600℃で3時
間加熱後、室温まで放冷し、粉砕して得られる微粉末を
3ton/cm2の圧力で加圧成型したものを石英ガラ
ス容器中に封入し、1000℃で1時間焼結した後、室
温まで放冷、これを乾燥空気雰囲気中で粉砕し、リチウ
ムイオン伝導性固体電解質Bを得た。なお前述の製造工
程で使用した雰囲気ガスは、すべて純度99.99%以
上のものである。また、本実施例では融解物の冷却速度
として105℃/秒で行なったが、105〜107℃/秒
でも同様の効果を生む。Thereafter, this is placed in a glassy carbon container 1 and then placed in an infrared image furnace 2 through which an argon gas containing 1% by volume of oxygen has flowed, for about 700 hours.
The conditioning material is melted by heating to ° C. The melt is quenched at a cooling rate of 10 5 ° C./sec by dropping it onto a rotating roller 3 having a sufficient heat capacity and coated with titanium to form a glass container 4.
To be collected. The rotary roller 3 where the melt is quenched and the surrounding atmosphere are kept in an oxygen atmosphere by oxygen introduced from the oxygen inlet 5. Finally, this was pulverized in a dry air atmosphere to obtain a lithium ion conductive solid electrolyte A. As a comparative example, powder of a compound of the chemical formula shown in Chemical Formula 3 was quantified in a molar ratio of 17: 4: 3,
Dispersed in normal hexane, heated in dry air at 600 ° C. for 3 hours, allowed to cool to room temperature, and pulverized to obtain a fine powder, which was then press-molded at a pressure of 3 ton / cm 2 and sealed in a quartz glass container. Then, after sintering at 1000 ° C. for 1 hour, the mixture was allowed to cool to room temperature and pulverized in a dry air atmosphere to obtain a lithium ion conductive solid electrolyte B. The atmosphere gases used in the above-described manufacturing process have a purity of 99.99% or more. In this embodiment, the cooling is performed at a cooling rate of 10 5 ° C / sec., But the same effect can be obtained when the cooling rate is 10 5 to 10 7 ° C / sec.
【0015】このように、本実施例の製造法に従い作成
したリチウムイオン伝導性固体電解質A及び従来より公
知の製造法で作成したリチウムイオン伝導性固体電解質
Bに対し、電気伝導度及び電子伝導度の比較評価を行な
った。電気伝導度の測定はアルゴン雰囲気中において、
粉体試料AおよびBを3ton/cm2の圧力で加圧成型した
成型物の両端に金属リチウムの電極を真空蒸着法により
形成、複素インピーダンスを測定することにより行なっ
た。その結果を図2に示した。図2において、電気伝導
度は周知のとおり、複素インピーダンスの横軸との切片
の値の逆数とした。また電子伝導度の測定は、粉体試料
AおよびBを3ton/cm2の圧力で加圧成型した成型物の
両端に金属金の電極を真空加熱蒸着法により形成した測
定セルにたいして、両端に1ボルトの一定電圧を印加
後、十分時間が経過した後、一定の値となった電流値を
測定することにより行なった。以上の測定結果を図3に
示した。なお測定はすべて乾燥アルゴン雰囲気中で行な
った。図3において、縦軸は、電子伝導度及び電気伝導
度と電子伝導度との差より得られたイオン伝導度を示
し、また横軸は測定温度を示している。図より明らかな
ように本実施例の製造法に従えば、従来の製造法により
作成したものより、イオン伝導度が増加し、かつ電子伝
導度を格段に低減する事が出来た。As described above, the electric conductivity and the electron conductivity of the lithium ion conductive solid electrolyte A prepared according to the production method of the present embodiment and the lithium ion conductive solid electrolyte B prepared by the conventionally known production method are compared. Was evaluated. The measurement of electric conductivity is performed in an argon atmosphere.
Powder samples A and B were formed by pressurizing and molding metal lithium electrodes at both ends of the molded product under a pressure of 3 ton / cm 2 by a vacuum evaporation method, and the complex impedance was measured. The result is shown in FIG. In FIG. 2, the electric conductivity is the reciprocal of the value of the intercept of the complex impedance with the horizontal axis, as is well known. The electron conductivity was measured by pressing powder samples A and B at a pressure of 3 ton / cm 2 at a pressure of 3 ton / cm 2. After applying a constant voltage of volts and a sufficient time had passed, the measurement was performed by measuring a current value at which the voltage became a constant value. The above measurement results are shown in FIG. All measurements were performed in a dry argon atmosphere. In FIG. 3, the vertical axis indicates the electron conductivity and the ionic conductivity obtained from the difference between the electric conductivity and the electron conductivity, and the horizontal axis indicates the measurement temperature. As is apparent from the figure, according to the manufacturing method of this example, the ionic conductivity was increased and the electron conductivity was significantly reduced as compared with those manufactured by the conventional manufacturing method.
【0016】さらに、固体電解質A及びBを構成するV
の原子価をXPS(X線光スペクトロスコピー)により
確認したところ、試料B中では、5価のVに対し4価の
Vが約50原子%存在したのに比べ、試料A中ではXP
Sの検出限界である1原子%以下になったことを確認
し、上述の作用で記載した要因を証明する結果を得た。Further, V constituting the solid electrolytes A and B
Was confirmed by XPS (X-ray light spectroscopy). In sample B, the tetravalent V was present at about 50 atomic% relative to the pentavalent V,
It was confirmed that the detection limit was 1 atomic% or less, which is the detection limit of S, and a result was obtained which proved the factors described in the above operation.
【0017】なお、本実施例では、固体電解質を構成す
る原材料の融解物を酸素雰囲気中で急冷したが、従来の
製造法に従い作成された固体電解質を融解し、酸素雰囲
気中で急冷ても、同様の効果を生むことはいうまでもな
い。In this embodiment, the melt of the raw material constituting the solid electrolyte was quenched in an oxygen atmosphere. However, even if the solid electrolyte prepared according to the conventional manufacturing method is melted and quenched in the oxygen atmosphere, It goes without saying that a similar effect is produced.
【0018】(実施例2)本実施例では、酸素酸塩系リ
チウムイオン伝導性固体電解質である(化4)に示す化
学式の化合物を例に取り、本実施例の固体電解質の製造
法の効果について記載する。なお、合成は、実施例1の
図1でで示した製造装置と同一のものを用いた。Example 2 In this example, the effect of the method for producing a solid electrolyte of the present example will be described taking a compound of the chemical formula shown in Chemical Formula 4 as an oxyacid salt type lithium ion conductive solid electrolyte as an example. Is described. For the synthesis, the same apparatus as the manufacturing apparatus shown in FIG. 1 of Example 1 was used.
【0019】[0019]
【化4】 Embedded image
【0020】(化5)に示す化学式の化合物の粉体を
9:3:1のモル比で定量、ノルマルヘキサンに分散
し、乾燥空気中600℃で3時間加熱後、室温まで放冷
する。その後、これをグラッシーカーボン製の容器1に
いれ、その後、酸素を1体積%含有するアルゴンガスを
フローした赤外線イメージ炉2の中で、約700℃まで
加熱することにより前記調整材料を融解する。The powder of the compound of the chemical formula shown in Chemical Formula 5 is quantitatively determined at a molar ratio of 9: 3: 1, dispersed in normal hexane, heated in dry air at 600 ° C. for 3 hours, and then cooled to room temperature. Thereafter, this is placed in a glassy carbon container 1 and then heated to about 700 ° C. in an infrared image furnace 2 in which an argon gas containing 1% by volume of oxygen has flowed to melt the conditioning material.
【0021】[0021]
【化5】 Embedded image
【0022】これをチタニウムを表面にコートした十分
な熱容量を有する回転ローラー3上に、滴下することに
より前記融解物を105℃/秒の冷却速度で急冷し、ガ
ラス製容器4に採取する。融解物が急冷される回転ロー
ラ3およびその周囲の雰囲気は、酸素導入口5より導入
される酸素により、酸素雰囲気に保たれている。最後
に、これを乾燥空気雰囲気中で粉砕しリチウムイオン伝
導性固体電解質Cを得た。これに対する比較例として、
(化5)に示す化学式の化合物の粉体を9:3:1のモ
ル比で定量、ノルマルヘキサンに分散し、乾燥空気中6
00℃で3時間加熱後、室温まで放冷し、粉砕して得ら
れる微粉末を3ton/cm2の圧力で加圧成型したも
のを石英ガラス容器中に封入し、800℃で1時間焼結
した後、室温まで放冷、これを乾燥空気雰囲気中で粉砕
し、リチウムイオン伝導性固体電解質Dを得た。なお前
述の製造工程で使用した雰囲気ガスは、すべて純度9
9.99%以上のものである。また、本実施例では融解
物の冷却速度として105℃/秒で行なったが、105〜
107℃/秒でも同様の効果を生む。The melt is quenched at a cooling rate of 10 5 ° C / sec by dropping it onto a rotating roller 3 having a sufficient heat capacity and coated with titanium, and is collected in a glass container 4. The rotary roller 3 where the melt is quenched and the surrounding atmosphere are kept in an oxygen atmosphere by oxygen introduced from the oxygen inlet 5. Finally, this was pulverized in a dry air atmosphere to obtain a lithium ion conductive solid electrolyte C. As a comparative example,
The powder of the compound of the chemical formula shown in Chemical Formula 5 was quantified in a molar ratio of 9: 3: 1, dispersed in normal hexane, and dried in dry air.
After heating at 00 ° C. for 3 hours, the mixture was allowed to cool to room temperature, and the fine powder obtained by pulverization was molded under pressure at a pressure of 3 ton / cm 2 , sealed in a quartz glass container, and sintered at 800 ° C. for 1 hour. After cooling, the mixture was allowed to cool to room temperature and pulverized in a dry air atmosphere to obtain a lithium ion conductive solid electrolyte D. The atmosphere gases used in the above-described manufacturing process were all 9% pure.
It is not less than 9.99%. Further, in the present embodiment was conducted at 10 5 ° C. / sec as the cooling rate of the melt, 10 5 ~
It produces similar effects at 10 7 ° C. / sec.
【0023】本実施例の製造法に従い作成したリチウム
イオン伝導性固体電解質C及び従来より公知の製造法で
作成したDについて、電気伝導度及び電子伝導度の比較
評価を行なった。電気伝導度の測定はアルゴン雰囲気中
において、粉体試料CおよびDを3ton/cm2の圧力で加
圧成型した成型物の両端に金属リチウムの電極を真空蒸
着法により形成し、電極間の複素インピーダンスを測定
することにより行なった。その結果を図4に示した。図
4において、電気伝導度は周知のとおり、複素インピー
ダンスの横軸との切片の値の逆数とした。また電子伝導
度の測定は、粉体試料AおよびBを3ton/cm2の圧力で
加圧成型した成型物の両端に金属金の電極を真空加熱蒸
着法により形成した測定セルにたいして、両端に1ボル
トの一定電圧を印加後、十分時間が経過した後、一定の
値となった電流値を測定することにより行なった。以上
の測定結果を図5に示した。なお測定はすべて乾燥アル
ゴン雰囲気中で行なった。図5において、縦軸は、電子
伝導度及び電気伝導度と電子伝導度との差より得られた
イオン伝導度を示し、また横軸は測定温度を示してい
る。図より明らかなように本実施例に従えば、イオン伝
導度が高く、かつ電子伝導度の低い固体電解質を得る事
が出来た。The lithium ion conductive solid electrolyte C prepared according to the production method of this embodiment and the D prepared according to a conventionally known production method were subjected to comparative evaluation of electric conductivity and electron conductivity. In the measurement of electric conductivity, powdery samples C and D were pressed and molded at a pressure of 3 ton / cm 2 in an argon atmosphere. This was done by measuring the impedance. The result is shown in FIG. In FIG. 4, the electric conductivity is the reciprocal of the intercept of the complex impedance with the horizontal axis, as is well known. The electron conductivity was measured by pressing powder samples A and B at a pressure of 3 ton / cm 2 at a pressure of 3 ton / cm 2. After applying a constant voltage of volts and a sufficient time had passed, the measurement was performed by measuring a current value at which the voltage became a constant value. The above measurement results are shown in FIG. All measurements were performed in a dry argon atmosphere. In FIG. 5, the vertical axis indicates the electron conductivity and the ion conductivity obtained from the difference between the electric conductivity and the electron conductivity, and the horizontal axis indicates the measurement temperature. As is clear from the figure, according to this example, a solid electrolyte having high ionic conductivity and low electron conductivity was obtained.
【0024】さらに固体電解質C及びDを構成するVの
原子価をXPS(X線光スペクトロスコピー)により確
認したところ、試料D中では、5価のVに対し4価のV
が約50原子%存在したのに比べ、試料C中ではXPS
の検出限界である1原子%以下になったことを確認し、
上述の作用で記載した要因を証明する結果を得た。Furthermore was confirmed valence of V constituting the solid electrolyte C and D by XPS (X-ray beam spectroscopy), the sample D, the tetravalent to pentavalent V V
Was present in sample C compared to about 50 atomic%.
It was confirmed that the detection limit was 1 atomic% or less.
The result proves the factors described in the above operation.
【0025】なお、本実施例では、固体電解質を構成す
る原材料の融解物を酸素雰囲気中で急冷したが、従来の
製造法に従い作成された固体電解質を融解し、酸素雰囲
気中で急冷ても、同様の効果を生むことはいうまでもな
い。In this embodiment, the melt of the raw material constituting the solid electrolyte was quenched in an oxygen atmosphere. However, even if the solid electrolyte prepared according to the conventional manufacturing method is melted and quenched in the oxygen atmosphere, It goes without saying that a similar effect is produced.
【0026】以上の実施例では、酸素酸塩系リチウムイ
オン伝導性固体電解質として(化6)に示す化学式の化
合物及び(化4)に示す化学式の化合物を例に取り、本
発明の製造法の効果を記載したが、とくにこの材料に限
定する必要はなく、公知の酸素酸塩系リチウムイオン伝
導性固体電解質の製造にも有効であることはいうまでも
ない。In the above examples, the compound of the chemical formula shown in the chemical formula (6) and the compound of the chemical formula shown in the chemical formula (4) are taken as examples of the oxyacid salt-based lithium ion conductive solid electrolyte, and the production method of the present invention is described. Although the effect has been described, it is not particularly necessary to limit the material to this material, and it is needless to say that the material is also effective for producing a known oxylate-based lithium ion conductive solid electrolyte.
【0027】[0027]
【化6】 Embedded image
【0028】[0028]
【発明の効果】以上の実施例の説明で明らかなように、
本発明の固体電解質の製造方法によれば電子伝導度の低
いリチウムイオン伝導性固体電解質を得ることが出来
る。As is clear from the above description of the embodiment,
According to the method for producing a solid electrolyte of the present invention, a lithium ion conductive solid electrolyte having low electron conductivity can be obtained.
【図1】本発明の一実施例の酸素酸塩系リチウムイオン
伝導性固体電解質の製造装置の概念を示す構成図FIG. 1 is a configuration diagram showing the concept of an apparatus for producing an oxylate-based lithium ion conductive solid electrolyte according to one embodiment of the present invention.
【図2】酸素酸塩系リチウムイオン伝導性固体電解質A
及びBの複素インピーダンスを示すグラフFIG. 2 Oxygenate-based lithium ion conductive solid electrolyte A
A graph showing the complex impedance of B and B
【図3】酸素酸塩系リチウムイオン伝導性固体電解質A
及びBの特性を示すグラフFIG. 3 is an oxygenate-based lithium ion conductive solid electrolyte A
And graphs showing the characteristics of B
【図4】酸素酸塩系リチウムイオン伝導性固体電解質C
及びDの複素インピーダンスを示すグラフFIG. 4 Oxygenate-based lithium ion conductive solid electrolyte C
Showing the complex impedance of D and D
【図5】酸素酸塩系リチウムイオン伝導性固体電解質C
及びDの特性を示すグラフFIG. 5: Oxylate-based lithium ion conductive solid electrolyte C
Graphs showing characteristics of D and D
1 グラッシーカーボン製の容器 2 赤外線イメージ炉 3 回転ローラ 4 ガラス製容器 5 酸素導入口 DESCRIPTION OF SYMBOLS 1 Glassy carbon container 2 Infrared image furnace 3 Rotating roller 4 Glass container 5 Oxygen inlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−87415(JP,A) 特開 平2−304805(JP,A) 特開 昭60−103038(JP,A) 特公 昭63−61722(JP,B2) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenichi Takeyama 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-87415 (JP, A) JP-A-2- 304805 (JP, A) JP-A-60-1003038 (JP, A) JP-B-63-17722 (JP, B2)
Claims (1)
であり、前記酸素酸を構成する遷移金属の原子価は単一
原子価であり、かつ前記リチウム塩は化学的量論組成を
有するリチウムイオン伝導性固体電解質の製造方法であ
って、遷移金属と酸素による前記リチウム塩の融解物、
または前記リチウム塩を構成する原材料の融解物を、酸
素雰囲気中、10 5 ℃/秒以上でかつ10 7 ℃/秒以下の
速度で急冷することにより、電子伝導性を低減したこと
を特徴とするリチウムイオン伝導性固体電解質の製造方
法。1. A lithium salt of an oxyacid with a transition metal and oxygen, wherein the valence of the transition metal constituting the oxyacid is a single valence, and the lithium salt has a stoichiometric composition. A method for producing an ion-conductive solid electrolyte, comprising a melt of the lithium salt with a transition metal and oxygen,
Or melt of the raw materials constituting the lithium salt, in an oxygen atmosphere, 10 5 ° C. / sec or more and less 10 7 ° C. / sec
A method for producing a lithium ion conductive solid electrolyte , wherein electron conductivity is reduced by quenching at a rapid rate .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028559A JP3032309B2 (en) | 1991-02-22 | 1991-02-22 | Method for producing lithium ion conductive solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028559A JP3032309B2 (en) | 1991-02-22 | 1991-02-22 | Method for producing lithium ion conductive solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04267005A JPH04267005A (en) | 1992-09-22 |
JP3032309B2 true JP3032309B2 (en) | 2000-04-17 |
Family
ID=12252005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3028559A Expired - Fee Related JP3032309B2 (en) | 1991-02-22 | 1991-02-22 | Method for producing lithium ion conductive solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3032309B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0816455B2 (en) * | 1986-09-02 | 1996-02-21 | 三井造船株式会社 | Method for cooling a gas turbine combustor |
JPH0287415A (en) * | 1988-09-22 | 1990-03-28 | Japan Synthetic Rubber Co Ltd | Lithium ion electroconductive solid electrolytic sheet |
JPH02304805A (en) * | 1989-05-17 | 1990-12-18 | Cosmo Oil Co Ltd | Lithium-ion conductive solid-state electrolyte |
JPH0357053A (en) * | 1989-07-25 | 1991-03-12 | Nec Corp | Down load control system for communication processing device |
-
1991
- 1991-02-22 JP JP3028559A patent/JP3032309B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04267005A (en) | 1992-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0802575B1 (en) | A method for producing a lithium ion-conductive solid electrolyte | |
Hayashi et al. | High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4 | |
US5498494A (en) | Preparation of silver vanadium oxide cathodes using AG20 and V205 as starting materials | |
JPS6034495B2 (en) | Substituted lithium orthosilicate and solid electrolyte consisting of it | |
JPWO2007004590A1 (en) | All solid lithium battery | |
CN115917820A (en) | Solid electrolyte and solid electrolyte battery | |
CN110247109B (en) | Sulfide solid electrolyte and preparation method and application thereof | |
KR102369763B1 (en) | solid electrolyte | |
CN111247106B (en) | Lithium ion conductor precursor glass and lithium ion conductor | |
JP3032309B2 (en) | Method for producing lithium ion conductive solid electrolyte | |
Ungureanu et al. | Mixed conductivity of glasses in the P2O5-V2O5-Na2O system | |
JPH07142067A (en) | Cathode for electrochemical battery and its preparation and electrochemical battery | |
JPH04238815A (en) | Fluoride ion conductor and electrochemical element using the same | |
JPH04270124A (en) | Solid electrolyte and its production | |
JPH04255610A (en) | Solid electrolyte and manufacture thereof | |
JP2001319520A (en) | Lithium ion conductive solid electrolyte | |
US20240347762A1 (en) | Method of producing sulfide solid-state electrolyte | |
JPH04269461A (en) | Full-solid lithium secondary battery | |
JPH04272666A (en) | Fully solid electrochemical element | |
JPH04160011A (en) | Conductive solid electrolyte | |
Pershina et al. | Influence of Li3BO3 on the stability of Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass-ceramics with Li4Ti5O12 anode | |
CN113299998B (en) | Method for producing sulfide solid electrolyte | |
JPH04272667A (en) | Fully solid electrochemical element | |
EP4129914B1 (en) | Method for producing halide | |
WO2023162669A1 (en) | Lithium ion conductive solid electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |