JP3030419B2 - Non-destructive estimation method for toughness - Google Patents

Non-destructive estimation method for toughness

Info

Publication number
JP3030419B2
JP3030419B2 JP3287366A JP28736691A JP3030419B2 JP 3030419 B2 JP3030419 B2 JP 3030419B2 JP 3287366 A JP3287366 A JP 3287366A JP 28736691 A JP28736691 A JP 28736691A JP 3030419 B2 JP3030419 B2 JP 3030419B2
Authority
JP
Japan
Prior art keywords
toughness
quenching
hardness
temperature
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3287366A
Other languages
Japanese (ja)
Other versions
JPH04372856A (en
Inventor
則彦 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP3287366A priority Critical patent/JP3030419B2/en
Publication of JPH04372856A publication Critical patent/JPH04372856A/en
Priority to US08/110,925 priority patent/US5458703A/en
Application granted granted Critical
Publication of JP3030419B2 publication Critical patent/JP3030419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、金型やシャフト等の
材料の非破壊検査法に関するものであり、特にそれらの
材料の靭性を焼入冷却速度(CR)と硬度(H)及び焼
入温度(T)に基づき推定する非破壊評価法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection method for materials such as molds and shafts, and more particularly to a method for determining the toughness of such materials by quenching cooling rate (CR), hardness (H) and quenching. The present invention relates to a non-destructive evaluation method based on temperature (T).

【0002】[0002]

【従来の技術】熱処理後の金型やシャフト等の製品の品
質を保証すべき一つの特性として靭性がある。靭性と
は、脆性破壊に対する材料の強さをいう。脆性破壊とし
ては切欠脆性、焼もどし脆性、低温脆性破壊等が知られ
ている。従って、一般に材料の切欠脆性、焼もどし脆
性、低温脆性破壊に対する安全性を保証するためにはこ
れらに対する靭性を評価する必要がある。ここで靭性を
評価するパラメーターとしてはシャルピー衝撃値(kg
・m/cm)、アイゾット衝撃値(ft・lb)、吸
収エネルギー、シェルフエネルギー((upper)s
helf energy)、脆性遷移温度(エネルギー
遷移温度、破面遷移温度、15ft−lb遷移温度
等)、破壊靭性(平面ひずみ破壊靭性値、エネルギー開
放率、弾塑性破壊靭性値)等がある。例えば、金属材料
等を熱間加工するときに用いられる、いわゆる熱間金型
においては、近年その形状は大型化すると共に、使用環
境はますます苛酷化してきており、このような状況に対
処していくために、熱処理後の金型の品質保証(硬度と
靭性)の重要性が改めて見直されてきている。即ち、耐
摩耗性等向上のための硬度と割れ防止のための靭性が正
確に非破壊評価できれば、金型使用条件に応じて相反す
る両特性を最適な組み合わせで確保することが可能とな
り、金型の品質保証及び高寿命化を前進させることがで
きる。しかし、現在、硬度は測定されているものの、靭
性については非破壊評価する方法がなく、そのために金
型の大型化等にともなう焼入冷却速度の低下によって生
じた靭性不足を正確に把握できず、ときとして使用初期
に大きな割れを引き起こし問題となっている。
2. Description of the Related Art Toughness is one of the characteristics to guarantee the quality of products such as molds and shafts after heat treatment. Toughness refers to the strength of a material to brittle fracture. Notch embrittlement, temper embrittlement, low-temperature embrittlement, and the like are known as brittle fractures. Therefore, in general, it is necessary to evaluate the toughness of a material in order to guarantee the safety against notch embrittlement, temper embrittlement, and low-temperature brittle fracture. Here, as a parameter for evaluating toughness, a Charpy impact value (kg
M / cm 2 ), Izod impact value (ft · lb), absorbed energy, shelf energy ((upper) s
self-energy, brittle transition temperature (energy transition temperature, fracture surface transition temperature, 15 ft-lb transition temperature, etc.), fracture toughness (plane strain fracture toughness, energy release rate, elasto-plastic fracture toughness). For example, in the case of so-called hot dies used for hot working of metal materials and the like, their shapes have recently become larger and their use environment has become increasingly severe. Therefore, the importance of quality assurance (hardness and toughness) of the mold after heat treatment has been reconsidered. That is, if the hardness for improving abrasion resistance and the toughness for preventing cracking can be accurately non-destructively evaluated, it is possible to secure the opposing characteristics in an optimal combination according to the mold use conditions. Quality assurance and long life of the mold can be advanced. However, although hardness is currently measured, there is no method for non-destructive evaluation of toughness, and therefore, it is not possible to accurately grasp insufficient toughness caused by a decrease in quenching cooling rate due to enlargement of molds. In some cases, a large crack is caused in the early stage of use, which is a problem.

【0003】従って、このような問題を解決し、焼もど
し後の金型の品質を保証するためには、熱処理後の金型
の靭性を非破壊評価できる方法を確立する必要がある。
従来の靭性と熱処理に関する研究によれば、靭性(C
h)は焼もどし硬度(H)と焼入冷却速度(CR)及び
焼入温度(T)に影響されることが定性的に知られてい
る。従って、これらの諸量(Ch,H,T,CR)の関
係を予め求めておき、硬度と焼入温度及び焼入冷却速度
を測定することにより、これらの関係式を用いることに
よって、靭性を非破壊的に推定できることになる。本発
明の発明者らは、0.4C−5Cr−Mo−V熱間金型
鋼の標準焼入温度(1020℃)からの焼入焼もどし材
を用いて、硬度(H)と靭性(シャルピー衝撃値(C
h))及び焼入冷却速度(CR)として焼入温度から5
00℃までの冷却時間(半冷時間(Ht))との関係を
調べて、これらの関係式[(Ch=f(Ht,H)]よ
り靭性(Ch)を非破壊的に推定する方法を報告してい
る(「鉄と鋼] 75年(1989) 第5号 p.
833−p.840)。この報告によれば、Chは式
(1)の様な形で表わされる。
Therefore, in order to solve such a problem and to assure the quality of the mold after tempering, it is necessary to establish a method capable of non-destructively evaluating the toughness of the mold after heat treatment.
According to conventional studies on toughness and heat treatment, toughness (C
It is qualitatively known that h) is affected by tempering hardness (H), quenching cooling rate (CR) and quenching temperature (T). Therefore, the relationship between these various quantities (Ch, H, T, CR) is determined in advance, and the hardness, the quenching temperature and the quenching cooling rate are measured. It can be estimated non-destructively. The inventors of the present invention use a quenched and tempered material of a 0.4C-5Cr-Mo-V hot die steel from a standard quenching temperature (1020 ° C) to obtain hardness (H) and toughness (Charpy impact strength). Value (C
h)) and quenching temperature (CR)
A method of non-destructively estimating the toughness (Ch) from the relational expression [(Ch = f (Ht, H)] by examining the relationship with the cooling time (half-cooling time (Ht)) up to 00 ° C. (“Iron and Steel”, 1975 (1989) No. 5, p.
833-p. 840). According to this report, Ch is represented in the form as in equation (1).

【0004】 Ch=δ+γ・H(kg・m/cm)・・・・・(1) δ=17.3−2.56・log(Ht) γ=−0.266+0.0249・log(Ht) 但し、HRC43≦H≦HRC51,T=1020℃ したがって、Htを求めるとともに、Hを硬度試験にて
求めることにより、焼入温度1020℃より焼入焼もど
された材料のChを非破壊評価することができる。
Ch = δ 1 + γ 1 · H (kg · m / cm 2 ) (1) δ 1 = 17.3−2.56 · log (Ht) γ 1 = −0.266 + 0. 0249 · log (Ht) where HRC43 ≦ H ≦ HRC51, T = 1020 ° C. Therefore, Ht is determined and H is determined by a hardness test to obtain the Ch of the material quenched and tempered from a quenching temperature of 1020 ° C. Can be non-destructively evaluated.

【0005】[0005]

【発明の解決しようとする課題】以上の本発明者らの報
告は、用いた材料の標準焼入温度1020℃に焼入温度
(T)を設定した場合の結果である。しかし、実際の金
型の焼入温度は、通常、靭性を優先する場合は1020
℃より低め(1015℃程度まで)に、又、強度を優先
する場合は1020℃より高め(1035℃程度まで)
に設定される。焼入温度が異なると焼もどし硬度(H)
が同じでもミクロ組織は異なる。一方、焼入冷却速度
(CR)はミクロ組織に対する影響が大きく、靭性(C
h)はミクロ組織に敏感である。従って、焼入温度が異
なった場合、CRやChは異なると推定される。故に、
前述の本発明者等の報告で求めたT=1020℃の場合
のCh−Ht−Hの関係式を用いて、焼入温度が102
0℃と異なる場合のChを正確に推定することはできな
いと思われる。したがって、この発明は金型等の実用焼
入温度範囲の種々の温度から焼入れられた材料の靭性を
正確に推定できる非破壊評価法を提供することを目的と
する。
The above-mentioned report by the present inventors is the result when the quenching temperature (T) is set to the standard quenching temperature of the used material of 1020 ° C. However, the actual quenching temperature of the mold is usually 1020 when toughness is prioritized.
Lower than ℃ (up to about 1015 ℃), if higher strength is higher than 1020 ℃ (up to about 1035 ℃)
Is set to Tempering hardness (H) at different quenching temperatures
, But the microstructures are different. On the other hand, the quenching cooling rate (CR) has a large effect on the microstructure, and the toughness (C
h) is sensitive to microstructure. Therefore, when the quenching temperature differs, CR and Ch are estimated to be different. Therefore,
Using the Ch-Ht-H relational expression for T = 1020 ° C. obtained in the report of the present inventors, the quenching temperature was 102
It seems that Ch at a temperature different from 0 ° C. cannot be accurately estimated. Accordingly, an object of the present invention is to provide a nondestructive evaluation method capable of accurately estimating the toughness of a material quenched from various temperatures within a practical quenching temperature range of a mold or the like.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
めに、まず、本発明者は焼入温度が実用範囲でのCh−
CR−H−Tの総合的な関係を明らかにすべく、実用焼
入温度より広い範囲におけるこれら諸量の関係を調べ、
次に、この範囲において、ChをCR,H,Tの関数の
形(Ch=f(CR,H,T))で定量的かつ総合的に
表わすことによりChを非破壊評価する方法を検討し
た。その結果、実用焼入温度範囲において、焼入温度を
測定し焼入冷却速度を求めるとともに硬度試験により硬
度を測定することにより、Chを総合的に非破壊的に推
定できることを知見し、本発明をなすにいたった。
Means for Solving the Problems In order to achieve the above objects, the present inventor first sets the quenching temperature within the practical range.
In order to clarify the overall relationship of CR-HT, the relationship between these various quantities in a range wider than the practical quenching temperature was examined.
Next, in this range, a method for non-destructively evaluating Ch by expressing Ch quantitatively and comprehensively in the form of a function of CR, H, T (Ch = f (CR, H, T)) was studied. . As a result, in the practical quenching temperature range, it was found that Ch can be estimated non-destructively comprehensively by measuring the quenching temperature, obtaining the quenching cooling rate, and measuring the hardness by a hardness test. I came to

【0007】すなわちこの発明によれば、焼入冷却速度
(CR)と焼もどし硬度(H)及び焼入温度(T)をパ
ラメーターとし、これら諸量の関数〔Ch=f(CR、
H、T)〕として、材料の靭性(Ch)を推定する靭性
の非破壊推定方法が提供される。
That is, according to the present invention, the quenching cooling rate (CR), the tempering hardness (H) and the quenching temperature (T) are used as parameters, and a function of these quantities [Ch = f (CR,
H, T)], a non-destructive method for estimating toughness (Ch) of a material is provided.

【0008】この発明は主として熱処理後の材料の切欠
靭性破壊に対する靭性の評価を行うものである。しか
し、この発明を適用することにより室温未満の低温下で
の材料の低温脆性破壊や、不純物(D,S,As,Sb
等)に起因する焼もどし脆性破壊に対する靭性の評価を
行うことも検討され得る。
The present invention mainly evaluates the toughness of a material after heat treatment against notch toughness fracture. However, by applying the present invention, low-temperature brittle fracture of a material at a low temperature lower than room temperature, and impurities (D, S, As, Sb
Etc.) may be considered to evaluate the toughness against temper brittle fracture caused by the above.

【0009】ここで、この発明が適用される材料として
は、SKD5,SKD6,SKD61,SKD62,S
KD7,SKD8等があり、熱処理組織の状態が焼入冷
却速度によって影響を及ぼされる材料が対象となる。さ
らにこの発明が適用される場合の焼入温度(T)は特に
限定されるものではなく、材料のオーステナイト化状態
を評価することを目的として、例えば炉内雰囲気温度を
熱電対で測定する等の手段により測定される。しかし、
さらに正確にオーステナイト化状態を把握するためには
焼入温度のみならず保持時間も含めた焼入パラメーター
を用いるのが好ましい。
Here, the materials to which the present invention is applied include SKD5, SKD6, SKD61, SKD62, and SKD5.
There are KD7, SKD8, etc., which are materials whose heat treatment structure is affected by the quenching cooling rate. Further, the quenching temperature (T) in the case where the present invention is applied is not particularly limited. For the purpose of evaluating the austenitized state of the material, for example, measuring the atmosphere temperature in a furnace with a thermocouple, or the like. Measured by means. But,
In order to more accurately grasp the austenitized state, it is preferable to use quenching parameters including not only the quenching temperature but also the holding time.

【0010】加えてこの発明を適用するにあたっての硬
度の測定方法は特に限定されるものではなく、「ブリネ
ル硬さ」、「ビッカース硬さ」、「ヌープ硬さ」、「ロ
ックエル硬さ」、「ショア硬さ」、「エコーチップ硬
さ」等種々の硬さパラメーターを用いることができる。
また対象材料の硬さは特に限定されるものではなく、例
えば熱間金型の場合は、ロックエル硬さでHRC43か
らHRC51程度となるが、冷間金型やハイスの場合は
HRC70程度となる場合もあり、一方、ローター材等
ではHRC43より低くなる場合もあり、いずれにして
もそれら全ての場合にこの発明を適用することができ
る。
[0010] In addition, the method of measuring the hardness in applying the present invention is not particularly limited, and includes "Brinell hardness", "Vickers hardness", "Knoop hardness", "Rockell hardness", Various hardness parameters such as "Shore hardness" and "Echo tip hardness" can be used.
The hardness of the target material is not particularly limited. For example, in the case of a hot mold, the Rockwell hardness is about HRC43 to HRC51, but in the case of a cold mold or HSS, it is about HRC70. In some cases, the rotor material or the like may be lower than the HRC 43, and in any case, the present invention can be applied to all cases.

【0011】この発明に用いられる諸量の総合的な関係
式Ch=f(CR、H、T)は、この発明が適用されて
材料特性が評価される材料毎に決定される。ここでこの
発明に用いられる焼入冷却速度(CR)の特定方法は特
に限られるものではないが、例えば焼入温度から500
℃までの冷却時間すなわち半冷時間(Ht)を用いるこ
とができる。また、その他には、焼入温度から300℃
までの冷却時間等を用いることができる。
The overall relational expression Ch = f (CR, H, T) of various quantities used in the present invention is determined for each material to which the present invention is applied and whose material properties are evaluated. Here, the method of specifying the quenching cooling rate (CR) used in the present invention is not particularly limited.
A cooling time to ℃, ie a half-cooling time (Ht) can be used. In addition, 300 ° C from the quenching temperature
For example, a cooling time up to the above can be used.

【0012】更にその冷却速度の測定方法も特に限られ
るものではなく、例えば、熱電対にて実測して求めても
良いし、有限要素法等により数値解析して求めても良
い。また、バルクハウゼンノイズ(以下BHNと略して
記す)パラメーターを用い前記冷却速度を推定する様に
しても良い。かかるバルクハウゼンノイズパラメーター
としては磁化過程で発生するBHNの全出力電圧を基礎
とするパラメーター(全BHN出力電圧の二乗和(V
p)やBHN出力電圧の平均出力電圧である実効値(R
MS)等)や、BHNの瞬間出力電圧を基礎とするパラ
メーター(瞬間出力電圧の最大値(Vh)等)及びBH
Nを周波数解析して得られるパラメーター(スペクトラ
ム)等を用いることができる。
Further, the method of measuring the cooling rate is not particularly limited. For example, the cooling rate may be obtained by actual measurement using a thermocouple, or may be obtained by numerical analysis using a finite element method or the like. Further, the cooling rate may be estimated using Barkhausen noise (hereinafter abbreviated as BHN) parameter. As such a Barkhausen noise parameter, a parameter based on the total output voltage of BHN generated in the magnetization process (sum of squares of all BHN output voltages (V
p) or the effective value (R) which is the average output voltage of the BHN output voltage.
MS)), parameters based on the instantaneous output voltage of BHN (maximum instantaneous output voltage (Vh), etc.) and BHN
A parameter (spectrum) or the like obtained by frequency analysis of N can be used.

【0013】[0013]

【作用】表1に示す化学成分の0.4C−5Cr−Mo
−V鋼につき、T=990,1050℃±5.0℃で3
0min保持後、何れも半冷時間を3,15,45及び
100minとして焼入れ、硬度約HRC39からHR
C52に焼きもどされた材料のChとHの関係をシャル
ピー試験により求めた結果を図1、2に示す。なお、C
hはシャルピー試験片5個の衝撃値の平均値であり、そ
のバラツキを図中エラーバーで示す。
The chemical composition of 0.4C-5Cr-Mo shown in Table 1
-T = 990,1050 ° C ± 5.0 ° C for -V steel, 3
After holding for 0 min, quenching was carried out with a half-cooling time of 3, 15, 45 and 100 min.
1 and 2 show the results of the relationship between Ch and H of the material tempered to C52 determined by the Charpy test. Note that C
h is the average value of the impact values of the five Charpy test pieces, and the variation is indicated by an error bar in the figure.

【0014】[0014]

【表1】 [Table 1]

【0015】図1、2に示されるように、ChはT=9
90,1050℃いずれの場合もHt及びHに依存して
おり、いずれのHにおいてもHtの増加とともにChは
低下また、いずれのHtにおいてもHの増加とともにC
hは低下している。このようなCh−H−Htの定性的
な関係は本発明者らが既に報告している(「鉄と鋼」第
75年(1989) 第5号 p.833−p.84
0)T=1020℃の場合のこれら諸量の関係と同様で
ある。しかし、図3に示されるようにChはTにも依存
しており、Ch−H−Tの定量的な関係はTが異なると
異なる。従って、T=1020℃以外の実際の焼入温度
範囲でHtを定量的に求めるためにはTを含むCh−H
−Ht−Tの総合的かつ定量的な関係を求める必要があ
る。
As shown in FIGS. 1 and 2, Ch is T = 9.
In both cases of 90 and 1050 ° C., it depends on Ht and H, and in any H, Ch decreases with an increase in Ht, and in any Ht, C decreases with an increase in H.
h is decreasing. Such a qualitative relationship of Ch-H-Ht has already been reported by the present inventors ("Iron and Steel", 75th (1989) No. 5, p. 833-p. 84).
0) The same applies to the relationship between these quantities when T = 1020 ° C. However, as shown in FIG. 3, Ch also depends on T, and the quantitative relationship of Ch-HT differs when T differs. Therefore, in order to quantitatively determine Ht in the actual quenching temperature range other than T = 1020 ° C., Ch-H containing T must be used.
It is necessary to find a comprehensive and quantitative relationship of -Ht-T.

【0016】そこで、この発明では表1に示す材料を用
いて焼入温度、焼入冷却速度及び焼もどし硬度の異なる
種々の試験片を準備し、シャルピー試験によりChを測
定し、Ht,Tを一定にしたときのCh−Hの関係(図
1,2)及びHt,Hを一定にしたときのCh−Tの関
係(図3)及びH,Tを一定にしたときのCh−Htの
関係(図4)に着目して、実際の焼入温度範囲より広い
範囲でのCh−Ht−H−Tの総合的かつ定量的関係を
検討した。その結果、この発明によればCh−Ht−H
−Tの関係をこれら諸量の関数の形(Ch=f(Ht,
H,T))で総合的かつ定量的に表すことができること
がわかった。従って、焼入温度(T)と焼もどし硬度
(H)及び焼入冷却速度(CR)を求め、これら諸量を
この関数に代入することによって、靭性を推定できる。
このようにこの発明によれば靭性(Ch)をT,H,H
tの関数の形で表すことにより実際の焼入温度範囲の種
々の焼入温度におけるCh−Ht−Hの関係式を個別に
求めることなしに、材料の靭性(Ch)を定量的かつ総
合的に非破壊推定することができる。
Therefore, in the present invention, various test pieces having different quenching temperatures, quenching cooling rates and tempering hardness are prepared using the materials shown in Table 1, and Ch is measured by a Charpy test to determine Ht and T. Ch-H relationship when constant (FIGS. 1 and 2), Ch-T relationship when Ht and H are constant (FIG. 3), and Ch-Ht relationship when H and T are constant. Focusing on (FIG. 4), the comprehensive and quantitative relationship of Ch-Ht-HT over a wider range than the actual quenching temperature range was examined. As a result, according to the present invention, Ch-Ht-H
−T is defined as the function of these quantities (Ch = f (Ht,
H, T)) can be expressed comprehensively and quantitatively. Therefore, the toughness can be estimated by obtaining the quenching temperature (T), the tempering hardness (H), and the quenching cooling rate (CR), and substituting these variables into this function.
Thus, according to the present invention, the toughness (Ch) is changed to T, H, H
By expressing in the form of a function of t, the toughness (Ch) of the material can be quantitatively and comprehensively determined without individually determining the Ch-Ht-H relational expression at various quenching temperatures in the actual quenching temperature range. Can be estimated non-destructively.

【0017】[0017]

【実施例】次にこの発明の一実施例について説明する。1 供試材 供試材は、0.4C−5Cr−Mo−V鋼で、表1に示
される化学成分のものを用いた。この化学成分の0.4
C−5Cr−Mo−V鋼をアーク式電気炉で溶製し、鍛
錬成形比6以上に熱間成形した後、860℃で焼なまし
処理した。この試験片を、中心と隅角との中間位置か
ら、鍛伸方向に採取し、この発明の実施に供した。2 試験片の形状と熱処理 シャルピー試験片を次のように準備した。寸法は10m
m×10mm×55mmで、ノッチは2mm深さのUノ
ッチ(R1mm)である。
Next, an embodiment of the present invention will be described. 1 Test material The test material was a 0.4C-5Cr-Mo-V steel having a chemical composition shown in Table 1. 0.4 of this chemical component
C-5Cr-Mo-V steel was melted in an electric arc furnace, hot-formed to a forging ratio of 6 or more, and then annealed at 860 ° C. This test piece was sampled in the forging direction from a position intermediate between the center and the corner, and was used in the practice of the present invention. 2 Shape of test piece and heat-treated Charpy test piece were prepared as follows. Dimension is 10m
The notch is a U notch (R1 mm) having a size of mx 10 mm x 55 mm and a depth of 2 mm.

【0018】試験片の熱処理としては、実際に行われて
いる金型の熱処理温度を考慮しT=960、990、1
020、1050℃、1080℃に30min保持して
オーステナイト化処理を行なった後、Htを、Ht=
3、15、45、110の四段階に選びプログラムコン
トロールによって等速冷却し、その後2回焼もどしを行
なった。
As the heat treatment of the test piece, T = 960, 990, 1
After performing the austenitizing treatment while maintaining the temperature at 020, 1050 ° C., and 1080 ° C. for 30 minutes, Ht was changed to Ht =
It was selected from four stages of 3, 15, 45, and 110, cooled at a constant speed by program control, and then tempered twice.

【0019】3.靭性(Ch:シャルピー衝撃値)の推
次に、シャルピー試験を実施し、Ch−Ht−H−Tの
関係を求めた。この結果、これまでに明らかになってい
たT=1020℃の特別な場合のCh−Ht−Hの関係
を式(5)に示すようにTを含む関数の形(Ch=f
(Ht−H,T))で総合的かつ定量的に表すことがで
きた。
[0019] 3. Estimation of toughness (Ch: Charpy impact value)
Constant then performed Charpy test to determine the relationship between the Ch-Ht-H-T. As a result, the relationship of Ch-Ht-H in the special case of T = 1020 ° C., which has been clarified so far, is expressed by a function including T (Ch = f
(Ht-H, T)).

【0020】この関係式を求めるにあたっては、まずC
hとHとの関係が図1、2に示すような一次式の関係に
あることに着目し、両者の関係を式(5)に示す一次式
とし、その係数(δ、γ)を検討した。かかる係数
(δ、γ)の検討にあたっては、Chとlog(H
t)の関係が図4の一次式の関係にあることに着目し、
それぞれの係数(C,D)、(C,D)を検討
した。また、(C,D)、(C,D)の係数の
算出にあたっては、ChとTとの関係がおおむね図3の
様なΔT(実際に行われた焼入温度(1020℃)と標
準焼入温度とのずれ)の二次式の関係にあることに着目
して検討した。
In obtaining this relational expression, first, C
Focusing on the fact that the relationship between h and H is a linear expression as shown in FIGS. 1 and 2, the relationship between the two is represented by a linear expression shown in Expression (5), and the coefficients (δ 2 , γ 2 ) are investigated. In examining such coefficients (δ 2 , γ 2 ), Ch and log (H
Paying attention to the fact that the relationship of t) is a linear relationship of FIG.
The respective coefficients (C 0 , D 0 ) and (C 1 , D 1 ) were examined. In calculating the coefficients of (C 0 , D 0 ) and (C 1 , D 1 ), the relationship between Ch and T is substantially the same as ΔT shown in FIG. 3 (the actual quenching temperature (1020 ° C.)). ) And the difference between the standard quenching temperature) and the quadratic equation.

【0021】 Ch=δ+γ・H(kg・m/cm)・・・・・(5) δ=C+D・log(Ht) C=16.6−0.377・(T−1020)−5.21・10−5・(T −1020) =−2.14−0.0157・(T−102)−1.29・10−5・( T−1020) γ=C+D・log(Ht) C=−0.252+4.67・10−4・(T−1020) D=0.0171+4.20・10−4・(T−1020) 但し、HRC43≦H≦HRC51,990℃≦T≦1050℃Ch = δ2+ Γ2・ H (kg ・ m / cm2) ... (5) δ2= C0+ D0・ Log (Ht) C0= 16.6-0.377 · (T-1020)-5.21 · 10-5・ (T-1020)2  D0= −2.14-0.0157 · (T−102) −1.29 · 10-5・ (T-1020)2  γ2= C1+ D1・ Log (Ht) C1= −0.252 + 4.67 · 10-4・ (T-1020) D1= 0.0171 + 4.20 · 10-4・ (T-1020) However, HRC43 ≦ H ≦ HRC51,990 ° C ≦ T ≦ 1050 ° C

【0022】種々の熱処理を実施した材料を準備し、硬
度試験により硬度(H)を求め、焼入温度(T)を炉内
雰囲気温度より求め、焼入冷却速度(Ht)を熱電対で
求め、これら諸量(Ht,H,T)を式(5)に代入し
てすることによって非破壊的に求めたChの推定値(C
h)と実際にシャルピー試験で求めたChの実測値(C
h)とを比較した結果を図5に示す。図5に示されるよ
うに計算値と実験値とは、おおむね一致している。した
がって、硬度(H)と焼入温度(T)を測定するととも
に、焼入冷却速度(Ht)を求め、これらの諸量を式
(5)に代入することにより、金型の通常焼入温度範囲
(1015〜1035℃)において、Chを総合的かつ
定量的に非破壊評価することができた。なお、この実施
例は室温でのシャルピー衝撃値(Ch)についての結果
であるが、室温以上550℃迄の場合でもCh−Ht−
H−Tの関係式はこの実施例とは異なる形で成立し、そ
の場合でもこの発明により靭性を非破壊評価することが
できる。
Materials subjected to various heat treatments are prepared, hardness (H) is determined by a hardness test, quenching temperature (T) is determined from furnace atmosphere temperature, and quenching cooling rate (Ht) is determined by a thermocouple. The non-destructive estimation value of Ch (Ct) obtained by substituting these quantities (Ht, H, T) into equation (5)
h) and the actual measured value of Ch (C
h) is shown in FIG. As shown in FIG. 5, the calculated values and the experimental values are almost the same. Therefore, the hardness (H) and the quenching temperature (T) are measured, the quenching cooling rate (Ht) is determined, and these variables are substituted into the equation (5) to obtain the normal quenching temperature of the mold. In the range (1015 to 1035 ° C), Ch was able to be comprehensively and quantitatively subjected to nondestructive evaluation. In addition, this example is a result of the Charpy impact value (Ch) at room temperature.
The relational expression of HT is established in a form different from that of this embodiment. Even in such a case, the toughness can be evaluated nondestructively by the present invention.

【0023】[0023]

【効果】以上のようにこの発明の靭性の非破壊推定方法
によれば、靭性(Ch)と焼入温度(T)、焼入冷却速
度(CR)及び硬度(H)との関係をCh=f(CR,
H,T)という関数の形で総合的かつ定量的に表し、こ
の関係式にこれら諸量(CR,H,T)を代入すること
により靭性を非破壊評価するようにしたので種々の焼入
温度におけるCR,Hと靭性(Ch)の関係を個別に調
べる必要がなく、工業的な適用が容易にできるという優
れた効果が奏される。特にこの発明によれば、実際に行
われる金型の焼入温度範囲で靭性を焼入温度の如何にか
かわらず正確に非破壊評価することができるという利点
がある。
As described above, according to the non-destructive estimation method of toughness of the present invention, the relationship among toughness (Ch), quenching temperature (T), quenching cooling rate (CR) and hardness (H) is expressed as Ch = f (CR,
H, T) in a comprehensive and quantitative manner, and by substituting these various quantities (CR, H, T) into this relational expression, non-destructive evaluation of toughness was made. There is no need to individually examine the relationship between CR, H and toughness (Ch) at temperature, and an excellent effect that industrial application can be easily achieved is achieved. In particular, according to the present invention, there is an advantage that the toughness can be accurately non-destructively evaluated in the range of the quenching temperature of the mold actually performed irrespective of the quenching temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 焼入温度T=990℃におけるシャルピー衝
撃値(Ch)と硬度(H)との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a Charpy impact value (Ch) and a hardness (H) at a quenching temperature T = 990 ° C.

【図2】 焼入温度T=1050℃におけるシャルピー
衝撃値(Ch)と硬度(H)との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a Charpy impact value (Ch) and a hardness (H) at a quenching temperature T = 1050 ° C.

【図3】 シャルピー衝撃値(Ch)と焼入温度(T)
との関係を示す図である。
FIG. 3 Charpy impact value (Ch) and quenching temperature (T)
FIG.

【図4】 シャルピー衝撃値(Ch)と半冷時間(H
t)との関係を示す図である。
FIG. 4 Charpy impact value (Ch) and half-cooling time (H
It is a figure which shows the relationship with t).

【図5】 この発明を実施して得られた靭性の非破壊推
定式に、焼入冷却速度(Ht)、焼入温度(T)及び硬
度(H)を代入し逆算して非破壊的に求めたシャルピー
衝撃値の推定値(Ch)と破壊試験により求めた測定値
(Ch)とを比較した結果を示す図である。
FIG. 5 Non-destructively calculates the non-destructive quenching rate (Ht), quenching temperature (T) and hardness (H) by substituting the quenching cooling rate (Ht), the quenching temperature (T) and the hardness (H) into the toughness non-destructive estimation formula obtained by implementing the present invention. It is a figure which shows the result of having compared the estimated value (Ch) of the Charpy impact value calculated | required, and the measured value (Ch) calculated | required by the destructive test.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼入冷却速度(CR)と焼もどし硬度
(H)及び焼入温度(T)をパラメーターとし、これら
諸量の関数〔Ch=f(CR、H、T)〕として、材料
の靭性(Ch)を推定することを特徴とする靭性の非破
壊推定方法。
1. A quenching cooling rate (CR), a tempering hardness (H), and a quenching temperature (T) are used as parameters, and a material [Ch = f (CR, H, T)] is used as a function of these quantities. Non-destructive estimation method for toughness, characterized by estimating toughness (Ch) of steel.
JP3287366A 1991-06-22 1991-06-22 Non-destructive estimation method for toughness Expired - Fee Related JP3030419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3287366A JP3030419B2 (en) 1991-06-22 1991-06-22 Non-destructive estimation method for toughness
US08/110,925 US5458703A (en) 1991-06-22 1993-08-24 Tool steel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287366A JP3030419B2 (en) 1991-06-22 1991-06-22 Non-destructive estimation method for toughness

Publications (2)

Publication Number Publication Date
JPH04372856A JPH04372856A (en) 1992-12-25
JP3030419B2 true JP3030419B2 (en) 2000-04-10

Family

ID=17716434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287366A Expired - Fee Related JP3030419B2 (en) 1991-06-22 1991-06-22 Non-destructive estimation method for toughness

Country Status (1)

Country Link
JP (1) JP3030419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024533B (en) * 2019-12-06 2022-09-02 阳江十八子刀剪制品有限公司 Method for detecting steel material cut by knife

Also Published As

Publication number Publication date
JPH04372856A (en) 1992-12-25

Similar Documents

Publication Publication Date Title
US5458703A (en) Tool steel production method
Fu et al. Relation of hardness with FWHM and residual stress of GCr15 steel after shot peening
Leskovšek et al. The influence of austenitizing and tempering temperature on the hardness and fracture toughness of hot-worked H11 tool steel
Cao et al. On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model
Tartaglia et al. A comparison of mechanical properties and hydrogen embrittlement resistance of austempered vs quenched and tempered 4340 steel
Lan et al. Serrated flow and dynamic strain aging in Fe-Mn-C TWIP steel
Koppula et al. Improving the mechanical properties of AISI 2205 duplex stainless steel by cryogenic treatment process
Caballero et al. Time-temperature-transformation diagram within the bainitic temperature range in a medium carbon steel
JP3030419B2 (en) Non-destructive estimation method for toughness
Nam et al. Evaluation of fracture appearance transition temperature to forged 3Cr–1Mo–0.25 V steel using ultrasonic characteristics
JP3149225B2 (en) Non-destructive evaluation method of toughness using Barkhausen noise
Hirose et al. X-ray fractographic approach to fracture toughness of AISI 4340 steel
Wise et al. Influence of short austenitizing times on the fracture behavior of a microalloyed automotive spring steel
Hoffmann et al. In situ characterization of deformation behavior of austenitic high manganese steels
Telejko et al. The investigation of hardenability of low alloy structural cast steel
Park et al. The effects of alloying elements on thermal fatigue and thermal shock resistance of the HSLA cast steels
Sharma et al. Studies on effect of percentage of carbon on the tensile & compressive strength of structural steel
RI et al. Study and Control of Properties and Behaviour of Al–Mg–Si Alloys by Application of Statistical Design of Experiments
Athavale et al. On a modified approach of measuring quench severity and its application
JPH1010119A (en) Remaining-life evaluating method for low alloy steel
Park et al. Effects of manganese, chromium, and molybdenum on the isothermal transformation of austenite in eutectoid steels
Fonstein et al. Phase transformation behavior during continuous cooling and isothermal holding of aluminum and silicon bearing TRIP steels
Saxena et al. Effect of laser surface treatment on fatigue crack growth resistance in an Fe Mn Al austenitic steel
Major et al. The Sterophotogrammetrical reconstruction of crack topography in Cr-Al-Mo nitrided steel and determination of condition at the crack front of sub-surface iniateted crack
JP3149224B2 (en) Non-destructive estimation method of quenching cooling rate using Barkhausen noise

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees