JP3030311B2 - Simple measurement method of boron concentration of boron-added diamond - Google Patents

Simple measurement method of boron concentration of boron-added diamond

Info

Publication number
JP3030311B2
JP3030311B2 JP10260705A JP26070598A JP3030311B2 JP 3030311 B2 JP3030311 B2 JP 3030311B2 JP 10260705 A JP10260705 A JP 10260705A JP 26070598 A JP26070598 A JP 26070598A JP 3030311 B2 JP3030311 B2 JP 3030311B2
Authority
JP
Japan
Prior art keywords
boron
sample
diamond
concentration
boron concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10260705A
Other languages
Japanese (ja)
Other versions
JP2000088753A (en
Inventor
賢司 渡邉
浩一 牛澤
寿浩 安藤
久生 神田
洋一郎 佐藤
勲 坂口
美香 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10260705A priority Critical patent/JP3030311B2/en
Publication of JP2000088753A publication Critical patent/JP2000088753A/en
Application granted granted Critical
Publication of JP3030311B2 publication Critical patent/JP3030311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、ダイヤモ
ンドに不純物として添加されたホウ素濃度を、試料にま
ったく損傷を与えることなしに非接触で簡易に測定する
ことのできるホウ素添加ダイヤモンドのホウ素濃度の簡
易測定方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the boron concentration of boron-added diamond, which can easily measure the concentration of boron added as an impurity to diamond without contacting the sample without any damage. It relates to a simple measurement method.

【0002】[0002]

【従来の技術】ホウ素はダイヤモンドにおいて最も浅い
アクセプター準位を形成する不純物として知られてお
り、ダイヤモンド半導体デバイスを作製するときにp型
半導体を形成するために必要不可欠な不純物である。こ
のような場合のホウ素不純物の濃度を知る方法として
は、従来では、たとえば、(イ)二次イオン質量分析法
や(ロ)フーリエ変換赤外分光法などが知られている。
2. Description of the Related Art Boron is known as an impurity which forms the shallowest acceptor level in diamond, and is an essential impurity for forming a p-type semiconductor when manufacturing a diamond semiconductor device. As a method of knowing the concentration of boron impurities in such a case, for example, (a) secondary ion mass spectrometry, (b) Fourier transform infrared spectroscopy, and the like are conventionally known.

【0003】(イ)二次イオン質量分析法(SIMS)
を用いたホウ素濃度の評価方法は、このうちの、たとえ
ば文献としてダイヤモンド・アンド・リレーテッド・マ
テリアルズ(Diamond and Related Materials)第7巻、
1998年、p.88−p.95に開示されているよう
に、具体的には、試料に酸素イオンなどを加速照射し試
料表面を削りながら、削られた原子分子種を質量分析装
置を用いて分析を行う方法である。
(A) Secondary ion mass spectrometry (SIMS)
The method for evaluating the boron concentration using is described in, for example, Volume 7 of Diamond and Related Materials as a document,
1998, p. 88-p. As disclosed in US Pat. No. 95, specifically, a method in which a sample is analyzed by accelerated irradiation of oxygen ions or the like to a sample to grind the surface of the sample using a mass spectrometer.

【0004】一方、(ロ)フーリエ変換赤外分光法は、
たとえば文献として、ジャーナル・オブ・フイジックス
(Journal of Physics)第四巻、1971年、p.178
9・p.1800に開示されているように、具体的に
は、フーリエ変換赤外分光装置により得られた赤外吸収
スペクトルのうち0.348eVの吸収ピーク強度によ
り試料のホウ素濃度を推定する方法である。
On the other hand, (b) Fourier transform infrared spectroscopy
For example, as a document, Journal of Physics
(Journal of Physics), Vol. 4, 1971, p. 178
9 · p. As disclosed in 1800, specifically, this is a method of estimating the boron concentration of a sample from an absorption peak intensity of 0.348 eV in an infrared absorption spectrum obtained by a Fourier transform infrared spectrometer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、以上の
とおりの従来の方法のうち、(イ)二次イオン質量分析
法は本来破壊測定法であり、試料に損傷を与えずに不純
物測定をすることができず、試料の再評価性、再利用性
の点において限界がある。また、高真空系を必要とする
大掛かりな装置が必要で試料の交換をはじめとして装置
維持管理にすくなからぬ手間がかかるという欠点があ
る。また、(ロ)フーリエ変換赤外分光法は、非破壊、
非接触で簡便な評価方法ではあるが、多量にホウ素をド
ープした場合には測定が不可能であることが多い。ま
た、空間分解能もせいぜい50μm2 程度であるのに加
え、透過配置で測定するので、たとえばシリコン基板上
に成長したダイヤモンド微小単結晶粒子(直径約5μm
程度)のスペクトルを測定することは、空間分解能が足
りない点および基板の影響が避けられない点でほとんど
不可能であるという欠点がある。 そこでこの出願の発
明は、以上のとおりの従来技術の欠点を解消し、試料に
まったく損傷を与えずに非接触で、簡易に測定すること
ができ、しかもその空間分解能が可視波長オーダー程度
に優れたものである、光計測による、ホウ素添加ダイヤ
モンドのホウ素濃度の新しい簡易測定方法を提供するこ
とを課題としている。
However, among the conventional methods described above, (a) secondary ion mass spectrometry is essentially a destructive measurement method, and it is necessary to measure impurities without damaging the sample. And there is a limit in the re-evaluation and reusability of the sample. In addition, there is a disadvantage that a large-scale apparatus that requires a high vacuum system is required, and the maintenance and management of the apparatus, including the replacement of the sample, requires a lot of trouble. In addition, (b) Fourier transform infrared spectroscopy is non-destructive,
Although it is a non-contact and simple evaluation method, measurement is often impossible when a large amount of boron is doped. Further, since the spatial resolution is at most about 50 μm 2 and the measurement is performed in the transmission configuration, for example, diamond single-crystal particles (diameter of about 5 μm
Measuring the spectrum of degree is almost impossible because of the lack of spatial resolution and the unavoidable influence of the substrate. Therefore, the invention of this application solves the above-mentioned drawbacks of the prior art, and can measure easily without contacting the sample without any damage, and has a spatial resolution excellent in the order of visible wavelength. It is an object of the present invention to provide a new simple method for measuring the boron concentration of boron-added diamond by optical measurement.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、ホウ素不純物混入によりラマンシフトエネルギー
500cm-1から1400cm-1に生じるラマン散乱ス
ペクトルバンドは、ホウ素濃度と相関があることから、
この出願の発明はこの性質を利用して、ラマン散乱スペ
クトル形状の濃度既知試料のスペクトル形状との対比に
よる形状近似の判定からダイヤモンド試料中のホウ素濃
度を推定する。
In order to solve the above problems BRIEF SUMMARY OF THE INVENTION Since the Raman scattering spectrum band generated 1400 cm -1 from the Raman shift energy 500 cm -1, which is correlated to the boron concentration by boron impurity contamination,
The invention of this application utilizes this property to estimate the boron concentration in the diamond sample from the determination of the shape approximation by comparing the Raman scattering spectrum shape with the spectrum shape of the sample of known concentration.

【0007】この発明の方法によると、比較的弱い入射
光強度、たとえば1mW程度、により生じたラマン散乱
光信号を観測することで試料のホウ素濃度を測定できる
ので、試料にまったく損傷を与えない。また、入射光と
してアルゴンイオンレーザ(514.5nm)などの光
源を用いると直径約1μm程度に光源を絞ることができ
るので空間分解能として1μmを得ることが容易に可能
である。
According to the method of the present invention, the boron concentration of the sample can be measured by observing the Raman scattered light signal generated by the relatively weak incident light intensity, for example, about 1 mW, so that the sample is not damaged at all. When a light source such as an argon ion laser (514.5 nm) is used as the incident light, the light source can be narrowed down to about 1 μm in diameter, so that a spatial resolution of 1 μm can be easily obtained.

【0008】[0008]

【発明の実施の形態】この出願の発明は以上のとおりの
特徴をもつものであるが、以下に実施例を示し、さらに
この発明の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above. Examples will be shown below, and embodiments of the invention will be described.

【0009】[0009]

【実施例】実施例を、図面を参照して説明する。説明に
用いる各図は例示であって、この発明を理解できる程度
に各構成成分の寸法、形状および配置関係を概略的に示
してあるにすぎない。従って、以下の説明にこの発明が
限定されることはない。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. The drawings used in the description are exemplifications, and merely schematically show the dimensions, shapes, and arrangements of the components so that the present invention can be understood. Therefore, the present invention is not limited to the following description.

【0010】まず図1は、この発明の方法のための測定
装置の構成例を示したものである。たとえば、入射光光
源としてアルゴンイオンレーザ(波長514.5nm)
(1)を用いている。入射光レーザビームを集光レンズ
(2)にて当該試料(3)に照射する。試料(3)から
の散乱光はふたたび集光レンズ系(2)にて集められ分
光器(4)に入射され、光検出器(5)にて検出される
コンピュータ(6)にて処理される。このとき集光レン
ズ系(2)に顕微鏡レンズなどを使用した共焦点光学系
をもちいることにより空間分解能約1μmを得ることが
できる。
FIG. 1 shows an example of the configuration of a measuring apparatus for the method of the present invention. For example, as an incident light source, an argon ion laser (wavelength 514.5 nm)
(1) is used. The sample (3) is irradiated with the incident light laser beam by the condenser lens (2). The scattered light from the sample (3) is collected again by the condenser lens system (2), enters the spectroscope (4), and is processed by the computer (6) detected by the photodetector (5). . At this time, a spatial resolution of about 1 μm can be obtained by using a confocal optical system using a microscope lens or the like for the condenser lens system (2).

【0011】測定装置の構成は、この図1に限られるこ
となしに、様々な態様として可能とされる。図2は、以
上の図1の構成のような測定装置を用いて測定したホウ
素濃度の異なるいくつかの試料のラマン散乱スペクトル
の一例を示したものである。図中にアルファベットと数
字で示したホウ素濃度は二次イオン質量分析法により慎
重に較正した値である。ホウ素濃度が濃くなるにつれて
ホウ素濃度の関数として500cm-1から1400cm
-1、より具体的には500cm-1から1200cm-1
近傍に分布するラマン散乱スペクトル形状が変化する。
この図2を用いることにより、たとえば図3に示したラ
マン散乱スペクトルを示す未知の試料のホウ素濃度を推
定することができる。すなわち、図3に例示した試料の
場合は、500−1200cm-1のスペクトルの形が図
2の(a)に類似するので、その濃度は7×1018cm
-3程度であると推定できる。
The configuration of the measuring device is not limited to FIG. 1 but can be variously modified. FIG. 2 shows an example of Raman scattering spectra of several samples having different boron concentrations measured using the measuring apparatus having the configuration of FIG. 1 described above. The boron concentrations indicated by letters and numbers in the figure are values calibrated carefully by secondary ion mass spectrometry. 500 cm -1 to 1400 cm as a function of boron concentration as boron concentration increases
-1 , more specifically, the shape of the Raman scattering spectrum distributed in the vicinity of 500 cm -1 to 1200 cm -1 changes.
By using FIG. 2, for example, the boron concentration of an unknown sample showing the Raman scattering spectrum shown in FIG. 3 can be estimated. That is, in the case of the sample illustrated in FIG. 3, since the shape of the spectrum at 500 to 1200 cm -1 is similar to that of FIG. 2A, the concentration is 7 × 10 18 cm -1 .
It can be estimated to be about -3 .

【0012】このスペクトル形状の類似、すなわち形状
近似の判定は目視によってもよいし、あるいはたとえば
前記図1の装置のコンピュータ(6)による自動判定シ
ステムとすることで、この発明の方法により簡便なもの
となる。
The determination of the similarity of the spectral shapes, that is, the shape approximation, may be made by visual inspection, or, for example, by an automatic determination system using the computer (6) of the apparatus shown in FIG. Becomes

【0013】[0013]

【発明の効果】上述した説明から明らかなように、この
出願の発明によれば、半導体素材としてのダイヤモンド
試料のホウ素不純物量を測定する、あらゆる場面におい
て非破壊非接触かつ空間分解能約1μm3 測定が容易に
行い得る。
As is clear from the above description, according to the invention of this application, the amount of boron impurities in a diamond sample as a semiconductor material is measured in a non-destructive non-contact and spatial resolution of about 1 μm 3 in every scene. Can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例としての測定装置の一例を示
した構成図である。
FIG. 1 is a configuration diagram showing an example of a measuring device as an embodiment of the present invention.

【図2】この発明の実施例としてのダイヤモンド中のホ
ウ素濃度とラマン散乱との関係を例示した図である。図
中の数字はそれぞれの試料のホウ素濃度を示す。
FIG. 2 is a diagram illustrating the relationship between the concentration of boron in diamond and Raman scattering as an example of the present invention. The numbers in the figure indicate the boron concentration of each sample.

【図3】この発明の実施例としてのホウ素濃度が未知の
ダイヤモンド試料のラマン散乱スペクトルの一例を示し
た図である。
FIG. 3 is a diagram showing an example of a Raman scattering spectrum of a diamond sample whose boron concentration is unknown as an example of the present invention.

【符号の説明】 1 アルゴンイオンレーザ 2 集光レンズ系 3 当該試料 4 分光器 5 光検出器 6 コンピュータ[Description of Signs] 1 Argon ion laser 2 Condensing lens system 3 Sample concerned 4 Spectrometer 5 Photodetector 6 Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 寿浩 茨城県つくば市並木1丁目1番 科学技 術庁無機材質研究所内 (72)発明者 神田 久生 茨城県つくば市並木1丁目1番 科学技 術庁無機材質研究所内 (72)発明者 佐藤 洋一郎 茨城県つくば市並木1丁目1番 科学技 術庁無機材質研究所内 (72)発明者 坂口 勲 茨城県つくば市並木1丁目1番 科学技 術庁無機材質研究所内 (72)発明者 蒲生 美香 茨城県つくば市並木1丁目1番 科学技 術庁無機材質研究所内 (56)参考文献 特開 平1−284741(JP,A) 特開 平8−330624(JP,A) 特開 平10−38807(JP,A) 特開 平4−127039(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/62 - 21/74 G01J 3/44 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiro Ando 1-1-1, Namiki, Tsukuba, Ibaraki Prefectural Science and Technology Agency Inorganic Materials Research Laboratory (72) Inventor Hisao Kanda 1-1-1, Namiki, Tsukuba, Ibaraki Pref. Inorganic Materials Research Laboratories of the Agency of Japan (72) Inventor Yoichiro Sato 1-1-1, Namiki, Tsukuba, Ibaraki Prefecture Inorganic Materials Research Laboratory of the National Science and Technology Agency (72) Inside the Materials Research Laboratory (72) Inventor Mika Gamo 1-1, Namiki, Tsukuba, Ibaraki Pref. Inorganic Materials Research Laboratory, Science and Technology Agency (56) References JP-A-1-2844741 (JP, A) JP-A-8-330624 ( JP, A) JP-A-10-38807 (JP, A) JP-A-4-127039 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/62-21/74 G01J 3/44 ICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ホウ素が不純物として添加されたダイヤ
モンドのホウ素濃度を簡易に測定する方法であって、ホ
ウ素不純物混入によりラマンシフトエネルギー500c
-1から1400cm-1に生じるラマン散乱スペクトル
バンドのスペクトル形状の濃度既知試料のスペクトル形
状との形状近似の判定により試料にまったく損傷を与え
ず非接触でホウ素濃度を測定することを特徴とするホウ
素添加ダイヤモンドのホウ素濃度の簡易測定方法。
1. A method for easily measuring the boron concentration of diamond to which boron is added as an impurity, wherein the Raman shift energy is 500 c
It is characterized by measuring the boron concentration in a non-contact manner without damaging the sample by judging the shape approximation of the spectral shape of the Raman scattering spectrum band generated from m -1 to 1400 cm -1 with the spectrum shape of the known sample. Simple measurement method of boron concentration of boron-added diamond.
JP10260705A 1998-09-14 1998-09-14 Simple measurement method of boron concentration of boron-added diamond Expired - Lifetime JP3030311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260705A JP3030311B2 (en) 1998-09-14 1998-09-14 Simple measurement method of boron concentration of boron-added diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260705A JP3030311B2 (en) 1998-09-14 1998-09-14 Simple measurement method of boron concentration of boron-added diamond

Publications (2)

Publication Number Publication Date
JP2000088753A JP2000088753A (en) 2000-03-31
JP3030311B2 true JP3030311B2 (en) 2000-04-10

Family

ID=17351633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260705A Expired - Lifetime JP3030311B2 (en) 1998-09-14 1998-09-14 Simple measurement method of boron concentration of boron-added diamond

Country Status (1)

Country Link
JP (1) JP3030311B2 (en)

Also Published As

Publication number Publication date
JP2000088753A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3318397B2 (en) Particle measurement device
US9170203B2 (en) Enhancement of raman scattering
US9945791B2 (en) Methods of spectroscopic analysis of diamonds and apparatuses thereof
JPH05281141A (en) Method and apparatus for photoluminescence measurement in crystal
Vandenabeele et al. Some ideas on the definition of Raman spectroscopic detection limits for the analysis of art and archaeological objects
US9261464B2 (en) Applying edge-on photoluminescence to measure bulk impurities of semiconductor materials
Wan et al. Quantitative evaluation of probe response functions for Raman and fluorescence bands of single-crystalline and polycrystalline Al2O3
Desiderio et al. Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors
JP3030311B2 (en) Simple measurement method of boron concentration of boron-added diamond
JP2009145148A (en) Internal stress measuring method by raman scattering and raman spectrometer
US5578833A (en) Analyzer
Lo et al. Sub-micron, non-contact, super-resolution infrared microspectroscopy for microelectronics contamination and failure analyses
US7532325B2 (en) Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques
US5841532A (en) Method for evaluating oxygen concentrating in semiconductor silicon single crystal
Rao et al. Measurement of Mechanical Forces Acting on Optically Trapped Dielectric Spheres<? format?> Induced by Surface-Enhanced Raman Scattering
Dhamelincourt Laser Raman and fluorescence microprobing techniques
Eleftheriades et al. Label‐Free Spontaneous Raman Sensing in Photonic Crystal Fibers with Nanomolar Sensitivity
Stöger-Pollach et al. Using Cerenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence
Watanabe et al. Raman scattering and photoluminescence tomography
Tatarov et al. LITES: Laboratory Investigations of Atmospheric Aerosol Composition by Raman-Scattering and Fluorescence Spectra
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
JPS5941533B2 (en) Oxide film evaluation method
Paul Comparative study of CV3 carbonaceous chondrites Allende and Bali using micro-Raman spectroscopy and SEM/EDS
Boudebs et al. Thermal lens Z-scan measurements for the determination of fluorescence quantum yields: theoretical and experimental uncertainties for low and high quantum yields
Sheina Determination of the chemical composition of materials by Raman spectroscopy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term