JP3029505B2 - How to blow gas into molten metal - Google Patents

How to blow gas into molten metal

Info

Publication number
JP3029505B2
JP3029505B2 JP4170986A JP17098692A JP3029505B2 JP 3029505 B2 JP3029505 B2 JP 3029505B2 JP 4170986 A JP4170986 A JP 4170986A JP 17098692 A JP17098692 A JP 17098692A JP 3029505 B2 JP3029505 B2 JP 3029505B2
Authority
JP
Japan
Prior art keywords
gas
molten metal
temperature
container
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4170986A
Other languages
Japanese (ja)
Other versions
JPH0610072A (en
Inventor
宏彦 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4170986A priority Critical patent/JP3029505B2/en
Publication of JPH0610072A publication Critical patent/JPH0610072A/en
Application granted granted Critical
Publication of JP3029505B2 publication Critical patent/JP3029505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属精錬における溶湯
へのガス吹き込み方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for blowing gas into molten metal in metal refining.

【0002】[0002]

【従来の技術】液中にガスを吹き込み、液の攪拌を行う
ことによって、液内の温度、濃度の均一化や反応の促進
を図る技術は多くの工業分野で行われている。金属精錬
においては、例えば、溶融還元炉における溶鉄とスラグ
の接触促進、転炉における溶鋼の攪拌、RH脱ガスにお
ける上昇管中の気泡の分散、取鍋精錬における脱リン、
脱硫剤等の攪拌など広い範囲にわたって利用されてい
る。この場合のガス温度は溶湯温度より著しく低いもの
である。
2. Description of the Related Art There are many industrial fields in which a gas is blown into a liquid to stir the liquid to make the temperature and concentration in the liquid uniform and to promote the reaction. In metal refining, for example, promotion of contact between molten iron and slag in a smelting reduction furnace, stirring of molten steel in a converter, dispersion of bubbles in a riser in RH degassing, dephosphorization in a ladle refining,
It is used over a wide range such as stirring a desulfurizing agent. The gas temperature in this case is significantly lower than the melt temperature.

【0003】[0003]

【発明が解決しようとする課題】しかし、容器の側壁に
羽口を設け、水平または斜めにガスを吹き込み、溶湯の
反応促進や温度、濃度の均一化を図る精錬容器では、吹
き込みガスが溶湯内で水平方向へ分散され難く、また、
溶湯からの熱伝達による急激な膨張のために、気泡は側
壁近くを上昇し、容器内張の耐火物の損耗などを招いて
いた。
However, in a smelting vessel in which a tuyere is provided on the side wall of the vessel and gas is blown horizontally or obliquely to promote the reaction of the molten metal and to make the temperature and concentration uniform, the blown gas is in the molten metal. Is difficult to be dispersed in the horizontal direction, and
Due to rapid expansion due to heat transfer from the molten metal, the bubbles rise near the side wall, causing wear of the refractory inside the container.

【0004】本発明は、上記の問題点を解決するために
なされたもので、容器側壁から溶湯温度以上の高温ガス
を容器中心方向に高速で溶湯に吹き込むことによって、
溶湯内へ気泡を分散させ、溶湯の攪拌効率を向上させ、
かつ容器内張の耐火物の損耗を軽減する溶湯へのガス吹
き込み方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a high-temperature gas having a temperature equal to or higher than the temperature of a molten metal is blown into the molten metal at a high speed from a side wall of the container toward the center of the container.
Disperse air bubbles in the molten metal, improve the stirring efficiency of the molten metal,
It is another object of the present invention to provide a method for blowing gas into a molten metal, which reduces wear of a refractory inside a container.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、容器の
側壁にノズルを設け、このノズルから溶湯温度以上の
温ガスを容器中心方向にマッハ 1.0以上の速度で容器内
の溶湯に吹き込む溶湯へのガス吹き込み方法である。
The gist of the present invention is that a nozzle is provided on the side wall of a container, and a high-temperature gas at a temperature higher than the temperature of the molten metal is supplied from the nozzle toward the center of the container at a speed of at least Mach 1.0 in the container. This is a method of blowing gas into the molten metal.

【0006】[0006]

【作用】発明者は、溶湯内に吹き込まれたガスの気泡の
挙動について調査を行った。この種の技術は、実際に溶
湯、例えば溶鉄を用いて実験を行うことは気泡の挙動の
観察、流速の計測等の手段が全くないことから常温の
水、水銀などの液体と常温のガスを用いた実験で評価せ
ざるを得ないのが実情である。
The present inventors have investigated the behavior of gas bubbles blown into the molten metal. In this type of technology, there is no means for observing the behavior of air bubbles, measuring the flow velocity, etc. The fact is that it is necessary to evaluate the experiment used.

【0007】そこで、発明者は常温の水に常温の空気、
低温の窒素ガスを吹き込んで気泡の挙動を調査した。実
験装置を図3に示す。コンプレッサーまたはボンベ1か
らの圧縮されたガスはレギュレーター2、質量流量計3
を通って冷却器4へ送られ、冷却器4では常圧の液体窒
素8で冷却される。冷却器4には冷却器4を迂回するバ
イパスが設けてある。冷却器4またはバイパスを通った
ガスは、容器5側面に設けられたノズル6から常温の水
に吹き込まれる。常温の空気はバイパスを、低温の窒素
ガスは冷却器4を通した。容器5は内径 300mm、高さ 3
50mm、ノズルから水面までは 200mmで、ノズル6の内径
は 1mmである。
Therefore, the inventor has added room temperature air to room temperature water,
The behavior of bubbles was investigated by blowing low-temperature nitrogen gas. The experimental device is shown in FIG. The compressed gas from the compressor or cylinder 1 is supplied to the regulator 2, the mass flow meter 3
To the cooler 4, where it is cooled by liquid nitrogen 8 at normal pressure. The cooler 4 is provided with a bypass that bypasses the cooler 4. The gas that has passed through the cooler 4 or the bypass is blown into normal-temperature water from a nozzle 6 provided on the side of the container 5. Normal temperature air passed through the bypass, and low temperature nitrogen gas passed through the cooler 4. Container 5 has an inner diameter of 300 mm and a height of 3
50 mm, the distance from the nozzle to the water surface is 200 mm, and the inner diameter of the nozzle 6 is 1 mm.

【0008】ガスホールドアップ(液体中に占める気泡
の体積割合の平均値)は電気探針法で測定した。ガスホ
ールドアップは1針の電気探針プロープ7の出力信号を
サンプリング周波数5kHzでAD変換したデータから求め
た。実験条件を表1に示す。
[0008] The gas hold-up (the average value of the volume ratio of bubbles in the liquid) was measured by an electric probe method. The gas hold-up was obtained from the data obtained by AD-converting the output signal of one electric probe 7 at a sampling frequency of 5 kHz. Table 1 shows the experimental conditions.

【0009】[0009]

【表1】 [Table 1]

【0010】図1は容器側壁から半径方向の距離(R-r)
ごとの縦断面のガスホールドアップを示し、図2は容器
側壁から半径方向(横断面)のガスホールドアップを求
め、横断面ごとの最大値をプロットしたもので、気泡上
昇の軌跡を示したものである。
FIG. 1 shows the radial distance (Rr) from the side wall of the container.
Fig. 2 shows the gas hold-up in the vertical section of each container, and Fig. 2 shows the gas hold-up in the radial direction (transverse section) from the container side wall, and plots the maximum value for each cross-section, showing the trajectory of bubble rise. It is.

【0011】図1の○印はガスの温度が水温と同じ(常
温)であるため、気泡はノズル先端から遠くまで分散し
ており、このときのガスのノズル出口のマッハ数は1.11
である。一方、□印はガスの温度は常温であるが、ガス
の質量流量が少ないため、気泡の分散が悪く、このとき
のガスのノズル出口のマッハ数は0.59である。△印はガ
スの質量流量は○印に同じであるが、温度が低いため、
気泡の分散が悪く、このときのガスのノズル出口のマッ
ハ数は0.85である。すなわち、△印は同体積流量の常温
ガス吹き込み(□印)と同じような挙動をしている。
In FIG. 1, the circle indicates that the gas temperature is the same as the water temperature (normal temperature), so that the bubbles are dispersed far from the tip of the nozzle. At this time, the Mach number of the gas at the nozzle outlet is 1.11.
It is. On the other hand, the open squares indicate that the gas temperature is room temperature, but the mass flow rate of the gas is small, so that the dispersion of bubbles is poor, and the Mach number at the nozzle exit of the gas at this time is 0.59. The △ mark shows the same gas mass flow rate as the ○ mark, but because of the low temperature,
The dispersion of bubbles is poor, and the Mach number at the gas nozzle outlet at this time is 0.85. That is, the mark “△” behaves in the same manner as the normal-temperature gas blowing with the same volume flow rate (marked with “□”).

【0012】図2は前述のよに、気泡上昇の軌跡を示し
たものであるが、温度の高いガス(○印)はノズル先端
から遠くまで気泡が分散して上昇することがわかる。ま
た、温度の低いガス(△印)は気泡の分散も少なく、上
昇中に気泡が容器側壁に逆戻りしている。
FIG. 2 shows the trajectory of the bubble rise as described above. It can be seen that the gas with a high temperature (marked by ○) has bubbles dispersed far from the tip of the nozzle and rises. In addition, the low-temperature gas (marked with “△”) has a small dispersion of bubbles, and the bubbles return to the side wall of the container during the rise.

【0013】したがって、上記の調査結果から本発明の
制約条件は、容器の側壁に設けたノズルから溶湯に容器
中心方向に吹き込むガスの温度は高温とし、溶湯温度以
とする。また、吹き込み速度はマッハ1.0 以上とす
る。
[0013] Thus, the constraints of the present invention from the above findings, the temperature of the gas blown from the nozzle provided in the side wall of the container to the container center direction in the melt is a high temperature, the above melt temperature. Also, the blowing speed should be at least Mach 1.0.

【0014】以上の制約条件でガスを溶湯に吹き込むこ
とによって、溶湯内へ気泡を分散させ、溶湯の攪拌効率
を向上させ、かつ容器内張の耐火物の損耗を軽減するこ
とができる。
By blowing gas into the molten metal under the above-described restrictions, bubbles can be dispersed in the molten metal, the efficiency of stirring the molten metal can be improved, and the wear of the refractory inside the container can be reduced.

【0015】[0015]

【実施例】以下に、本発明の実施例について述べる。水
平吹き羽口を有する取鍋精錬炉において、熱交換器で16
00℃の高温に加熱したArガスをマッハ 1.2で溶鋼に吹き
込み溶鋼の攪拌を行った。その結果、Arガスの気泡は羽
口前方に分散され、炉壁近くを上昇することもなく、内
張耐火物の損耗が軽減された。また、気泡が分散して上
昇するため、攪拌効率が向上し、短時間で溶鋼温度、溶
鋼成分を均一化することができた。なお、吹き込みガス
の加熱には、熱伝導のよい羽口を用い、溶湯からの熱を
利用することも可能である。
Embodiments of the present invention will be described below. In a ladle refining furnace with a horizontal tuyere, 16
Ar gas heated to a high temperature of 00 ° C. was blown into the molten steel at Mach 1.2 to stir the molten steel. As a result, the bubbles of the Ar gas were dispersed in front of the tuyere, and did not rise near the furnace wall, thereby reducing the wear of the refractory lining. In addition, since the bubbles are dispersed and rise, the stirring efficiency is improved, and the molten steel temperature and the molten steel component can be made uniform in a short time. In addition, for the heating of the blown gas, a tuyere having good heat conductivity can be used, and heat from the molten metal can be used.

【0016】[0016]

【発明の効果】本発明は、容器の側壁にノズルを設け、
このノズルから溶湯温度以上の高温ガスを容器中心方向
にマッハ 1.0以上の速度で容器内の溶湯に吹き込む溶湯
へのガス吹き込み方法であって、本発明法によれば、溶
湯内へ気泡を分散させ、溶湯の攪拌効率を向上させ、か
つ容器内張の耐火物の損耗を軽減することができる。
According to the present invention, a nozzle is provided on a side wall of a container,
The hot gas above the molten metal temperature from the nozzle a gas blowing method of the melt blown into molten metal in the container vessel center direction Mach 1.0 or faster, according to the present invention method, by dispersing the gas bubbles into the melt In addition, the stirring efficiency of the molten metal can be improved, and the wear of the refractory inside the container can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】容器側壁から半径方向の距離ごとのガスホール
ドアップを示す図である。
FIG. 1 is a diagram showing gas hold-up for each radial distance from a container side wall.

【図2】気泡上昇の軌跡を示す図である。FIG. 2 is a diagram showing a trajectory of bubble rise.

【図3】実験装置を示す図である。FIG. 3 is a view showing an experimental apparatus.

【符号の説明】[Explanation of symbols]

1…コンプレッサーまたはボンベ、2…レギュレータ
ー、3…質量流量計、4…冷却器、5…容器、6…ノズ
ル、7…電気探針プロープ、8…液体窒素。
DESCRIPTION OF SYMBOLS 1 ... Compressor or cylinder, 2 ... Regulator, 3 ... Mass flowmeter, 4 ... Cooler, 5 ... Container, 6 ... Nozzle, 7 ... Electric probe probe, 8 ... Liquid nitrogen.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器の側壁にノズルを設け、このノズル
から溶湯温度以上の高温ガスを容器中心方向にマッハ
1.0以上の速度で容器内の溶湯に吹き込むことを特徴と
する溶湯へのガス吹き込み方法。
1. A nozzle is provided on a side wall of a container, and a hot gas having a temperature equal to or higher than the temperature of a molten metal is supplied from the nozzle toward a center of the container.
A method for injecting gas into a molten metal, wherein the gas is injected into the molten metal at a speed of 1.0 or more.
JP4170986A 1992-06-29 1992-06-29 How to blow gas into molten metal Expired - Fee Related JP3029505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170986A JP3029505B2 (en) 1992-06-29 1992-06-29 How to blow gas into molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170986A JP3029505B2 (en) 1992-06-29 1992-06-29 How to blow gas into molten metal

Publications (2)

Publication Number Publication Date
JPH0610072A JPH0610072A (en) 1994-01-18
JP3029505B2 true JP3029505B2 (en) 2000-04-04

Family

ID=15915011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170986A Expired - Fee Related JP3029505B2 (en) 1992-06-29 1992-06-29 How to blow gas into molten metal

Country Status (1)

Country Link
JP (1) JP3029505B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031820A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Vacuum-degassing treating method for molten steel
CN101838453B (en) * 2010-06-13 2012-09-05 北京中拓机械有限责任公司 Thin-wall thermoplastic resin product and production method

Also Published As

Publication number Publication date
JPH0610072A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
US3488044A (en) Apparatus for refining metal
US5340379A (en) Jet flow device for injecting gas into molten metal and process
GB2192446A (en) A method of bottom blowing operation of a steel making electric furnace
JP3029505B2 (en) How to blow gas into molten metal
US3820768A (en) Steel conversion method and apparatus
US3521872A (en) Apparatus for controlling the temperature of metal lances in molten baths
Ballal et al. A water model study of bottom-blown oxygen steelmaking processes
US3601381A (en) Gas sampling device
JPS6160903B2 (en)
US4761178A (en) Process for heating molten steel contained in a ladle
Pehlke Steelmaking—the jet age
JP3752051B2 (en) Scrap melting method and scrap melting lance
Smith et al. Hot model studies of the basic oxygen process
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
US3309195A (en) Method of delivering oxygen to basic oxygen furnaces, and oxygen lances therefor
HUANG Mushroom Formation by Water Model for Double-Tuyere in a Bottom-Blowing Process
Trentini et al. Technology and Metallurgy of the OLP Process
US3907549A (en) Method of refining in improved Q-BOP vessel
JPS61143508A (en) Detection of water leakage of oxygen blowing lance
JPH07268430A (en) Immersion single pipe lance for pretreatment of molten iron
Kurata Water Model Experiment of the Refractory‐Lined Lance to Inject Oxygen into a Molten Iron Bath
SU500239A1 (en) Lance for deep metal purging
JPS6152310A (en) Method for adding powder to molten iron or molten steel
SU467113A1 (en) Tuyere
JP3496490B2 (en) Method of blowing hydrocarbon gas into molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

LAPS Cancellation because of no payment of annual fees