JP3028075B2 - Driving method of plasma display panel - Google Patents

Driving method of plasma display panel

Info

Publication number
JP3028075B2
JP3028075B2 JP9141697A JP14169797A JP3028075B2 JP 3028075 B2 JP3028075 B2 JP 3028075B2 JP 9141697 A JP9141697 A JP 9141697A JP 14169797 A JP14169797 A JP 14169797A JP 3028075 B2 JP3028075 B2 JP 3028075B2
Authority
JP
Japan
Prior art keywords
pulse
electrode
voltage
time
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9141697A
Other languages
Japanese (ja)
Other versions
JPH10333635A (en
Inventor
充芳 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15298114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3028075(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9141697A priority Critical patent/JP3028075B2/en
Priority to US09/083,118 priority patent/US6426732B1/en
Priority to KR1019980019732A priority patent/KR100283493B1/en
Publication of JPH10333635A publication Critical patent/JPH10333635A/en
Application granted granted Critical
Publication of JP3028075B2 publication Critical patent/JP3028075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2942Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge with special waveforms to increase luminous efficiency

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大面積化が容易な
フラットディスプレイとして、パーソナルコンピュー
タ、ワークステーションの表示出力用、壁掛けテレビ等
に用いられる交流放電型プラズマディスプレイパネル
(AC−PDP)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC discharge type plasma display panel (AC-PDP) used as a flat display which can be easily increased in area and used for display output of a personal computer, a work station, and a wall-mounted television.

【0002】[0002]

【従来の技術】PDPには動作方式上の分類により、電
極が放電ガスに露出し電圧が印加された期間だけ放電を
起こすDC型と、電極が誘電体に覆われ放電ガスへ露出
せずに放電を起こすAC型がある。AC型では上記誘電
体の電荷蓄積作用により、放電セル自体にメモリ機能が
ある。
2. Description of the Related Art There are two types of PDPs: a DC type in which an electrode is exposed to a discharge gas and discharges only during a period when a voltage is applied, and a PDP in which an electrode is covered with a dielectric and is not exposed to a discharge gas. There is an AC type that causes a discharge. In the AC type, the discharge cell itself has a memory function due to the charge storage action of the dielectric.

【0003】一般的なAC−PDPの構成を、PDPの
断面の一例を示す図8を参照して説明する。PDPはガ
ラスより成る前面基板10と、同じくガラスより成る背
面基板11とに挟まれた空間内に以下の構造を形成して
いる。
A configuration of a general AC-PDP will be described with reference to FIG. 8 showing an example of a cross section of a PDP. The PDP has the following structure in a space between a front substrate 10 made of glass and a rear substrate 11 also made of glass.

【0004】前面基板10上には、所定の間隔を隔て
て、走査電極12と共通電極13が形成される。走査電
極12と共通電極13は絶縁層15aに覆われ、さらに
絶縁層15a上には、絶縁層15aを放電から保護する
MgO等より成る保護層16が形成される。
On the front substrate 10, a scanning electrode 12 and a common electrode 13 are formed at a predetermined interval. The scanning electrode 12 and the common electrode 13 are covered with an insulating layer 15a, and a protective layer 16 made of MgO or the like for protecting the insulating layer 15a from discharge is formed on the insulating layer 15a.

【0005】背面基板11上には、走査電極12および
共通電極13と直交するようにデータ電極19が形成さ
れる。データ電極19は絶縁層15bに覆われ、絶縁層
15b上には、放電により発生する紫外線を可視光に変
換し表示を行うための蛍光体18が塗布される。
A data electrode 19 is formed on the back substrate 11 so as to be orthogonal to the scanning electrode 12 and the common electrode 13. The data electrode 19 is covered with an insulating layer 15b, and a phosphor 18 for converting ultraviolet light generated by electric discharge into visible light to perform display is applied on the insulating layer 15b.

【0006】前面基板10上の絶縁層15aと背面基板
11上の絶縁層15bの間には、放電空間20を確保す
ると共に画素を区切る隔壁17が形成される。
[0006] Between the insulating layer 15a on the front substrate 10 and the insulating layer 15b on the rear substrate 11, a partition wall 17 which secures a discharge space 20 and separates pixels is formed.

【0007】また、放電空間20内にはHe、Ne、X
e等の混合ガスが放電ガスとして封入される。
In the discharge space 20, He, Ne, X
A mixed gas such as e is sealed as a discharge gas.

【0008】図9は図8のカラーPDPにおける電極配
置を示す図である。
FIG. 9 is a diagram showing an electrode arrangement in the color PDP of FIG.

【0009】図9において、カラーPDPの電極構造は
m本の走査電極Si (i=1,2,・・・,m)が行方
向に形成され、n本のデータ電極Dj (j=1,2,・
・・,n)が列方向に形成され、その交点に1画素が形
成されている。共通電極Ciは走査電極Si と対であ
り、行方向に形成され、両者は平行している。図8の蛍
光体18を画素毎にRGBの三色に塗り分ければ、カラ
ー表示のPDPが得られる。
In FIG. 9, the electrode structure of a color PDP is such that m scanning electrodes S i (i = 1, 2,..., M) are formed in the row direction and n data electrodes D j (j = 1,2, ...
.., n) are formed in the column direction, and one pixel is formed at the intersection. The common electrode C i is paired with the scanning electrode S i and is formed in the row direction, and both are parallel. If the phosphor 18 shown in FIG. 8 is separately applied to each of the three colors of RGB for each pixel, a color display PDP can be obtained.

【0010】従来のPDPの駆動方法について図10を
参照して説明する。図10は図9のカラーPDPの各電
極に印加する駆動電圧波形を示したタイミングチャート
である。
A conventional PDP driving method will be described with reference to FIG. FIG. 10 is a timing chart showing a drive voltage waveform applied to each electrode of the color PDP of FIG.

【0011】まず、全ての走査電極12に消去パルス2
1を印加し、図に示す時間以前に発光していた画素を消
去し全画素を消去状態にする。
First, erase pulse 2 is applied to all scan electrodes 12.
1 is applied to erase pixels emitting light before the time shown in FIG.

【0012】次に、共通電極13に予備放電パルス22
を印加して、全ての画素を強制的に放電発光させ、さら
に走査電極12に予備放電消去パルス23を印加し、全
画素の予備放電を消去する。この予備放電により、後の
書き込み放電が容易になる。
Next, a preliminary discharge pulse 22 is applied to the common electrode 13.
Is applied to force all the pixels to discharge and emit light, and further, a preliminary discharge erasing pulse 23 is applied to the scan electrodes 12 to erase the preliminary discharge of all the pixels. This preliminary discharge facilitates subsequent write discharge.

【0013】予備放電消去後、走査電極S1 〜Sm にそ
れぞれタイミングをずらして走査パルス24を印加し、
走査パルス24を印加したタイミングに合わせてデータ
電極D1 〜Dn に、表示データに応じてデータパルス2
7を印加する。データパルス27の斜線は、表示データ
の有無に従い、データパルス27の有無が決定されてい
ることを示す。走査パルス24印加時に、データパルス
27が印加された画素では、走査電極12とデータ電極
19の間の放電空間20内で書き込み放電が発生する
が、走査パルス24印加時にデータパルス27が印加さ
れないと書き込み放電は生じない。
After erasing the preliminary discharge, a scan pulse 24 is applied to the scan electrodes S 1 to S m at different timings,
A data pulse 2 is applied to the data electrodes D 1 to D n in accordance with the display data in accordance with the timing at which the scanning pulse 24 is applied.
7 is applied. The oblique line of the data pulse 27 indicates that the presence or absence of the data pulse 27 is determined according to the presence or absence of the display data. In the pixel to which the data pulse 27 is applied when the scanning pulse 24 is applied, a writing discharge occurs in the discharge space 20 between the scanning electrode 12 and the data electrode 19, but if the data pulse 27 is not applied when the scanning pulse 24 is applied. No write discharge occurs.

【0014】書き込み放電が生じた画素では、走査電極
12上の絶縁層15aに壁電荷と呼ばれる正電荷が蓄積
する。このときデータ電極19上の誘電体層15bには
負の壁電荷が蓄積される。走査電極12上の絶縁体層1
5aに形成された正の壁電荷による正電位と、負極性で
あって、共通電極13に印加する第1番目の維持パルス
25の重畳により第1回目の維持放電が発生する。第1
回目の維持放電が生ずると共通電極13上の絶縁層15
aに正の壁電荷が、また走査電極12上の絶縁層15a
に負の壁電荷が蓄積される。この壁電荷による電位差
に、走査電極12に印加する2番目の維持パルス26が
重畳され、第2回目の維持放電が生ずる。このようにx
回目の維持放電により形成される壁電荷による電位差
と、x+1回目の維持パルスが重畳され、維持放電が持
続する。維持放電の持続回数により発光量が制御され
る。
In a pixel in which a write discharge has occurred, a positive charge called a wall charge is accumulated in the insulating layer 15 a on the scan electrode 12. At this time, negative wall charges are accumulated in the dielectric layer 15b on the data electrode 19. Insulator layer 1 on scan electrode 12
The first sustain discharge is generated by the superposition of the positive potential due to the positive wall charges formed in 5a and the first sustain pulse 25 applied to the common electrode 13 and having negative polarity. First
When the second sustain discharge occurs, the insulating layer 15 on the common electrode 13
a has a positive wall charge, and the insulating layer 15a on the scanning electrode 12
Negative wall charges are accumulated. The second sustain pulse 26 applied to the scan electrode 12 is superimposed on the potential difference due to the wall charges, and a second sustain discharge is generated. Thus x
The potential difference due to the wall charges formed by the second sustain discharge is superimposed on the (x + 1) th sustain pulse, and the sustain discharge is continued. The amount of light emission is controlled by the number of sustain discharges.

【0015】維持パルス25および維持パルス26の電
圧を、このパルス電圧単独では放電が発生しない程度に
予め調整しておくと、書き込み放電が発生しなかった画
素には、1番目の維持パルス25印加前に、壁電荷によ
る電位が無いため、第1番目の維持パルス25を印加し
ても第1回目の維持放電は発生せず、それ以降の維持放
電も発生しない。
If the voltages of the sustain pulse 25 and the sustain pulse 26 are adjusted in advance to such an extent that a discharge is not generated by the pulse voltage alone, the first sustain pulse 25 is applied to the pixel where no write discharge has occurred. Since there is no potential due to the wall charges before, even if the first sustain pulse 25 is applied, the first sustain discharge does not occur, and no subsequent sustain discharge occurs.

【0016】以上の説明で用いた、消去パルス21、予
備放電パルス22、予備放電消去パルス23、走査パル
ス24、維持パルス25、26、データパルス27の各
駆動パルスは、通常、図11(a)に示したような、立
ち下がり及び立ち上がり時間を1マイクロ秒以下とした
矩形パルスである。
The driving pulses of the erasing pulse 21, the pre-discharge pulse 22, the pre-discharge erasing pulse 23, the scanning pulse 24, the sustain pulses 25 and 26, and the data pulse 27 used in the above description are usually shown in FIG. ) Is a rectangular pulse having fall and rise times of 1 microsecond or less.

【0017】図11(a)の矩形パルスにより、カラー
PDPが放電を起こす場合、矩形パルスを印加した電極
には、図11(b)に示すような放電電流が流れる。放
電電流は、パルス印加から数百ナノ秒遅れて流れ始め、
さらに数百ナノ秒遅れてピークを持ち、その後数百ナノ
秒持続して終了する。
When a color PDP causes a discharge by the rectangular pulse shown in FIG. 11A, a discharge current as shown in FIG. 11B flows through the electrode to which the rectangular pulse is applied. The discharge current begins to flow several hundred nanoseconds after the pulse application,
It has a peak with a delay of several hundred nanoseconds, and thereafter ends for several hundred nanoseconds.

【0018】前記パルス印加から放電電流流れ始めまで
の時間、およびピークまでの時間、およびその後の持続
時間は、放電ガスの組成、誘電体層の組成、誘電体層の
厚さ、電極の組成、電極の大きさ、放電空間の大きさな
どPDPの構造に依存する。
The time from the application of the pulse to the start of the discharge current flow, the time to the peak, and the duration thereafter are determined by the composition of the discharge gas, the composition of the dielectric layer, the thickness of the dielectric layer, the composition of the electrode, It depends on the structure of the PDP, such as the size of the electrodes and the size of the discharge space.

【0019】[0019]

【発明が解決しようとする課題】上述した従来のカラー
プラズマディスプレイパネルでは、放電の発光効率が低
いために、消費電力が大きいという問題があった。
In the above-mentioned conventional color plasma display panel, there is a problem that power consumption is large due to low luminous efficiency of discharge.

【0020】本発明の目的は、維持放電における発光効
率が向上し、消費電力が低減する、プラズマディスプレ
イパネルの駆動方法を提供することである。
An object of the present invention is to provide a driving method of a plasma display panel in which luminous efficiency in sustain discharge is improved and power consumption is reduced.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、行方向に並んだ走査電極と、列方向に並
んだデータ電極とを備え、前記走査電極に印加する走査
パルスと、前記データ電極に印加するデータパルスによ
り表示データのオンオフ制御を行い、前記表示データ
のオンオフ制御の後に、表示データがオンであるセル
のみ維持放電を行うプラズマディスプレイパネルの駆動
方法において、一回の維持放電を発生させる電極間のパ
ルス形状が、短時間かつ高い電位差を先行させ引き
続いて長時間かつ低い電位差を与える形状であり、高
い電位差の継続時間が、パルス印加からガス放電電流が
最大となるまでの遅れ時間よりも短い。
In order to achieve the above object, the present invention comprises a scanning electrode arranged in a row direction and a data electrode arranged in a column direction, and a scanning pulse applied to the scanning electrode. performs oN / oFF control of the display data by the data pulses applied to the data electrode, after the oN / oFF control of the display data, in the driving method of a plasma display panel for sustaining discharge only cell display data is on , the pulse shape between electrodes for generating the once sustain discharge, is preceded by a short period of time, and high potential, pull
Followed by a long period of time, and Ri shape der give a low potential, high
The duration of the potential difference, the gas discharge current
It is shorter than the delay time until the maximum.

【0022】[0022]

【0023】本発明の実施態様によれば、低電位差の継
続時間および電位差の設定が、前記高電位差の期間が
無い場合でも維持放電の機能を有するように決定されて
いる。
According to an embodiment of the invention, the duration and the potential difference setting low potential difference it is determined as a function of the sustain discharge even when there is no period of the not high potential.

【0024】本発明の実施態様によれば、電極対の間で
個々の維持放電を発生させる電圧の印加方法が、一方の
電極に短時間の高電圧パルスを印加し、そのパルス終了
後に他方の電極に、前記高電圧パルスとは逆方向の極性
低電圧パルスを長時間印加する。
According to an embodiment of the present invention, a method of applying a voltage for generating an individual sustain discharge between a pair of electrodes is such that a short-time high-voltage pulse is applied to one electrode, and after the pulse ends, the other is applied. The electrode has a polarity opposite to that of the high voltage pulse
A long period of time to apply a low voltage pulse.

【0025】本発明の実施態様によれば、電極対の間で
個々の維持放電を発生させる電圧の印加方法が、一方の
電極に短時間のパルスを印加し、そのパルスと同時に他
方の電極に、前記高電圧パルスとは逆方向の極性の低電
圧パルスを長時間印加する。
According to an embodiment of the present invention, a method of applying a voltage for generating an individual sustain discharge between an electrode pair includes applying a short-time pulse to one electrode and simultaneously applying the pulse to the other electrode. A low voltage pulse having a polarity opposite to that of the high voltage pulse is applied for a long time.

【0026】本発明の実施態様によれば、電極対の間で
個々の維持放電を発生させる電圧の印加方法が、一方の
電極に長時間の高電圧パルスを印加し、そのパルス印加
から前記短時間の高電圧印加時間分だけ遅らせて、他方
の電極に、前記高電圧パルスと同方向の極性の低電圧パ
ルスを長時間印加する。
According to the embodiment of the present invention, the method of applying a voltage for generating an individual sustain discharge between the electrode pair is such that a long-time high-voltage pulse is applied to one of the electrodes, A low-voltage pulse having the same polarity as the high-voltage pulse is applied to the other electrode for a long time, delayed by the high-voltage application time.

【0027】本発明の実施態様によれば、維持放電を行
う複数の維持パルスのうち、一部のパルスの形状を、上
記のいずれか1つに記載のパルス形状にするものであ
る。
According to an embodiment of the [0027] present invention, among the plurality of sustain pulses for performing sustain discharge, the shape of the portion of the pulse is for a pulse shape according to any one of the above.

【0028】本発明の実施態様によれば、維持放電を行
う電極対のうち、一方の電極に印加する維持パルスの形
状だけを、上記のいずれか1つに記載のパルス形状に
るものである。
According to the embodiment of the present invention, only the shape of the sustain pulse applied to one of the electrode pairs performing the sustain discharge has the pulse shape described in any one of the above .
Things.

【0029】本発明の実施態様によれば、短時間、かつ
電位差を、パルス振幅を超過するオーバーシュート
によって発生する。
According to an embodiment of the invention, the short time, and the <br/> have high potential difference generated by overshoot exceeding the pulse amplitude.

【0030】[0030]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0031】本発明の第1の実施の形態について、パル
ス形状を図示する図1を参照して説明する。図1のパル
ス形状は、短時間の高電圧、例えばt1=V200ナノ
秒、V1=200ボルト印加後に、長時間の低電圧、例
えばt2=4マイクロ秒、V2=130ボルトを印加した
ものである。このパルス形状のポイントの第1は、先行
する高電圧の印加時間t1が、パルス印加から放電電流
波形がピークとなる時間より短いことであり、ポイント
の第2は、引き続く長時間低電圧の印加時間t、2電圧
2が、前記先行する高電圧を印加しない状態でも、放
電を持続することができる設定であることである。この
ような形状のパルスを維持放電パルスに利用する。
The first embodiment of the present invention will be described with reference to FIG. 1 showing a pulse shape. The pulse shape of FIG. 1 is such that after applying a short-time high voltage, for example, t 1 = V200 nanoseconds and V 1 = 200 volts, a long-time low voltage, for example, t 2 = 4 microseconds, V 2 = 130 volts is applied. It was done. The first point of this pulse shape is that the preceding high voltage application time t1 is shorter than the time at which the discharge current waveform peaks after the pulse application, and the second point is that the subsequent application of the long-time low voltage The time t, 2 is that the voltage V 2 is set so that the discharge can be continued even when the preceding high voltage is not applied. A pulse having such a shape is used as a sustain discharge pulse.

【0032】従来の矩形パルスで駆動周波数20kHz
により維持駆動した場合の、駆動パルス電圧と発光効率
の関係の一例を示す図12(a)を参照すると、発光効
率は駆動電圧が低いほど高くなる。しかし同じく従来の
矩形パルスで駆動周波数20kHzにより維持駆動させ
た場合の、駆動パルス電圧と発光輝度の関係の一例を示
す図12(b)を参照すると、発光輝度は駆動電圧が高
いほど高くなる。したがって、駆動電圧を低くして発光
効率を高めると発光輝度が低下し、駆動電圧を高くして
発光輝度を高くすると発光効率が低下してしまう。
The driving frequency is 20 kHz with a conventional rectangular pulse.
Referring to FIG. 12A showing an example of the relationship between the driving pulse voltage and the luminous efficiency in the case where the driving voltage is maintained, the luminous efficiency increases as the driving voltage decreases. However, referring to FIG. 12B showing an example of the relationship between the drive pulse voltage and the light emission luminance when the conventional rectangular pulse is maintained and driven at a drive frequency of 20 kHz, the light emission luminance increases as the drive voltage increases. Therefore, when the driving voltage is lowered to increase the luminous efficiency, the luminous brightness decreases, and when the luminous luminance is increased by increasing the driving voltage, the luminous efficiency decreases.

【0033】これに対し、本発明の第1の実施の形態の
パルス形状を駆動周波数20kHzにおいて適用した場
合の、先行パルスの電圧V1と発光効率の関係の一例を
示す図2(a)を参照すると、発光効率はパルス電圧V
2が低いほど高いが、先行パルス電圧V1にほとんど依存
しない。一方、本発明の第1の実施の形態のパルス形状
を駆動周波数20kHzで適用した場合の、先行パルス
電圧V1と発光輝度の関係の一例を示す図2(b)を参
照すると、パルス電圧V2が高い方が輝度は高いが、先
行パルス電圧V1を高くしても発光輝度は増加する。よ
って、なるべく低いパルス電圧V2とすることで発光効
率を高め、先行パルスの電圧V1を高くすることで発光
輝度を高めることができる。この構成をとれば、高効率
でかつ高輝度な維持駆動を行なうことができる。
On the other hand, FIG. 2A shows an example of the relationship between the voltage V 1 of the preceding pulse and the luminous efficiency when the pulse shape of the first embodiment of the present invention is applied at a driving frequency of 20 kHz. For reference, the luminous efficiency is the pulse voltage V
2 is higher as it is lower, but hardly depends on the preceding pulse voltage V 1 . On the other hand, in the case where the first embodiment of the pulse shape of the present invention is applied at the driving frequency 20 kHz, referring to FIG. 2 showing an example of the relationship between the preceding pulse voltage V 1 and the light emitting luminance (b), the pulse voltage V While Write 2 high brightness is higher, even by increasing the leading pulse voltages V 1 emission luminance is increased. Therefore, it is possible to enhance the emission luminance by increasing the luminous efficiency by the lowest possible pulse voltage V 2, to increase the voltage V 1 of the preceding pulse. With this configuration, high-efficiency and high-luminance sustain driving can be performed.

【0034】本発明の第2の実施の形態について、維持
放電期間の共通電極及び走査電極への印加電圧波形を示
す図3(a)を参照すると、従来の維持放電パルスに対
応する長時間(t2)の低電圧(V2)パルスを一方の電
極に印加する直前に、他方の電極に、低電圧長パルスと
は逆方向に、短時間(t1)の高電圧(V1)パルスを印
加する。このようにすると電極間の電位差は、図3
(b)のようになり、本発明の第1の実施の形態で説明
した高効率、高輝度の駆動パルス波形となる。
Referring to FIG. 3A showing a waveform of a voltage applied to the common electrode and the scan electrode during the sustain discharge period according to the second embodiment of the present invention, a long time (corresponding to a conventional sustain discharge pulse) is shown. Immediately before the low voltage (V 2 ) pulse of t 2 ) is applied to one electrode, a short time (t 1 ) high voltage (V 1 ) pulse is applied to the other electrode in a direction opposite to the low voltage long pulse. Is applied. In this case, the potential difference between the electrodes becomes as shown in FIG.
As shown in (b), the driving pulse waveform has high efficiency and high luminance described in the first embodiment of the present invention.

【0035】本発明の第3の実施の形態について、維持
放電期間の共通電極及び走査電極への印加電圧波形を示
す図4(a)を参照すると、従来の維持放電パルスに対
応する長時間の低電圧パルスを一方の電極に印加すると
同時に、他方の電極に、低電圧長パルスとは逆方向に、
短時間のパルスを印加する。このようにすると電極間の
電位差は、図4(b)のようになり、本発明の第1の実
施の形態で説明した高効率、高輝度の駆動パルス波形と
なる。さらに、本実施形態の構成をとれば、短パルスの
電圧は、長パルスの電圧分だけ小さくすることができ、
パルス作成が容易となる。
Referring to FIG. 4A showing a waveform of a voltage applied to the common electrode and the scan electrode during the sustain discharge period according to the third embodiment of the present invention, a long time corresponding to the conventional sustain discharge pulse is shown. At the same time as applying a low voltage pulse to one electrode, the other electrode is applied in the opposite direction to the low voltage long pulse,
Apply a short pulse. In this case, the potential difference between the electrodes becomes as shown in FIG. 4B, and the driving pulse waveform has high efficiency and high luminance described in the first embodiment of the present invention. Further, according to the configuration of the present embodiment, the voltage of the short pulse can be reduced by the voltage of the long pulse,
Pulse creation becomes easy.

【0036】本発明の第4の実施の形態について、維持
放電期間の共通電極及び走査電極への印加電圧波形を示
す図5(a)を参照すると、一方の電極に長時間の高電
圧パルスを印加し、他方の電極に、設定したい短パルス
幅分だけ遅らせて、高電圧長パルスと同方向のパルスを
印加する。このようにすると電極間の電位差は、図5
(b)のようになり、発明の第1の実施の形態で説明し
た高効率、高輝度の駆動パルス波形となる。さらに、本
実施形態では、独立した短パルスを利用していないの
で、パルス作成が非常に容易となる。
Referring to FIG. 5A showing a waveform of a voltage applied to the common electrode and the scan electrode during the sustain discharge period according to the fourth embodiment of the present invention, a long-time high voltage pulse is applied to one of the electrodes. Then, a pulse having the same direction as the high-voltage long pulse is applied to the other electrode with a delay corresponding to the desired short pulse width. In this case, the potential difference between the electrodes becomes as shown in FIG.
As shown in (b), the driving pulse waveform has high efficiency and high luminance described in the first embodiment of the invention. Furthermore, in this embodiment, since independent short pulses are not used, pulse creation is very easy.

【0037】本発明の第5の実施の形態について、電極
間の電位差波形を示す図6(a)を参照すると、本発明
の駆動パルス波形と従来の矩形パルスを交互に印加し
て、維持放電を行う。本発明の駆動パルスでは、パルス
一個当たりの効率、輝度が向上するので、従来の矩形パ
ルスの一部を、本発明による駆動パルス形状に置き換え
ることで発明の効果を得ることができる。本実施形態で
は、例えば維持電極に印加する維持パルスだけに本発明
を適用し、走査電極に印加する維持パルスは従来通りで
よいので、実施が容易である。
Referring to FIG. 6A showing the potential difference waveform between the electrodes in the fifth embodiment of the present invention, the driving pulse waveform of the present invention and the conventional rectangular pulse are alternately applied to generate a sustain discharge. I do. With the driving pulse of the present invention, the efficiency and luminance per pulse are improved. Therefore, the effect of the present invention can be obtained by replacing a part of the conventional rectangular pulse with the driving pulse shape according to the present invention. In the present embodiment, for example, the present invention is applied only to the sustain pulse applied to the sustain electrode, and the sustain pulse applied to the scan electrode may be the same as in the related art, so that the implementation is easy.

【0038】この他にも、維持期間における従来の矩形
パルスの置き換え方には、図6(b)などがあり、実施
の容易さを考慮して適宜選択すればよいことは言うまで
もない。
In addition to the above, the conventional method of replacing the rectangular pulse in the sustain period is shown in FIG. 6B, and it goes without saying that it may be appropriately selected in consideration of the easiness of implementation.

【0039】本発明の第6の実施の形態について、パル
ス形状を図示する図7を参照して説明する。図7ではパ
ルスの立ち下がりに伴うオーバーシュートが、前記短時
間の高電圧印加と全く同じ機能を有する。
A sixth embodiment of the present invention will be described with reference to FIG. 7, which illustrates a pulse shape. In FIG. 7, the overshoot accompanying the falling of the pulse has exactly the same function as the short-time high voltage application.

【0040】パルスを出力する場合、容量成分とインダ
クタンス成分によって共振が生じるため、出力波形は振
動的となり、その初期にはパルス振幅を超過するオーバ
ーシュートが発生する。このような振動の周期は、容
量、インダクタンス、抵抗の各値によって決定されるの
で、それぞれをパネル外に設置し、値を調整して、半周
期が200ナノ秒程度になるように設定すると、最初の
オーバーシュートが、本発明の第1の実施の形態で、V
1の電圧をt1の時間だけ印加したのと同じ効果を発生
し、発明の効果を得ることができる。
When a pulse is output, resonance occurs due to the capacitance component and the inductance component, so that the output waveform becomes oscillating, and an overshoot exceeding the pulse amplitude occurs at the initial stage. Since the cycle of such vibration is determined by each value of capacitance, inductance and resistance, each is installed outside the panel, and the value is adjusted so that the half cycle is set to about 200 nanoseconds. The first overshoot is the first embodiment of the present invention, where V
The same effect as when the voltage of 1 is applied only for the time of t 1 is generated, and the effect of the invention can be obtained.

【0041】例えば、最も単純にインダクタンスLと容
量Cが直列に接続されている場合、振動の周期は2π×
(LC)1/2 で与えられるため、100ピコファラッド
の容量と40マイクロヘンリーのインダクタンスを持続
すると、周期は397ナノ秒、半周期が約200ナノ秒
となる。実際のPDPはこのような単純なLCの直列接
合ではないので、パネル外に設置する容量、インダクタ
ンス、抵抗の値は、出力波形と照らし合わせて調整しな
ければならない。しかし本実施形態では、維持放電を発
生させるパルス波形のうちの初期の短時間かつ高電位を
印加するためのスイッチング素子は不要となり、回路構
成が単純である。
For example, when the inductance L and the capacitance C are most simply connected in series, the oscillation period is 2π ×
Given a (LC) 1/2 , sustaining a capacitance of 100 picofarads and an inductance of 40 microhenries would result in a period of 397 nanoseconds and a half period of about 200 nanoseconds. Since an actual PDP is not such a simple LC series junction, the values of the capacitance, inductance, and resistance installed outside the panel must be adjusted with reference to the output waveform. However, in the present embodiment, a switching element for applying an initial short time and a high potential in the pulse waveform for generating the sustain discharge is not required, and the circuit configuration is simple.

【0042】以上の説明では、維持放電を負極性パルス
で行う場合について述べたが、維持放電を正極性パルス
で行う場合であっても、従来の正極性維持パルスの印加
初期の短時間を、正極性の高電圧に設定することで本発
明の効果を得ることができる。
In the above description, the case where the sustain discharge is performed with the negative pulse is described. However, even when the sustain discharge is performed with the positive pulse, the conventional short period of time at the initial stage of the application of the positive sustain pulse is reduced. The effect of the present invention can be obtained by setting the voltage to a high positive polarity.

【0043】また、数値例を挙げた電圧値、電圧印加時
間は、実験結果の一例であり、放電ガスの種類、セル構
造が変われば、条件を満たすよう適宜調整すればよいこ
とは言うまでもない。
The voltage value and the voltage application time, which are numerical examples, are merely examples of the experimental results, and needless to say, if the type of the discharge gas and the cell structure are changed, they may be appropriately adjusted to satisfy the conditions.

【0044】[0044]

【発明の効果】以上説明したように本発明では、維持パ
ルスの形状を最適化し、発光効率、発光輝度ともに高い
パルス形状により維持放電を行うため、発光輝度が高
く、消費電力の少ない、高品位な表示を行うことのでき
るプラズマディスプレイパネルを提供できる。
As described above, according to the present invention, the shape of the sustain pulse is optimized, and the sustain discharge is performed with a pulse shape having both high luminous efficiency and high luminous luminance. Therefore, high luminous luminance, low power consumption, and high quality are achieved. A plasma display panel capable of performing various displays can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態におけるパルス形状を
示す図である。
FIG. 1 is a diagram illustrating a pulse shape according to a first embodiment of the present invention.

【図2】図2(a)は図1のパルス形状におけるV1
発光効率の関係の一例を示す特性図、図2(b)は図1
のパルス形状におけるV1と発光輝度の関係の一例を示
す特性図である。
2A is a characteristic diagram showing an example of a relationship between V 1 and luminous efficiency in the pulse shape of FIG. 1, and FIG.
Of a characteristic diagram showing an example of V 1 relationship luminance of the pulse shape.

【図3】図3(a)は本発明の第2の実施形態における
共通電極と走査電極への印加電圧波形を示す図、図3
(b)は図3(a)の印加電圧波形における合成電位差
波形を示す図である。
FIG. 3A is a diagram showing a waveform of a voltage applied to a common electrode and a scanning electrode according to a second embodiment of the present invention;
FIG. 3B is a diagram showing a composite potential difference waveform in the applied voltage waveform of FIG.

【図4】図4(a)は本発明の第3の実施形態における
共通電極と走査電極への印加電圧波形を示す図、図4
(b)は図4(a)の印加電圧波形における合成電位差
波形を示す図である。
FIG. 4A is a diagram showing waveforms of voltages applied to a common electrode and a scanning electrode according to a third embodiment of the present invention;
FIG. 5B is a diagram showing a composite potential difference waveform in the applied voltage waveform of FIG.

【図5】図5(a)は本発明の第4の実施形態における
共通電極と走査電極への印加電圧波形を示す図、図5
(b)は図5(a)の印加電圧波形における合成電位差
波形を示す図である。
FIG. 5A is a diagram showing waveforms of voltages applied to a common electrode and a scanning electrode according to a fourth embodiment of the present invention;
FIG. 6B is a diagram showing a composite potential difference waveform in the applied voltage waveform of FIG.

【図6】図6(a)は本発明の第5の実施形態における
合成電位差波形を示す図、図6(b)は本発明の他の合
成電位差波形を示す図である。
FIG. 6 (a) is a diagram showing a combined potential difference waveform according to a fifth embodiment of the present invention, and FIG. 6 (b) is a diagram showing another combined potential difference waveform of the present invention.

【図7】本発明の第6の実施形態におけるパルス形状を
示す図である。
FIG. 7 is a diagram illustrating a pulse shape according to a sixth embodiment of the present invention.

【図8】PDPの断面を示す構造図の一例を示す図であ
る。
FIG. 8 is a diagram showing an example of a structural diagram showing a cross section of a PDP.

【図9】図8のPDPの電極配置を模式的に示す平面図
である。
FIG. 9 is a plan view schematically showing the electrode arrangement of the PDP of FIG.

【図10】図9のPDPの各電極に印加する駆動電圧波
形の一例を示す図である。
FIG. 10 is a diagram showing an example of a driving voltage waveform applied to each electrode of the PDP of FIG.

【図11】図11(a)は従来の駆動方法におけるパル
ス形状を示す図、図11(b)は図11(a)のパルス
によって流れる放電電流波形を示す図である。
11 (a) is a diagram showing a pulse shape in a conventional driving method, and FIG. 11 (b) is a diagram showing a discharge current waveform caused by the pulse in FIG. 11 (a).

【図12】図12(a)は従来の矩形パルスにおける駆
動電圧と発光効率の関係の一例を示す特性図、同12
(b)は従来の矩形パルスにおける駆動電圧と発光輝度
の関係の一例を示す特性図である。
FIG. 12A is a characteristic diagram showing an example of a relationship between a driving voltage and luminous efficiency in a conventional rectangular pulse, and FIG.
(B) is a characteristic diagram showing an example of a relationship between a driving voltage and light emission luminance in a conventional rectangular pulse.

【符号の説明】[Explanation of symbols]

10 前面基板 11 背面基板 12 走査電極 13 共通電極 15a,15b 絶縁層 16 保護層 17 隔壁 18 蛍光体 19 データ電極 20 放電空間 21 消去パルス 22 予備放電パルス 23 予備放電消去パルス 24 走査パルス 25,26 維持パルス 27 データパルス Reference Signs List 10 front substrate 11 rear substrate 12 scan electrode 13 common electrode 15a, 15b insulating layer 16 protective layer 17 partition wall 18 phosphor 19 data electrode 20 discharge space 21 erase pulse 22 preliminary discharge pulse 23 preliminary discharge erase pulse 24 scan pulse 25, 26 sustain Pulse 27 data pulse

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 行方向に並んだ走査電極と、列方向に並
んだデータ電極とを備え、前記走査電極に印加する走査
パルスと、前記データ電極に印加するデータパルスによ
り表示データのオン/オフ制御を行い、前記表示データ
のオン/オフ制御の後に、表示データがオンであるセル
のみ維持放電を行うプラズマディスプレイパネルの駆動
方法において、 一回の維持放電を発生させる電極間のパルス形状が、短
時間、かつ高い電位差を先行させ、引き続いて長時間、
かつ低い電位差を与える形状であり、前記高い電位差の
継続時間が、パルス印加からガス放電電流が最大となる
までの遅れ時間よりも短いことを特徴とするプラズマデ
ィスプレイパネルの駆動方法。
A scanning electrode applied to the scanning electrode and a data pulse applied to the data electrode to turn on / off display data by a scanning electrode arranged in a row direction and a data electrode arranged in a column direction. Performing a control, and after turning on / off the display data, a driving method of the plasma display panel in which only the cells for which the display data is on are subjected to the sustain discharge. A short time and a high potential difference precede, followed by a long time,
And a shape giving a low potential difference,
Gas discharge current becomes maximum after pulse application
A driving time of the plasma display panel, wherein the driving time is shorter than a delay time until the driving.
【請求項2】 前記低電位差の継続時間および電位差
の設定が、前記高電位差の期間が無い場合でも維持放
電の機能を有するように決定されている請求項1記載の
プラズマディスプレイパネルの駆動方法。
2. A duration and potential difference setting of the low have potential difference, driving the plasma display panel of determined by that claim 1 as a function of the sustain discharge even when there is no period of the not high potential difference Method.
【請求項3】 電極対の間で個々の維持放電を発生させ
る電圧の印加方法が、一方の電極に短時間の高電圧パル
スを印加し、そのパルス終了後に他方の電極に、前記高
電圧パルスとは逆方向の極性の低電圧パルスを長時間印
加する請求項1または2記載のプラズマディスプレイパ
ネルの駆動方法。
3. A method for applying a voltage for generating an individual sustain discharge between a pair of electrodes comprises applying a short-time high-voltage pulse to one electrode, and applying the high-voltage pulse to the other electrode after completion of the pulse. 3. The method according to claim 1, wherein a low-voltage pulse having a polarity opposite to that of the low-voltage pulse is applied for a long time.
【請求項4】 電極対の間で個々の維持放電を発生させ
る電圧の印加方法が、一方の電極に短時間のパルスを印
加し、そのパルスと同時に他方の電極に、前記短時間の
パルスとは逆方向の極性の低電圧パルスを長時間印加す
る請求項1または2記載のプラズマディスプレイパネル
の駆動方法。
4. A method of applying a voltage for generating an individual sustain discharge between an electrode pair includes applying a short-time pulse to one electrode and simultaneously applying the short-time pulse to the other electrode. 3. The method of driving a plasma display panel according to claim 1, wherein a low voltage pulse having a reverse polarity is applied for a long time.
【請求項5】 電極対の間で個々の維持放電を発生させ
る電圧の印加方法が、一方の電極に長時間の高電圧パル
スを印加し、そのパルス印加から前記短時間の高電圧印
加時間分だけ遅らせて、他方の電極に、前記高電圧パル
スと同方向の極性の低電圧パルスを長時間印加する請求
項1または2記載のプラズマディスプレイパネルの駆動
方法。
5. A method of applying a voltage for generating an individual sustain discharge between a pair of electrodes includes applying a long-term high-voltage pulse to one of the electrodes, and applying the short-time high-voltage application time from the pulse application. 3. The driving method for a plasma display panel according to claim 1, wherein a low-voltage pulse having the same polarity as the high-voltage pulse is applied to the other electrode for a long time with a delay.
【請求項6】 維持放電を行う複数の維持パルスのう
ち、一部のパルスの形状を、請求項1からのいずれか
1項に記載のパルス形状にするプラズマディスプレイパ
ネルの駆動方法。
6. A driving method for a plasma display panel, wherein a part of pulses of a plurality of sustain pulses for performing a sustain discharge is formed into a pulse shape according to any one of claims 1 to 5 .
【請求項7】 維持放電を行う電極対のうち、一方の電
極に印加する維持パルスの形状だけを、請求項1から
のいずれか1項に記載のパルス形状にするプラズマディ
スプレイパネルの駆動方法。
7. Of the pair of electrodes for performing sustain discharge, only the shape of the sustain pulse applied to one electrode, claims 1 to 5,
The method for driving a plasma display panel having a pulse shape according to any one of the above.
【請求項8】 前記短時間、かつ電位差を、パルス
振幅を超過するオーバーシュートによって発生する、請
求項1からのいずれか1項記載のプラズマディスプレ
イパネルの駆動方法。
Wherein said short time, and the have high potential difference generated by overshoot exceeding the pulse amplitude, the driving method of the plasma display panel of any one of claims 1 7.
JP9141697A 1997-05-30 1997-05-30 Driving method of plasma display panel Expired - Lifetime JP3028075B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9141697A JP3028075B2 (en) 1997-05-30 1997-05-30 Driving method of plasma display panel
US09/083,118 US6426732B1 (en) 1997-05-30 1998-05-22 Method of energizing plasma display panel
KR1019980019732A KR100283493B1 (en) 1997-05-30 1998-05-29 Method of energizing plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9141697A JP3028075B2 (en) 1997-05-30 1997-05-30 Driving method of plasma display panel

Publications (2)

Publication Number Publication Date
JPH10333635A JPH10333635A (en) 1998-12-18
JP3028075B2 true JP3028075B2 (en) 2000-04-04

Family

ID=15298114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9141697A Expired - Lifetime JP3028075B2 (en) 1997-05-30 1997-05-30 Driving method of plasma display panel

Country Status (1)

Country Link
JP (1) JP3028075B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762066B1 (en) 1998-09-04 2007-10-01 마츠시타 덴끼 산교 가부시키가이샤 A plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
JP4520554B2 (en) * 1999-08-20 2010-08-04 パナソニック株式会社 Drive circuit, display device, and drive method
TW507237B (en) 2000-03-13 2002-10-21 Panasonic Co Ltd Panel display apparatus and method for driving a gas discharge panel
JP4606612B2 (en) * 2001-02-05 2011-01-05 日立プラズマディスプレイ株式会社 Driving method of plasma display panel
JP3682422B2 (en) * 2001-06-26 2005-08-10 株式会社日立製作所 Driving method of plasma display device
JP5028721B2 (en) * 2001-07-30 2012-09-19 パナソニック株式会社 Driving method of plasma display panel
JP4158882B2 (en) * 2002-02-14 2008-10-01 株式会社日立プラズマパテントライセンシング Driving method of plasma display panel
JP4619014B2 (en) 2003-03-28 2011-01-26 株式会社日立製作所 Driving method of plasma display panel
JP4540090B2 (en) * 2003-05-26 2010-09-08 株式会社日立プラズマパテントライセンシング Driving method of plasma display panel
KR100499374B1 (en) 2003-06-12 2005-07-04 엘지전자 주식회사 Apparatus and Method of Energy Recovery and Driving Method of Plasma Display Panel Using the same
JP4399638B2 (en) 2003-10-02 2010-01-20 株式会社日立プラズマパテントライセンシング Driving method of plasma display panel
KR100708691B1 (en) * 2005-06-11 2007-04-17 삼성에스디아이 주식회사 Method for driving plasma display panel and plasma display panel driven by the same method
JP5117321B2 (en) * 2008-08-25 2013-01-16 パナソニック株式会社 Driving method of plasma display panel
JP4844624B2 (en) * 2008-12-17 2011-12-28 株式会社日立製作所 Plasma display device and driving method thereof

Also Published As

Publication number Publication date
JPH10333635A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
JP3633761B2 (en) Driving device for plasma display panel
US6504519B1 (en) Plasma display panel and apparatus and method of driving the same
JP3324639B2 (en) Driving method of plasma display panel
US6608609B1 (en) Method for driving plasma display panel
US6356017B1 (en) Method of driving a plasma display panel with improved luminescence efficiency
JP3028075B2 (en) Driving method of plasma display panel
US6160530A (en) Method and device for driving a plasma display panel
JP4251389B2 (en) Driving device for plasma display panel
JP2000047634A (en) Driving method of plasma display device
US6426732B1 (en) Method of energizing plasma display panel
JP3156258B2 (en) Driving method of gas discharge display element
JP3064577B2 (en) Driving method of plasma display panel
JP3028087B2 (en) Driving method of plasma display panel
US7274344B2 (en) Method for driving a plasma display by matrix triggering of the sustain discharges
JP2770847B2 (en) Driving method of plasma display panel
JP3008888B2 (en) Driving method of plasma display panel
JP3097592B2 (en) Plasma display panel and driving method thereof
JPWO2007023526A1 (en) Plasma display device
JP3070552B2 (en) Driving method of AC plasma display
JP3452023B2 (en) Driving method of plasma display panel
JP2900835B2 (en) Driving method of plasma display panel
JP3402272B2 (en) Plasma display panel driving method
JP2616663B2 (en) Driving method of plasma display panel
JPH07191626A (en) Driving method of plasma display panel
JP3662239B2 (en) Driving method of plasma display device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Effective date: 20050804

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100812

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110812

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees