JP3026972B1 - Measurement method of glossiness of object surface - Google Patents

Measurement method of glossiness of object surface

Info

Publication number
JP3026972B1
JP3026972B1 JP11123053A JP12305399A JP3026972B1 JP 3026972 B1 JP3026972 B1 JP 3026972B1 JP 11123053 A JP11123053 A JP 11123053A JP 12305399 A JP12305399 A JP 12305399A JP 3026972 B1 JP3026972 B1 JP 3026972B1
Authority
JP
Japan
Prior art keywords
reflected light
wave
light
polarizing plate
psd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11123053A
Other languages
Japanese (ja)
Other versions
JP2000314658A (en
Inventor
雷太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP11123053A priority Critical patent/JP3026972B1/en
Application granted granted Critical
Publication of JP3026972B1 publication Critical patent/JP3026972B1/en
Publication of JP2000314658A publication Critical patent/JP2000314658A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【要約】 【課題】 (乱反射光)/(正反射光および乱反射光)
をそれぞれの反射光成分の光量に応じた2つの電流値と
して取り出し、比較することによって、物体表面の光沢
度を判別することを目的とする。 【解決手段】 赤外〜可視領域に含まれる光線を物体に
照射して反射させ、位相差フィルムと偏光板とを通過す
る反射光と、偏光板を通過する反射光とに分けて位置検
出センサにて検知し、上記2つの反射光の光量に応じた
出力電流を信号処理することを特徴としている。
[Problem] (Diffuse reflection light) / (Specular reflection light and diffuse reflection light)
Is extracted as two current values corresponding to the light amounts of the respective reflected light components, and is compared to determine the glossiness of the object surface. A position detection sensor irradiates an object with light rays included in an infrared to visible region and reflects the light, and separates the light into reflected light passing through a phase difference film and a polarizing plate and reflected light passing through a polarizing plate. And performs signal processing on an output current corresponding to the amounts of the two reflected lights.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射光の光量に応
じた出力電流を信号処理して、物体表面の光沢度を測定
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the glossiness of an object surface by performing signal processing on an output current corresponding to the amount of reflected light.

【0002】[0002]

【従来の技術】従来、物体表面の光沢度を測定する際に
は、物体表面に赤外線、可視光線等を照射し、その反射
光を、カラーセンサ、リニアイメージセンサ等の素子で
受光し、出力電流を信号処理することで検知していた。
2. Description of the Related Art Conventionally, when measuring the glossiness of the surface of an object, the surface of the object is irradiated with infrared light, visible light, or the like, and the reflected light is received by an element such as a color sensor or a linear image sensor and output. The current was detected by signal processing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記構
造の光沢センサを使用した場合、カラーセンサ、リニア
イメージセンサ等が高価であること、およびセンサ素子
で受光した後の信号処理が複雑であることなどから、光
沢センサ自体の価格が高価になるという問題点があっ
た。一方、安価な2端子のフォトダイオードをセンサ素
子として使用した場合、試料表面の色濃度によって反射
光量が異なること、および被測定試料からの反射光が正
反射光と乱反射光が混合された状態であることなどか
ら、正確な光沢度の測定は非常に難しいという問題点が
あった。
However, when the gloss sensor having the above structure is used, the color sensor, the linear image sensor, and the like are expensive and the signal processing after receiving light by the sensor element is complicated. Therefore, there is a problem that the price of the gloss sensor itself becomes expensive. On the other hand, when an inexpensive two-terminal photodiode is used as the sensor element, the amount of reflected light varies depending on the color density of the sample surface, and the reflected light from the sample to be measured is mixed with specularly reflected light and irregularly reflected light. For this reason, there is a problem that accurate measurement of glossiness is very difficult.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するもので、赤外〜可視領域に含まれる光線を物体に照
射して反射させ、位相差フィルムと偏光板とを通過する
反射光と、偏光板を通過する反射光とに分けて位置検出
センサにて検知し、上記2つの反射光の光量に応じた出
力電流を信号処理することを特徴とする物体表面の光沢
度測定方法である。また、上記の位相差フィルムが1/
2波長板または複屈折効果を示す透明フィルムであるこ
とを特徴とする物体表面の光沢度測定方法である。そし
て、上記2つの反射光が、正反射光および乱反射光と、
乱反射光であることを特徴とする物体表面の光沢度測定
方法である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and irradiates an object with light rays included in the infrared to visible regions to reflect the light, and reflects reflected light passing through a phase difference film and a polarizing plate. And a reflected light passing through a polarizing plate, which is detected by a position detection sensor, and an output current corresponding to the light amounts of the two reflected lights is signal-processed. is there. Further, the above retardation film is 1 /
This is a method for measuring the glossiness of the surface of an object, which is a two-wavelength plate or a transparent film exhibiting a birefringence effect. The two reflected lights are specularly reflected light and irregularly reflected light,
This is a method for measuring the glossiness of an object surface, which is irregularly reflected light.

【0005】[0005]

【発明の実施の形態】物体表面の色濃度に関係なく、物
体表面の光沢度を、反射光の光量に応じた出力電流とし
て取り出し、信号処理することによって測定する。この
とき、カラーセンサ、リニアイメージセンサ等の高価な
半導体を用いず、位置検出センサ(以下、PSDと称す
る。)、位相差フィルム、偏光板等の簡単な構成で、安
価な光沢センサを提供することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Regardless of the color density on the surface of an object, the glossiness of the surface of the object is measured as an output current corresponding to the amount of reflected light and signal processing. At this time, an inexpensive gloss sensor is provided with a simple configuration such as a position detection sensor (hereinafter, referred to as a PSD), a retardation film, and a polarizing plate without using expensive semiconductors such as a color sensor and a linear image sensor. be able to.

【0006】[0006]

【実施例】以下、本発明による実施例について、図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】〔実施例1〕本発明による物体表面の光沢
度測定方法を利用した光沢センサの構造を図1に示す。
図1において、被測定試料3に対し光の入射角と反射角
が等しくなるように光源1とPSD6を配置する。光源
1からの光は集光レンズ2を使ってスポット光の状態で
被測定試料3に照射する。必ずしも光点を一点に集中さ
せる必要はない。光源1としては、LEDの他にハロゲ
ンランプ、半導体レーザー等の単波長成分の多い光源を
用いることが可能である。
[Embodiment 1] FIG. 1 shows the structure of a gloss sensor using the method for measuring the gloss of an object surface according to the present invention.
In FIG. 1, the light source 1 and the PSD 6 are arranged so that the incident angle and the reflection angle of light with respect to the sample 3 to be measured are equal. The light from the light source 1 is applied to the sample 3 to be measured in the form of spot light using the condenser lens 2. It is not always necessary to concentrate the light spots at one point. As the light source 1, a light source having a large single wavelength component such as a halogen lamp and a semiconductor laser can be used in addition to the LED.

【0008】図2は、図1の受光側の細部を示したもの
である。図2に示す1/2波長板4、偏光板8を通過す
る前の反射光bについて、被測定試料3に対する垂直方
向の振動成分eをp波、水平方向の振動成分dをs波と
した場合、正反射光は反射の法則に従いs波のみからな
る反射光で、かつ試料表面の光沢度が高いほど支配的と
なる。また、乱反射光は正反射光を除く拡散的な反射光
でs波、p波を含む様々な振動方向を持ち、試料表面の
光沢度が低いほど支配的となる。
FIG. 2 shows details on the light receiving side of FIG. With respect to the reflected light b before passing through the half-wave plate 4 and the polarizing plate 8 shown in FIG. 2, the vertical vibration component e with respect to the sample 3 to be measured is p-wave, and the horizontal vibration component d is s-wave. In this case, the specularly reflected light is a reflected light composed of only the s-wave according to the law of reflection, and becomes more dominant as the glossiness of the sample surface increases. Diffusely reflected light is diffuse reflected light excluding specularly reflected light and has various vibration directions including s-waves and p-waves, and becomes more dominant as the glossiness of the sample surface is lower.

【0009】図2の偏光板8の透過方向は縦方向であ
り、これは被測定試料3に対する反射光bの水平方向の
振動成分dと平行な方向である。また、図2の1/2波
長板4は位相差フィルムの一種である。図2に見られる
ように、被測定試料3の表面からの反射光bについて、
半分を1/2波長板4と偏光板8、残りの半分を偏光板
8のみ通過するようにし、偏光板8を通過した後の反射
光cの中心がPSD6の中心に入射するように配置す
る。この際、1/2波長板4の向きは、図3に示すとお
り被測定試料からの反射光に含まれるs波hの振動方向
を約90°回転させる向き(1/2波長板4の光軸9を
s波hの振動方向に対してθ=45°の向き)に設置す
ることが望ましい。
The transmission direction of the polarizing plate 8 in FIG. 2 is a vertical direction, which is a direction parallel to the horizontal vibration component d of the reflected light b with respect to the sample 3 to be measured. The half-wave plate 4 in FIG. 2 is a kind of retardation film. As can be seen in FIG. 2, for the reflected light b from the surface of the sample 3 to be measured,
The half is arranged so that only the half-wave plate 4 and the polarizing plate 8 pass, and the other half only passes through the polarizing plate 8, so that the center of the reflected light c after passing through the polarizing plate 8 is incident on the center of the PSD 6. . At this time, the direction of the half-wave plate 4 is such that the oscillation direction of the s-wave h included in the reflected light from the sample to be measured is rotated by about 90 ° as shown in FIG. It is desirable to set the shaft 9 at an angle of θ = 45 ° with respect to the vibration direction of the s-wave h).

【0010】図4は、図2の被測定試料3からの反射光
bについて1/2波長板4と偏光板8の両方を通過する
成分を表している。1/2波長板4と偏光板8を通過す
る前の反射光bは、乱反射光jと正反射光kで構成され
ている。乱反射光jはs波、p波を含む様々な振動方向
を持つ反射光で、s波とp波の存在確率はほぼ等しい。
また、正反射光kはs波のみからなる。1/2波長板4
を通過した乱反射光lはs波、p波ともに90°振動方
向を変えるため、後段の偏光板8を通過する際に、透過
方向に対して垂直の振動方向をもつs波は通過が抑制さ
れ、平行の振動方向をもつp波は通過が可能となる。一
方、1/2波長板4を通過した正反射光mは90°振動
方向を変えるため、後段の偏光板8の透過方向に対して
垂直の振動方向をもつこととなり、通過が抑制される。
よって、被測定試料3からの反射光bについて1/2波
長板4と偏光板8の両方を通過する成分は、乱反射光
(p波)nのみとなる。
FIG. 4 shows a component of the reflected light b from the sample 3 shown in FIG. 2 that passes through both the half-wave plate 4 and the polarizing plate 8. The reflected light b before passing through the half-wave plate 4 and the polarizing plate 8 is composed of irregularly reflected light j and regular reflected light k. The irregularly reflected light j is reflected light having various vibration directions including the s-wave and the p-wave, and the existence probabilities of the s-wave and the p-wave are almost equal.
The specularly reflected light k is composed of only s waves. 1/2 wave plate 4
Since the irregularly reflected light 1 that has passed through changes the oscillating direction by 90 ° for both the s-wave and the p-wave, the s-wave having a vibration direction perpendicular to the transmission direction is suppressed when passing through the subsequent polarizing plate 8. , P-waves having parallel vibration directions can pass. On the other hand, the specularly reflected light m that has passed through the half-wave plate 4 changes the vibration direction by 90 °, so that it has a vibration direction perpendicular to the transmission direction of the polarizing plate 8 at the subsequent stage, and the passage is suppressed.
Therefore, the component passing through both the half-wave plate 4 and the polarizing plate 8 for the reflected light b from the sample 3 to be measured is only the irregularly reflected light (p-wave) n.

【0011】図5は、図2の被測定試料3からの反射光
bについて偏光板8のみを通過する成分を表している。
偏光板8を通過する前の反射光bは、図4と同様に乱反
射光jと正反射光kで構成されている。乱反射光jが偏
光板8を通過する際に、透過方向に対して垂直の振動方
向をもつp波は通過が抑制されるが、透過方向に対して
平行の振動方向をもつs波は通過が可能となる。一方、
正反射光kは偏光板8の透過方向に対して平行の振動方
向をもつこととなり、通過が可能となる。よって、被測
定試料3からの反射光bについて偏光板8のみを通過す
る成分は、正反射光(s波)pと乱反射光(s波)oと
なる。
FIG. 5 shows a component of the reflected light b from the sample 3 shown in FIG.
The reflected light b before passing through the polarizing plate 8 is composed of irregularly reflected light j and specularly reflected light k, as in FIG. When the irregularly reflected light j passes through the polarizing plate 8, the transmission of a p-wave having a vibration direction perpendicular to the transmission direction is suppressed, but the transmission of an s-wave having a vibration direction parallel to the transmission direction is suppressed. It becomes possible. on the other hand,
The regular reflection light k has a vibration direction parallel to the transmission direction of the polarizing plate 8 and can pass therethrough. Therefore, components of the reflected light b from the sample 3 to be passed through only the polarizing plate 8 are specularly reflected light (s-wave) p and irregularly reflected light (s-wave) o.

【0012】このため、図2のようにPSD6に入射す
る光のうち、右領域は偏光板8のみを通過してきた正反
射光(s波)と乱反射光(s波)からなる反射光f、左
領域は1/2波長板4と偏光板8の両方を通過してきた
乱反射光(p波)のみの反射光gになり、これら反射光
f、gの照射光量と照射位置およびPSD6の電極間抵
抗等によって決まる電流(IPSD1、IPSD2)
が、PSD6の端子から得られる。
For this reason, as shown in FIG. 2, of the light incident on the PSD 6, as shown in FIG. 2, the right region is the reflected light f composed of the specularly reflected light (s-wave) and the irregularly reflected light (s-wave) transmitted only through the polarizing plate 8, The left area is the reflected light g of only the irregularly reflected light (p-wave) that has passed through both the half-wave plate 4 and the polarizing plate 8, and the irradiation light amount and irradiation position of these reflected lights f and g and the distance between the electrodes of the PSD 6. Current determined by resistance etc. (I PSD 1, I PSD 2)
Is obtained from the terminal of PSD6.

【0013】図6は、図2におけるPSD6の出力電流
(IPSD1、IPSD2)を信号処理し、正反射光量
に応じた出力電圧を得るための信号処理ブロックの例で
ある。PSD6のカソード端子10には予め電圧Vcc
が印加されている。PSD6のアノード端子11、12
からは、PSD6で受光された反射光cによる電流(I
PSD1、IPSD2)が流れ出すこととなる。電流I
PSD1、IPSD2はPSD6の負荷抵抗RL1、R
L2によって電圧VPSD1、VPSD2に変換され、
次段の信号増幅回路13、14で別々に増幅される。図
6の例では、信号増幅回路13、14の増幅度を共に1
000倍としているが、後段の信号演算回路での演算の
都合上、異なる増幅度とする場合もある。そして信号増
幅回路13、14から取り出された電圧は、後段の信号
演算回路15で、PSD6の照射光量と照射位置および
PSD6の電極間抵抗等によって決定される式で演算さ
れ、出力端子16から正反射光量に応じた出力電圧が得
られるので、この電圧値の大小から光沢度を測定するこ
とができる。
FIG. 6 is an example of a signal processing block for performing signal processing on the output currents (I PSD 1 and I PSD 2) of the PSD 6 in FIG. 2 and obtaining an output voltage corresponding to the amount of specular reflection. The voltage Vcc is applied to the cathode terminal 10 of the PSD 6 in advance.
Is applied. Anode terminals 11 and 12 of PSD 6
The current (I) due to the reflected light c received by the PSD 6
PSD 1 and I PSD 2) will flow out. Current I
PSD 1 and I PSD 2 are the load resistances RL 1 and R
Are converted into voltages V PSD 1 and V PSD 2 by L2,
The signals are separately amplified by signal amplifier circuits 13 and 14 at the next stage. In the example of FIG. 6, the amplification degrees of the signal amplification circuits 13 and 14 are both 1
Although it is set to 000, the amplification degree may be different for convenience of the operation in the signal operation circuit at the subsequent stage. The voltages extracted from the signal amplification circuits 13 and 14 are calculated by a signal calculation circuit 15 at the subsequent stage according to a formula determined by the irradiation light amount and the irradiation position of the PSD 6, the resistance between the electrodes of the PSD 6, and the like. Since an output voltage corresponding to the amount of reflected light is obtained, the glossiness can be measured from the magnitude of this voltage value.

【0014】〔実施例2〕実施例1における図2の光沢
センサでは、偏光板8の透過方向を縦方向(s波と平行
方向)としていた。しかし、図7のように偏光板17の
透過方向を横方向(s波と垂直方向)に配置した場合に
ついても同様に、光沢センサとして利用できる。図7に
示す1/2波長板4、偏光板17を通過する前の反射光
bについて、図2と同様に被測定試料3に対する垂直方
向の振動成分eをp波、水平方向の振動成分dをs波と
する。
Second Embodiment In the gloss sensor of FIG. 2 in the first embodiment, the transmission direction of the polarizing plate 8 is set to the vertical direction (parallel to the s-wave). However, the case where the transmission direction of the polarizing plate 17 is arranged in the horizontal direction (perpendicular to the s-wave) as shown in FIG. 7 can also be used as a gloss sensor. For the reflected light b before passing through the half-wave plate 4 and the polarizing plate 17 shown in FIG. 7, a vertical vibration component e with respect to the sample 3 to be measured is a p-wave, and a horizontal vibration component d, as in FIG. Is an s-wave.

【0015】図7の場合、被測定試料3からの反射光b
について1/2波長板4と偏光板17の両方を通過する
成分は、正反射光(s波)と乱反射光(s波)、偏光板
17のみ通過した成分は乱反射光(p波)になる。(1
/2波長板4と偏光板17、もしくは偏光板17のみを
通過する反射光の考え方は、図4、5と同様であるた
め、ここでは省略する。)
In the case of FIG. 7, the reflected light b from the sample 3 is measured.
The component that passes through both the half-wave plate 4 and the polarizing plate 17 is specularly reflected light (s-wave) and diffusely reflected light (s-wave), and the component that passes only through the polarizing plate 17 is diffusely reflected light (p-wave). . (1
The concept of reflected light passing through the half-wave plate 4 and the polarizing plate 17 or only the polarizing plate 17 is the same as in FIGS. )

【0016】このため、図7のようにPSD6に入射す
る光のうち、右領域は偏光板17のみを通過してきた乱
反射光(p波)のみの反射光q、左領域は1/2波長板
4と偏光板17の両方を通過してきた正反射光(s波)
と乱反射光(s波)からなる反射光rになり、これら反
射光q、rの照射光量と照射位置およびPSD6の電極
間抵抗等によって決まる電流(IPSD1、I
PSD2)が、PSD6の端子から得られる。よって、
PSD6の出力電流(IPSD1、IPSD2)から、
照射光量、照射位置、およびPSD6の電極間抵抗等に
よって決定される演算を図6と同様の信号処理ブロック
を用いて行うことで、正反射光量に応じた出力電圧が得
られるので、この電圧値の大小から光沢度を測定するこ
とができる。
Therefore, as shown in FIG. 7, of the light incident on the PSD 6, as shown in FIG. 7, the right region is the reflected light q of only the irregularly reflected light (p-wave) passing only through the polarizing plate 17, and the left region is the half-wave plate. Specularly reflected light (s-wave) that has passed through both 4 and the polarizing plate 17
And irregularly reflected light (s-wave), and the reflected light r is composed of the irradiation light quantity and irradiation position of the reflected light q and r, and the current (I PSD1, I PSD) determined by the resistance between the electrodes of the PSD 6.
PSD 2) is obtained from the terminal of PSD6. Therefore,
From PSD6 output current (I PSD 1, I PSD 2 ),
By performing calculations determined by the irradiation light amount, the irradiation position, the resistance between the electrodes of the PSD 6, and the like using the same signal processing block as in FIG. 6, an output voltage corresponding to the regular reflection light amount is obtained. The degree of gloss can be measured from the magnitude of.

【0017】〔実施例3〕実施例1、2では、被測定試
料3からの反射光bのうち約半分を、1/2波長板4を
用いて振動方向を90°回転させているが、正確に90
°回転できなくとも、複屈折効果を示す透明フィルムを
用いて、同様の光沢センサを構成することができる。
Third Embodiment In the first and second embodiments, about half of the reflected light b from the sample 3 to be measured is rotated by 90 ° in the vibration direction by using the half-wave plate 4. Exactly 90
Even if rotation is not possible, a similar gloss sensor can be formed using a transparent film that exhibits a birefringence effect.

【0018】図8は、図7における1/2波長板4の代
わりに透明フィルム18を用いた場合を示す。図8にお
ける透明フィルム18は複屈折効果を示すフィルムを用
いている。また、発光側は、図1と同様のものを用いて
いる。図8に示す透明フィルム18、偏光板17を通過
する前の反射光bについて、図2と同様に被測定試料3
に対する垂直方向の振動成分eをp波、水平方向の振動
成分dをs波とする。(図8では、偏光板17の透過方
向を横方向としたが、偏光板の透過方向を縦方向にした
場合についても以下と同様の方法で考えることができ
る。)
FIG. 8 shows a case where a transparent film 18 is used instead of the half-wave plate 4 in FIG. As the transparent film 18 in FIG. 8, a film exhibiting a birefringence effect is used. On the light emitting side, the same one as in FIG. 1 is used. As to the reflected light b before passing through the transparent film 18 and the polarizing plate 17 shown in FIG.
The vertical vibration component e is a p-wave, and the horizontal vibration component d is an s-wave. (In FIG. 8, the transmission direction of the polarizing plate 17 is set to the horizontal direction, but the case where the transmission direction of the polarizing plate is set to the vertical direction can be considered in the same manner as described below.)

【0019】図8の偏光板17の透過方向は横方向であ
り、これは被測定試料3に対する水平方向の振動成分d
と垂直な方向である。図8に見られるように、被測定試
料3の表面からの反射光bについて、半分を透明フィル
ム18と偏光板17、残りの半分を偏光板17のみ通過
するようにし、偏光板17を通過した後の反射光cの中
心がPSD6の中心に入射するように配置する。この
際、透明フィルム18の向きは、図9に示すとおり被測
定試料からの反射光に含まれるs波hの振動方向を約α
°回転させる向きに設置している。この際、振動方向の
回転角度α°が出来るだけ大きくなるように透明フィル
ム18の光軸19を設定することが望ましい。
The transmission direction of the polarizing plate 17 shown in FIG. 8 is the horizontal direction, which is the horizontal vibration component d with respect to the sample 3 to be measured.
And the direction perpendicular to it. As shown in FIG. 8, half of the reflected light b from the surface of the sample 3 to be measured passes through the transparent film 18 and the polarizing plate 17, and the other half passes only through the polarizing plate 17, and passes through the polarizing plate 17. It is arranged so that the center of the later reflected light c is incident on the center of the PSD 6. At this time, the direction of the transparent film 18 is set such that the vibration direction of the s-wave h contained in the reflected light from the sample to be measured is approximately α as shown in FIG.
° Installed to rotate. At this time, it is desirable to set the optical axis 19 of the transparent film 18 so that the rotation angle α ° in the vibration direction becomes as large as possible.

【0020】図10は、図8の被測定試料3からの反射
光bについて透明フィルム18と偏光板17の両方を通
過する成分を表している。透明フィルム18と偏光板1
7を通過する前の反射光bは、乱反射光jと正反射光k
で構成されている。透明フィルム18を通過した乱反射
光uはs波、p波ともにα°振動方向を変えるため、後
段の偏光板17を通過する際に、透過方向に対して垂直
の振動方向を持つ乱反射(s波)×cosαと乱反射
(p波)×sinαは通過が抑制され、平行の振動方
向をもつ乱反射(s波)×sinαと乱反射(p波)
×cosαは通過が可能となる。この際、乱反射光に
含まれるs波とp波の存在確率がほぼ等しく、乱反射
(s波)≒乱反射(p波)とすることにより、透明フィ
ルム18と偏光板17の両方を通過する乱反射光は、
FIG. 10 shows a component of the reflected light b from the sample 3 shown in FIG. 8 that passes through both the transparent film 18 and the polarizing plate 17. Transparent film 18 and polarizing plate 1
7 are irregularly reflected light j and specularly reflected light k.
It is composed of Since the irregularly reflected light u that has passed through the transparent film 18 changes the oscillation direction of α ° for both the s-wave and the p-wave, the irregular reflection light u having the oscillation direction perpendicular to the transmission direction (s-wave ) × cos 2 α and diffuse reflection (p wave) × sin 2 α are suppressed from passing, and diffuse reflection (s wave) × sin 2 α and diffuse reflection (p wave) having parallel vibration directions are performed.
× cos 2 alpha becomes possible passage. At this time, the existence probabilities of the s-wave and the p-wave included in the irregularly-reflected light are almost equal, and the irregular reflection (s-wave) 反射 the irregular reflection (p-wave) makes the irregularly-reflected light passing through both the transparent film 18 and the polarizing plate 17. Is

【0021】[0021]

【数1】 (Equation 1)

【0022】と整理できる。一方、透明フィルム17を
通過した正反射光vはα°振動方向を変えるため、後段
の偏光板17を通過する際に偏光板18と平行な成分で
ある正反射光(s波)×sinαのみが通過できるこ
ととなる。よって、被測定試料3からの反射光bについ
て透明フィルム18と偏光板17の両方を通過する成分
は、正反射光(s波)×sinαと乱反射(s波)と
なる。
It can be arranged as follows. On the other hand, the specularly reflected light v that has passed through the transparent film 17 changes the oscillation direction by α °, so that the specularly reflected light (s-wave) × sin 2, which is a component parallel to the polarizing plate 18 when passing through the latter polarizing plate 17. Only α can pass. Therefore, the component of the reflected light b from the sample 3 to be measured that passes through both the transparent film 18 and the polarizing plate 17 is specularly reflected light (s-wave) × sin 2 α and diffusely reflected (s-wave).

【0023】図11は、図8の被測定試料3からの反射
光bについて偏光板17のみを通過する成分を表してい
る。偏光板17を通過する前の反射光bは、図10と同
様に乱反射光jと正反射光kで構成されている。乱反射
光jが偏光板17を通過する際に、透過方向に対して垂
直の振動方向をもつs波は通過が抑制されるが、透過方
向に対して平行の振動方向をもつp波は通過が可能とな
る。一方、正反射光kは偏光板17の透過方向に対して
垂直の振動方向をもつことから、通過が抑制される。よ
って、被測定試料3からの反射光bについて偏光板17
のみを通過する成分は、乱反射光(p波)yとなる。
FIG. 11 shows a component of the reflected light b from the sample 3 to be measured shown in FIG. The reflected light b before passing through the polarizing plate 17 is composed of irregularly reflected light j and specularly reflected light k, as in FIG. When the irregularly reflected light j passes through the polarizing plate 17, the passage of an s-wave having a vibration direction perpendicular to the transmission direction is suppressed, whereas the passage of a p-wave having a vibration direction parallel to the transmission direction is suppressed. It becomes possible. On the other hand, since the specular reflection light k has a vibration direction perpendicular to the transmission direction of the polarizing plate 17, the passage of the light is suppressed. Therefore, the reflected light b from the sample 3 to be measured 3
The component passing only through the above becomes irregularly reflected light (p-wave) y.

【0024】このため、図8のようにPSD6に入射す
る光のうち、右領域は偏光板17のみを通過してきた乱
反射光(p波)のみの反射光s、左領域は透明フィルム
18と偏光板17の両方を通過してきた正反射光(s
波)×sinαと乱反射光(s波)からなる反射光t
になり、これらの照射光量と照射位置およびPSD6の
電極間抵抗等によって決まる電流(IPSD1、I
PSD2)が、PSD6の端子から得られる。よって、
PSD6の出力電流(IPSD1、IPSD2)から、
照射光量、照射位置、およびPSD6の電極間抵抗等に
よって決定される演算を図6と同様の信号処理ブロック
を用いて行うことで、正反射光量に応じた出力電圧が得
られ、この電圧値の大小から光沢度が測定できる。
Therefore, as shown in FIG. 8, of the light incident on the PSD 6, as shown in FIG. 8, the right region is the reflected light s of only the irregularly reflected light (p-wave) that has passed only through the polarizing plate 17, and the left region is the transparent film 18 and polarization Specularly reflected light (s) passing through both of the plates 17
(Wave) × sin 2 α and reflected light t composed of irregularly reflected light (s-wave)
And the currents (I PSD 1, I PSD 1) determined by the irradiation light amount and the irradiation position, the resistance between the electrodes of PSD 6, and the like.
PSD 2) is obtained from the terminal of PSD6. Therefore,
From PSD6 output current (I PSD 1, I PSD 2 ),
By performing calculations determined by the irradiation light amount, the irradiation position, the resistance between the electrodes of the PSD 6, and the like using the same signal processing block as in FIG. 6, an output voltage corresponding to the regular reflection light amount is obtained. Gloss can be measured from large and small.

【0025】実施例1、2、3は1/2波長板4、透明
フィルム18の光の透過率が100%、および偏光板
8、17の透過方向と垂直な方向の光の透過率を0%と
した場合であり、これらが実際と異なり、その違いが無
視できない場合は図6に示した信号処理ブロックにおけ
る演算を補正する必要がある。
In Examples 1, 2, and 3, the light transmittance of the half-wave plate 4 and the transparent film 18 was 100%, and the light transmittance of the polarizing plates 8 and 17 in the direction perpendicular to the transmission direction was 0. %, Which is different from the actual case and when the difference cannot be ignored, it is necessary to correct the calculation in the signal processing block shown in FIG.

【0026】また、実施例1、2、3において被測定試
料3からの反射光bの中心と位相差フィルム(1/2波
長板4、透明フィルム18等)、偏光板8、17もしく
はPSD6の位置関係が多少違っても、図6における信
号処理ブロックにおける演算で補正することができる。
In Examples 1, 2, and 3, the center of the reflected light b from the sample 3 to be measured and the phase difference film (the half-wave plate 4, the transparent film 18, etc.), the polarizing plates 8, 17 or the PSD 6 Even if the positional relationship is slightly different, it can be corrected by calculation in the signal processing block in FIG.

【0027】実施例1、2、3では、非分割型のPSD
を用いたが、分割型(2分割、4分割等)のPSDを用
いることも可能である。
In the first, second and third embodiments, the non-divided PSD
However, it is also possible to use a split type (two-division, four-division, etc.) PSD.

【0028】[0028]

【発明の効果】上記したように、本発明によれば、物体
表面の色濃度に関係なく、(乱反射光)/(正反射光お
よび乱反射光)をそれぞれの反射光成分の光量に応じた
2つの電流値として取り出し、比較することによって、
物体表面の光沢度を知ることができ、光沢度の判別がで
きる。このとき、カラーセンサ、リニアイメージセンサ
等の高価な半導体を用いず、PSD、位相差フィルム、
偏光板等の簡単な構成で、安価な光沢センサの提供がで
きる。
As described above, according to the present invention, (irregularly reflected light) / (specularly reflected light and irregularly reflected light) are determined according to the amounts of the respective reflected light components regardless of the color density of the object surface. By taking out and comparing as two current values,
The glossiness of the object surface can be known, and the glossiness can be determined. At this time, without using expensive semiconductors such as color sensors and linear image sensors, PSDs, retardation films,
An inexpensive gloss sensor can be provided with a simple configuration such as a polarizing plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いた光沢センサの一実施例である。FIG. 1 is an embodiment of a gloss sensor using the present invention.

【図2】図1の光沢センサの受光側の細部を示したもの
である。
FIG. 2 shows details on the light receiving side of the gloss sensor of FIG. 1;

【図3】図2の光沢センサで使用した1/2波長板によ
りs波の振動方向が90°回転することを表した図であ
る。
FIG. 3 is a diagram showing that the s-wave oscillation direction is rotated by 90 ° by a half-wave plate used in the gloss sensor of FIG. 2;

【図4】図2の光沢センサで1/2波長板と偏光板の両
方を通過する反射成分を表した図である。
FIG. 4 is a diagram illustrating a reflection component that passes through both a half-wave plate and a polarizing plate in the gloss sensor of FIG. 2;

【図5】図2の光沢センサで偏光板のみを通過する反射
成分を表した図である。
FIG. 5 is a diagram illustrating a reflection component that passes only through a polarizing plate in the gloss sensor of FIG. 2;

【図6】図6は、図2の光沢センサでPSD出力電流を
信号処理し、正反射光量に応じた出力電圧を取り出すた
めの信号処理ブロックを示したものである。
FIG. 6 shows a signal processing block for performing signal processing on a PSD output current by the gloss sensor of FIG. 2 and extracting an output voltage corresponding to the amount of specular reflection.

【図7】図1の光沢センサについて偏光板の透過方向を
横方向とした光沢センサの受光側の細部を示したもので
ある。
7 shows details of the gloss sensor of FIG. 1 on the light receiving side of the gloss sensor with the transmission direction of the polarizing plate being the horizontal direction.

【図8】図1の光沢センサについて1/2波長板の代わ
りに、複屈折効果を示す透明フイルムを使用した光沢セ
ンサの受光側の細部を示したものである。
FIG. 8 shows details of a light receiving side of the gloss sensor using a transparent film exhibiting a birefringence effect instead of the half-wave plate in the gloss sensor of FIG.

【図9】図8の光沢センサで使用した透明フィルムによ
りs波の振動方向がα°回転することを表した図であ
る。
FIG. 9 is a diagram showing that the vibration direction of the s-wave is rotated by α ° by the transparent film used in the gloss sensor of FIG.

【図10】図8の光沢センサで透明フィルムと偏光板の
両方を通過する反射成分を表した図である。
FIG. 10 is a diagram illustrating a reflection component passing through both a transparent film and a polarizing plate in the gloss sensor of FIG. 8;

【図11】図8の光沢センサで偏光板のみを通過する反
射成分を表した図である。
FIG. 11 is a diagram illustrating a reflection component passing only through a polarizing plate in the gloss sensor of FIG. 8;

【符号の説明】[Explanation of symbols]

1 光源 2 集光レンズ 3 被測定試料 4 1/2波長板(位相差フィルム) 5 偏光板 6 PSD 7 PSD上に照射される反射光 8 偏光板(透過方向:縦) 9 1/2波長板の光軸 10 PSDのカソード端子 11 PSDのアノード端子 12 PSDのアノード端子 13 VPSD1の信号増幅回路 14 VPSD2の信号増幅回路 15 信号演算回路 16 信号処理ブロックの出力端子 17 偏光板(透過方向:横) 18 複屈折効果を持つ透明フィルム 19 透明フィルムの光軸 a 被測定試料3への入射光 b 被測定試料3からの反射光 c 偏光板8もしくは偏光板17を通過した後の反射光 d 被測定試料3に対する水平方向の振動成分 e 被測定試料3に対する垂直方向の振動成分 f PSD6の右領域に照射される正反射光(s波)と
乱反射光(s波) g PSD6の左領域に照射される乱反射光(p波) h 1/2波長板4を通過する前のs波 i 1/2波長板4を通過した後のs波 j 被測定試料3からの反射光bに含まれる乱反射光 k 被測定試料3からの反射光bに含まれる正反射光 l 1/2波長板4を通過した後の乱反射光 m 1/2波長板4を通過した後の正反射光 n 1/2波長板4と偏光板8を共に通過した乱反射光
(p波) o 偏光板8のみを通過した後の乱反射光(s波) p 偏光板8のみを通過した後の正反射光(s波) q PSD6の右領域に照射される乱反射光(p波) r PSD6の左領域に照射される正反射光(s波)と
乱反射光(s波) s PSD6の右領域に照射される乱反射光(p波) t PSD6の左領域に照射される正反射光(s波)×
sin2αと乱反射光(s波) u 透明フィルム18を通過した後の乱反射光 v 透明フィルム18を通過した後の正反射光 w 透明フィルム18と偏光板17を通過した後の正反
射光(s波)×sinα x 透明フィルム18と偏光板17を通過した後の乱反
射光(s波) y 偏光板17を通過した後の乱反射光(p波)
 Reference Signs List 1 light source 2 condenser lens 3 sample to be measured 4 1/2 wavelength plate (retardation film) 5 polarizing plate 6 PSD 7 reflected light irradiated on PSD 8 polarizing plate (transmission direction: vertical) 9 1/2 wavelength plate Optical axis 10 PSD cathode terminal 11 PSD anode terminal 12 PSD anode terminal 13 VPSD1 signal amplification circuit 14 VPSD2 Signal amplification circuit 15 Signal operation circuit 16 Output terminal of signal processing block 17 Polarizer (transmission direction: horizontal) 18 Transparent film having birefringence effect 19 Optical axis of transparent film a Light incident on sample 3 to be measured b Reflected light from the measurement sample 3 c Reflected light after passing through the polarizing plate 8 or the polarizing plate 17 d Vibration component in the horizontal direction with respect to the measurement sample 3 e Vibration component in the vertical direction with respect to the measurement sample 3 f In the right region of the PSD 6 Specular reflected light (s-wave)
Diffusely reflected light (s-wave) g Diffusely reflected light (p-wave) applied to the left area of PSD 6 h s-wave before passing through half-wave plate 4 i s-wave after passing through half-wave plate 4 j Diffusely reflected light k included in reflected light b from sample 3 to be measured k Regularly reflected light included in reflected light b from sample 3 to be measured l Diffusely reflected light after passing through half-wave plate 4 m 1 / 2-wave plate Specularly reflected light after passing through No. 4 Diffusely reflected light after passing through both the half-wave plate 4 and the polarizing plate 8
(P-wave) o Diffusely reflected light (s-wave) after passing only through the polarizing plate 8 p Regularly reflected light (s-wave) after passing through only the polarizing plate 8 q Diffusely reflected light (p) applied to the right area of the PSD 6 Wave) r Specularly reflected light (s wave) applied to the left area of PSD 6
Diffusely reflected light (s-wave) s Diffusely reflected light (p-wave) applied to the right area of PSD 6 t Regularly reflected light (s-wave) applied to left area of PSD 6 ×
sin2α and irregularly reflected light (s-wave) u irregularly reflected light after passing through the transparent film v specularly reflected light after passing through the transparent film w forward / reverse after passing through the transparent film 18 and the polarizing plate 17
Light (s-wave) x sin2α  x turbulence after passing through the transparent film 18 and the polarizing plate 17
Emitted light (s-wave) y Diffusely reflected light (p-wave) after passing through the polarizing plate 17

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 赤外〜可視領域に含まれる光線を物体に
照射して反射させ、位相差フィルムと偏光板とを通過す
る反射光と、偏光板を通過する反射光とに分けて位置検
出センサにて検知し、上記2つの反射光の光量に応じた
出力電流を信号処理することを特徴とする物体表面の光
沢度測定方法。
An object is irradiated with light rays included in an infrared to visible region and reflected, and position detection is performed by dividing the light into reflected light passing through a retardation film and a polarizing plate and reflected light passing through a polarizing plate. A method for measuring the glossiness of the surface of an object, comprising detecting a sensor and processing an output current according to the amounts of the two reflected lights.
【請求項2】 上記の位相差フィルムが1/2波長板ま
たは複屈折効果を示す透明フィルムであることを特徴と
する請求項1記載の物体表面の光沢度測定方法。
2. The method according to claim 1, wherein the retardation film is a half-wave plate or a transparent film exhibiting a birefringence effect.
【請求項3】 上記2つの反射光が、正反射光および乱
反射光と、乱反射光であることを特徴とする請求項1ま
たは請求項2記載の物体表面の光沢度測定方法。
3. The method according to claim 1, wherein the two reflected lights are specularly reflected light, irregularly reflected light, and irregularly reflected light.
JP11123053A 1999-04-28 1999-04-28 Measurement method of glossiness of object surface Expired - Fee Related JP3026972B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11123053A JP3026972B1 (en) 1999-04-28 1999-04-28 Measurement method of glossiness of object surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11123053A JP3026972B1 (en) 1999-04-28 1999-04-28 Measurement method of glossiness of object surface

Publications (2)

Publication Number Publication Date
JP3026972B1 true JP3026972B1 (en) 2000-03-27
JP2000314658A JP2000314658A (en) 2000-11-14

Family

ID=14851046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123053A Expired - Fee Related JP3026972B1 (en) 1999-04-28 1999-04-28 Measurement method of glossiness of object surface

Country Status (1)

Country Link
JP (1) JP3026972B1 (en)

Also Published As

Publication number Publication date
JP2000314658A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
KR100742982B1 (en) Focused-beam ellipsometer
JPH0552762A (en) Detecting apparatus of foreign matter of glass plate
JP3381341B2 (en) Apparatus and method for inspecting appearance of semiconductor device
JP2004037400A (en) Optical measurement method and apparatus for the same
JP5219487B2 (en) Defect inspection apparatus and defect inspection program
JP3026972B1 (en) Measurement method of glossiness of object surface
JPH0571923A (en) Polarization analyzing method and thin film measuring apparatus
JP4306924B2 (en) Glossiness discrimination method of object surface
JP2000314701A (en) Object surface glossiness measuring method
JPH07318500A (en) Inspection device for vicinity of object surface
JP2001216877A (en) Reflector reflection-type photoelectric sensor
JP3168480B2 (en) Foreign matter inspection method and foreign matter inspection device
JP2002303579A (en) Method and device for inspecting surface condition of article
JP2003097924A (en) Shape measuring system and method using the same
JP2001041880A (en) Gloss sensor
US10648928B1 (en) Scattered radiation optical scanner
JP2001311689A (en) Method for judging degree of glossiness on surface of object
JPH08219730A (en) Apparatus for determining whether paper leaf is good or not
JPH05203413A (en) Noncontact method and instrument for measuring displacement and noncontact film thickness measuring instrument
JPH06229939A (en) Inspection apparatus for foreign matter
JPS60257136A (en) Film thickness measuring device for photoresist
JP3319666B2 (en) Edge detection device
JP2000241143A (en) Angle sensor
JP2996262B2 (en) Inspection method of wafer foreign matter by comparing adjacent chips
JPH05144913A (en) Optical system for detecting foreign material on wafer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3026972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees