JP3026234B2 - Treatment method for radioactive water - Google Patents

Treatment method for radioactive water

Info

Publication number
JP3026234B2
JP3026234B2 JP3173484A JP17348491A JP3026234B2 JP 3026234 B2 JP3026234 B2 JP 3026234B2 JP 3173484 A JP3173484 A JP 3173484A JP 17348491 A JP17348491 A JP 17348491A JP 3026234 B2 JP3026234 B2 JP 3026234B2
Authority
JP
Japan
Prior art keywords
water
kneading
chitosan
radioactive
radioactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3173484A
Other languages
Japanese (ja)
Other versions
JPH0643291A (en
Inventor
猛雄 佐竹
Original Assignee
佐竹技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佐竹技研株式会社 filed Critical 佐竹技研株式会社
Priority to JP3173484A priority Critical patent/JP3026234B2/en
Publication of JPH0643291A publication Critical patent/JPH0643291A/en
Application granted granted Critical
Publication of JP3026234B2 publication Critical patent/JP3026234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明では、例えばアスファルトの如き物質に混練の様
な高剪断力を与えた時、これが曳糸性を示しながら大変
形する場合、この性質を粘弾性と言い、粘弾性を示し得
る物質を粘弾性体ということとする。 「産業上の利用分野」本発明は、原子力産業等に於いて
副生する放射性物質含有水の処理に関するものである。 「従来技術」原子力産業等、放射性物質を取扱う工業に
於いては、その工程中に放射性物質含有水を副生する場
合が多く、その処理には状況に応じ凝集剤による凝集沈
澱、イオン交換能又は吸着能を有する物体による収着分
離、蒸発濃縮等、各種の方法が使われているが、副生水
の多くは希薄な放射性物質含有水であり、その処理は繁
雑で時間も要し且コストもかかり、又少量の放射性物質
含有水の放出も行われている様である。(以上、『用水
廃水便覧』P.1093〜1105/昭和58年参照) 又、海水はウランを約3ppb含有している。この海水
よりウランを濃縮回収しようという試みは古くから行わ
れている。例えば、英国UKAEAでモスリンやグラス
ウールに酸化チタンを付け、海水中に浸漬することによ
り、ウランを採取しようとした。(※−1)この考え方
を基礎として日本でも海水中よりウランを採取する試み
がなされている。又、キチン、キトサン、並びにそれら
の燐酸化物はウラン捕捉能力があり、特にキチン、キト
サンの燐酸化物は他種金属イオンと共存状態にあるウラ
ニルイオンの吸着に対して高い選択性を示すことが明ら
かにされ、ウラニルイオンがアルカリ水溶液で容易に脱
着出来るため、海水中よりウランが回収される可能性が
出て来たが(※−2)、これに基づき、回収技術が完
成、企業化されたということを聞いていない。 「発明が解決しようとする問題点」以上の様に放射性物
質含有水、特にその濃度の低い場合は、色々の問題点を
有している。本発明はこの放射性物質含有水に、簡単且
効率的に処理して放射性物質を分離し、要すればその再
利用を計り得る方法を提供するにある。 「問題を解決するための手段及び作用」本発明者は上述
の種々の問題点を除き、簡単且効率的な分離法を得んと
種々の検討を重ねた。先ず考えられることは、放射性物
質と結合し得る物質が上述した様に2、3知られている
ので、これらを用い溶存している放射性物質を凝集沈澱
せしめる方法であろうが、何分希薄液の為、結合物は微
細な懸濁状となり、濾別は容易ではない。しかしながら
本発明者は、先に疎水性の粘弾性体を用い、これと懸濁
物含有水を混練すれば懸濁物を容易に分離し得ることを
見出しているので(特許第1234557号)、この方
法を今回の場合も適用してみたところ実施例に示す如く
容易に放射性物質を分離し得て、これが有効な方法であ
ることを確認した。しかし、この粘弾性体と混練する方
法は残念ながら一般的には水溶性物質、特に低分子の溶
解物では、単に混練のみでは水中より分離することは出
来ない。本発明者は更に検討を重ねた結果、水溶性放射
性物質と結合し得る官能基を予め粘弾性体に付与してお
けば、これと含有水を混練するだけで簡単に溶存してい
る放射性物質を水中より分離することが出来ることを見
出し、本発明を完成したものである。官能基を有する粘
弾性体としては、粘弾性体自身に官能基を有するものを
使用出来ることは勿論であるが、実施例にも示す如く官
能基を有しない粘弾性体と適当な官能基を有する物質と
を混練し、粘弾性体の粘弾性を活用し、この物質を微細
化、均一分散せしめることにより充分目的を達成し得る
ことを見出し、粘弾性体等の選択の巾を広げてその応用
範囲を広くすることが可能になったのは本発明の一つの
大きな特徴と言えよう。実施例に示す如く、粘弾性体と
して安価な燃料として使用し得るアスファルトを使用す
るとすれば、混練処理後これを燃料として用い、その熱
量を有効に利用した後、灰分より放射性物質の回収も可
能と考えられ、リサイクル・システム或はクローズド・
システムの組み立ても可能になるかも知れない。この様
に、放射性物質が簡単且効率的に水中より分離し得る理
由は、系の粘弾性により上述の如く官能基保有物質は微
細、均一に粘弾性体中に分布されており、更に含有水と
の混練に際しては粘弾性体はその粘弾性により絶えず大
きな新しい接触面を含有水に提供し、結合を容易且効率
よくしているものと考えられる。以下、実施例にて本発
明を説明する。 実施例−1.(対照例−1) アスファルト系粘弾性体(VE−0)による放射性物質
含有水の処理。針入度100〜200のアスファルト系
粘弾性体(VE−0)を用い、原子燃料製造工場の放射
性物質含有水の処理を行った。予め、温度30〜35
℃、回転数45〜50rpmに調整したニーダー中にV
E−0、200gを添加混練し、その中に純水200c
cを添加、VE中に水が約50%含水する様にした。こ
の組成物は水が細かく粘弾性体中に分散する所謂W/O
型エマルジョン状組成物であり、粘弾性を示す。次にp
Hを4.5〜5.0に調整した放射性物質含有水を10
0cc宛5回に亙り、洗浄、内部水置換を目的として、
30〜50℃、45rpmにて粘弾性を示しながら大変
形している粘弾性体中に添加、混練、排水した。混練時
間は20分/回である。排水のpHが4.5になった時
点で前処理を完了した。実験方法としては、前処理を上
述方法にて完了した混練中のVE200g中に、200
ccの放射性物質含有水を添加、35℃、45rpmに
て混練し、20分後のサンプルを採取、供試試料とし
た。分析方法としては、30ccの処理水を蒸発し、蒸
発残分中の放射能をフロカ式シンチレーションカウンタ
ーにより測定した。実験結果をTable−1に示す。 【表1】この結果より、VE−0により放射性物質の処理は殆ど
不可能である。 実施例−2.(対照例−2) 燐酸化キトサンによる放射性物質含有水の処理 (1)燐酸化キトサンの合成(旭ガラス試作品を使用) フレーク状市販キトサン100gに化学用燐酸200c
cを添加、50℃撹拌下、フレーク状キトサンが認めら
れなくなる迄反応させた。この反応液はpH1.0以
下、黄褐色、粘稠な液体である。この液体を撹拌下、1
0%苛性ソーダにて中和した。pH4.5〜5.0に達
した時、液は白濁、高粘度の流体となった。これを水で
希釈し、計算上0.1%の燐酸化キトサン懸濁液を作成
した。以下、これを燐酸化キトサン液ということにす
る。 (2)混合処理による放射性物質含有水の処理 原子燃料製造工場の管理廃水を放射性物質含有水とし、
廃水100ccに燐酸化キトサン5ccを添加、撹拌機
にて混合した。混合液は乳白色である。この混合液を通
常ビスコース工業にて利用しているカナキン濾布を用い
濾過した。濾液は薄く乳白色を示し、濾布上には淡黄色
の含水量の多い濾過物が見受けられた。この濾液を供試
試料とし、実施例−1に示す方法にて分析した。分析結
果をTable−2に示す。 【表2】 この結果より、混合、濾過による放射性物質の分離、除
去は完全には困難と考えられた。 (3)混練処理による放射性物質含有水の処理 次に2.に示した廃水100ccに燐酸化キトサン液5
ccの割合で添加、混合した混合液を供試試料とし、対
照例−1に示したVE−0を用いる混練処理による実験
を行った。混合液を、VE−0を用い、対照例−1に示
した条件で実験した。その結果をTable−3に示
す。 【表3】この結果より、放射性物質含有水と燐酸化キトサン混合
液との混合液は、VE−0による混練により90%以上
除去可能であることが判明した。 実施例−3. 燐酸化キトサン含有VE(VE−1)による放射性物質
含有水の処理 VE−0を常温、粘弾性を示す状態で混練中、実施例−
2に示した0.1%燐酸化キトサン懸濁液300ccを
200gのVE−0中に分離水を除去しながら徐々に添
加した。添加終了後、約20分でVEは若干赤味を帯び
た均一体となった。粘弾性を示している系中の水のpH
は、4.5〜5.0であった。この粘弾性体をVE−1
とする。混練中のVE−1に対し100ccの放射性物
質含有水を添加、20分の処理を行い分離水を除去する
操作を5回繰り返した後、供試試料100ccを添加、
混練し、各経過時間毎に供試用分離水を採取した。その
結果を、Table−4に示す。 【表4】 この結果より明らかな様に、VE−1を用い粘弾性を示
す状態で混練したところ、廃水処理が可能であった。
α、β核種とも除去率90%以上の結果を得ている。
又、上記結果より、α核種よりβ核種の除去率の方が高
いようである。 実施例−4. 燐酸化キトサン、キトサン混合VEによる放射性物質含
有水の処理 一般に膠状物質単独でVE−0中に添加、混練する場合
よりも、繊維状、或はフレーク状物質を共に添加する方
が混練効果が上昇する。これを目的として、この実施例
では粘弾性体VE−1に対して重量で2%のキトサンを
フレーク状で添加した。これをVE−2とする。VE−
2により実施例−3と同じ混練条件で実施、供試用分離
水を採取した。その結果をTable−5に示す。 【表5】この結果より、VE−1よりVE−2の処理速度はやや
速いようであるが、到達除去率に関しては、大差がない
様である。 実施例−5・ キトサン含有VE(VE−3)による処理試験 実施例−4において燐酸化キトサン、キトサン混合物を
VE−0中に分散したVE−2は、VE−1より処理速
度がやや速かった。そこで、フレーク状のキトサン2重
量%をVE−0中に分散した。これをVE−3とし、キ
トサン自体に処理効果があるかどうかをテストしてみ
た。キトサン(フレーク状)3gを200gのVE−0
中に添加、混練し、水200ccを添加、混練する場
合、フレーク状キトサンは30分混練後VE−0中に分
散し、混練中VEは稍赤味を帯びた均一体となった。こ
のVE−3を用い、実施例−3と同じ混練条件で混練
し、供試用サンプルを作成した。処理結果をTable
−6に示す。 【表6】 この結果より、キトサン単独で処理しても処理効果があ
ることが判明した。しかし、処理効果は燐酸化キトサン
と比較し、劣るようである。 実施例−6, チタン化ポリビニルアルコール含有VE(VE−4)に
よる処理実験 チタン化ポリビニルアルコール(チタン化PVA)は、
次の処方により合成した。重合度2400、鹸化度99
%(モル)の粉末(20〜32メッシュ)100gを、
α−チタン酸(Ti=7wt%、Hc1=13.2wt
%、硫酸ソーダ=7wt%)3l中に加え、50℃撹拌
下で30分反応し、水洗後乾燥した。Ti含有量は1
1.5wt%である。チタン化PVAは硫酸酸性でチタ
ンが外れ、PVAも水中に溶出する可能性があるが、p
H3以上では溶出しないことが確認されたので、pH
4.5〜5.0の範囲でVE−0中に分散しVE−4を
作成した。但し、VE−4はチタン化PVA3gを20
0gのVE−0中に分散させた。このVE−4を使用
し、実施例−3と同じ混練条件で混練し、供試試料とし
た。処理結果をTable−7に示す。 【表7】この結果より、チタン化PVAも除去速度はあまり大き
くないが使用可能と考えられる。 実施例−7. IRA−405含有VE(VE−5)による処理実験 IRA−405(アニオン交換樹脂)を予め粉砕し、6
0メッシュパスの粉体とし水中に分散、これをVE−0
中に、VE:IRA=1:0.5(重量)の比率で加え
分散させた。これをVE−5とする。VE量、放射性物
質含有水添加量、その他の実験条件は、実施例−3に示
した通りである。この処理結果をTable−8に示
す。 【表8】 この結果より、VE−5は比較的良好な除去効果が期待
し得る。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, when a material such as asphalt is subjected to a large shearing force such as kneading while exhibiting spinnability, this property is referred to as viscoelasticity. A substance that can exhibit elasticity is referred to as a viscoelastic body. "Industrial application field" The present invention relates to the treatment of radioactive substance-containing water by-produced in the nuclear industry and the like. "Prior art" In the nuclear power industry and other industries that handle radioactive materials, radioactive material-containing water is often produced as a by-product during the process. Alternatively, various methods such as sorption separation using an object having an adsorption ability, evaporative concentration and the like are used, but most of the by-product water is dilute radioactive substance-containing water, and the treatment is complicated and time-consuming. It is costly and it seems that a small amount of radioactive water is being released. (See “Handbook of Waste Water”, p. 1093-1105 / 1983) Seawater contains about 3 ppb of uranium. Attempts to concentrate and recover uranium from this seawater have long been made. For example, in the UK UKAEA, uranium was collected by attaching titanium oxide to muslin or glass wool and immersing it in seawater. (* -1) Based on this concept, attempts have been made in Japan to collect uranium from seawater. In addition, it is clear that chitin, chitosan, and their phosphates have a uranium-capturing ability, and in particular, chitin and chitosan phosphates exhibit high selectivity for the adsorption of uranyl ions coexisting with other metal ions. The possibility that uranium can be recovered from seawater has emerged because uranyl ions can be easily desorbed with an aqueous alkaline solution (* -2). Based on this, recovery technology was completed and commercialized. I have not heard that. "Problems to be Solved by the Invention" As described above, radioactive substance-containing water, especially when its concentration is low, has various problems. An object of the present invention is to provide a method capable of easily and efficiently treating the radioactive substance-containing water to separate the radioactive substance and, if necessary, reusing the radioactive substance. "Means and Actions for Solving the Problems" The present inventors have conducted various studies to obtain a simple and efficient separation method except for the above-mentioned various problems. The first thing that can be considered is that a few substances that can bind to radioactive substances are known as described above, and it would be possible to use these to coagulate and precipitate dissolved radioactive substances. As a result, the conjugate becomes a fine suspension and is not easily filtered. However, the present inventor has found that a suspension can be easily separated by using a hydrophobic viscoelastic body first and kneading the suspension with water containing the suspension (Japanese Patent No. 1234557). When this method was applied also in this case, it was confirmed that the radioactive substance could be easily separated as shown in the examples, and that this was an effective method. However, this method of kneading with a viscoelastic body unfortunately generally cannot separate a water-soluble substance, especially a low-molecular dissolved substance, from water by simply kneading. As a result of further studies, the present inventor has found that if a functional group capable of binding to a water-soluble radioactive substance is added to a viscoelastic body in advance, the radioactive substance which is easily dissolved only by kneading this with the water contained therein. Can be separated from water, and the present invention has been completed. As the viscoelastic body having a functional group, it is a matter of course that a viscoelastic body having a functional group can be used, but as shown in Examples, a viscoelastic body having no functional group and an appropriate functional group are used. Kneading with a substance having, utilizing the viscoelasticity of the viscoelastic body, finding that this object can be sufficiently achieved by making this substance finer and uniformly dispersed, expanding the range of choice of viscoelastic body and the like. It is one of the major features of the present invention that the application range can be broadened. As shown in the examples, if asphalt that can be used as an inexpensive fuel as a viscoelastic body is used, after kneading, it is used as a fuel, and after effectively utilizing the calorific value, it is possible to recover radioactive substances from ash. Is considered a recycling system or closed
It may also be possible to assemble the system. As described above, the reason that a radioactive substance can be easily and efficiently separated from water is that the substance having a functional group is finely and uniformly distributed in the viscoelastic body due to the viscoelasticity of the system as described above. It is considered that the viscoelastic body constantly provides a large new contact surface to the contained water due to its viscoelasticity during kneading with the viscoelastic material, thereby facilitating the binding easily and efficiently. Hereinafter, the present invention will be described with reference to examples. Example-1. (Control Example-1) Treatment of radioactive substance-containing water with an asphalt-based viscoelastic body (VE-0). Using an asphalt-based viscoelastic body (VE-0) having a penetration of 100 to 200, water containing a radioactive substance at a nuclear fuel manufacturing plant was treated. In advance, temperature 30-35
C., V in a kneader adjusted to a rotation speed of 45 to 50 rpm.
E-0, 200 g were added and kneaded, and pure water 200 c was added therein.
c was added so that the VE contained about 50% water. This composition is a so-called W / O in which water is finely dispersed in a viscoelastic material.
It is a type emulsion composition and exhibits viscoelasticity. Then p
H-adjusted radioactive substance-containing water adjusted to 4.5 to 5.0
5 times for 0cc, for the purpose of washing and replacing the internal water
It was added, kneaded, and drained into a viscoelastic body which was viscoelastic at 30 to 50 ° C. and 45 rpm and was largely deformed while showing viscoelasticity. The kneading time is 20 minutes / time. The pretreatment was completed when the pH of the wastewater reached 4.5. As an experimental method, 200 g of kneaded VE in which the pretreatment was completed by the above-described method was used.
cc of radioactive substance-containing water was added, and the mixture was kneaded at 35 ° C. and 45 rpm, and a sample after 20 minutes was collected and used as a test sample. As an analysis method, 30 cc of treated water was evaporated, and the radioactivity in the evaporation residue was measured by a floca scintillation counter. The experimental results are shown in Table-1. [Table 1] From this result, it is almost impossible to treat the radioactive material by VE-0. Example-2. (Control Example-2) Treatment of radioactive substance-containing water with phosphorylated chitosan (1) Synthesis of phosphorylated chitosan (using Asahi glass prototype) 100 g of flaky commercial chitosan and 200 c of phosphoric acid for chemical use
The mixture was added and reacted under stirring at 50 ° C. until no flaky chitosan was observed. This reaction solution is a yellowish brown, viscous liquid having a pH of 1.0 or less. While stirring this liquid, 1
Neutralized with 0% caustic soda. When the pH reached 4.5 to 5.0, the liquid became a cloudy, highly viscous fluid. This was diluted with water to produce a calculated 0.1% phosphorylated chitosan suspension. Hereinafter, this is referred to as a phosphorylated chitosan solution. (2) Treatment of radioactive material-containing water by mixing treatment Radioactive material-containing water is treated as wastewater managed by a nuclear fuel manufacturing plant.
5 cc of phosphorylated chitosan was added to 100 cc of waste water and mixed with a stirrer. The mixture is milky white. This mixed solution was filtered using a kanakin filter cloth usually used in the viscose industry. The filtrate showed a pale milky color, and a pale yellow, water-rich filtrate was observed on the filter cloth. This filtrate was used as a test sample and analyzed by the method described in Example-1. The analysis results are shown in Table-2. [Table 2] From these results, it was considered that separation and removal of the radioactive substance by mixing and filtration was completely difficult. (3) Treatment of radioactive substance-containing water by kneading treatment Phosphorylated chitosan solution 5 in 100 cc of wastewater
A mixed solution added and mixed at a ratio of cc was used as a test sample, and an experiment was performed by a kneading treatment using VE-0 shown in Control Example-1. The mixed liquid was tested using VE-0 under the conditions shown in Control Example-1. The results are shown in Table-3. [Table 3] From this result, it was found that a mixed solution of radioactive substance-containing water and a mixed solution of phosphorylated chitosan can be removed by 90% or more by kneading with VE-0. Example-3. Treatment of water containing radioactive material with VE containing phosphorylated chitosan (VE-1) Kneading VE-0 at room temperature and in a state showing viscoelasticity, Example-
300 cc of the 0.1% phosphorylated chitosan suspension shown in 2 were gradually added to 200 g of VE-0 while removing the separated water. After about 20 minutes from the end of the addition, VE became a slightly reddish homogeneous body. PH of water in a viscoelastic system
Was 4.5 to 5.0. This viscoelastic body is called VE-1
And The operation of adding 100 cc of radioactive substance-containing water to VE-1 during kneading, performing a treatment for 20 minutes to remove separated water, was repeated 5 times, and then 100 cc of a test sample was added.
The mixture was kneaded, and the test separation water was collected at each elapsed time. The results are shown in Table-4. [Table 4] As is clear from the results, when VE-1 was kneaded in a state showing viscoelasticity, wastewater treatment was possible.
Both α and β nuclides obtained a removal rate of 90% or more.
From the above results, it seems that the removal rate of β-nuclide is higher than that of α-nuclide. Embodiment-4. Treatment of radioactive substance-containing water with phosphorylated chitosan and chitosan-mixed VE Generally, adding the fibrous or flake-like substance together with VE-0 alone in VE-0 rather than adding and kneading it alone has a better kneading effect. To rise. For this purpose, in this example, 2% by weight of chitosan was added in the form of flakes to the viscoelastic body VE-1. This is designated as VE-2. VE-
2 was carried out under the same kneading conditions as in Example 3, and the test separated water was collected. The results are shown in Table-5. [Table 5] From this result, it seems that the processing speed of VE-2 is slightly higher than that of VE-1, but there is no significant difference in the attainment removal rate. Example-5 Treatment Test with VE Containing Chitosan (VE-3) VE-2 in which the phosphorylated chitosan / chitosan mixture was dispersed in VE-0 in Example-4 had a slightly higher treatment speed than VE-1. . Thus, 2% by weight of flaky chitosan was dispersed in VE-0. This was designated as VE-3, and it was tested whether chitosan itself had a treatment effect. 3 g of chitosan (flakes) to 200 g of VE-0
When 200 cc of water was added and kneaded, and kneaded, the flaky chitosan was dispersed in VE-0 after kneading for 30 minutes, and during kneading, VE became a slightly reddish homogeneous substance. Using VE-3, kneading was performed under the same kneading conditions as in Example 3 to prepare a test sample. Table of processing result
-6 is shown. [Table 6] From this result, it was found that the treatment effect was obtained even if the treatment was performed with chitosan alone. However, the treatment effect appears to be inferior to phosphorylated chitosan. Example-6, Experiment of treatment with titanium-containing polyvinyl alcohol-containing VE (VE-4)
It was synthesized according to the following formulation. Degree of polymerization 2400, degree of saponification 99
100 g of powder (20-32 mesh)
α-titanic acid (Ti = 7 wt%, Hc1 = 13.2 wt
%, Sodium sulfate = 7 wt%), reacted at 50 ° C. with stirring for 30 minutes, washed with water and dried. Ti content is 1
1.5 wt%. Titanium-modified PVA has a sulfuric acid acidity, which removes titanium, and PVA may be eluted in water.
Since it was confirmed that elution did not occur at H3 or higher, pH
VE-4 was dispersed in VE-0 in the range of 4.5 to 5.0 to prepare VE-4. However, for VE-4, 20 g of 3 g of titanated PVA was used.
Dispersed in 0 g of VE-0. This VE-4 was used and kneaded under the same kneading conditions as in Example 3 to obtain a test sample. The processing result is shown in Table-7. [Table 7] From this result, it is considered that titanated PVA can be used although the removal rate is not so high. Example-7. Processing Experiment with VE Containing IRA-405 (VE-5) IRA-405 (anion exchange resin) was pulverized in advance and 6
Disperse in water as powder of 0 mesh pass, VE-0
VE: IRA = 1: 0.5 (weight) was added and dispersed therein. This is designated as VE-5. The amount of VE, the amount of radioactive substance-containing water added, and other experimental conditions are as shown in Example-3. This processing result is shown in Table-8. [Table 8] From these results, VE-5 can be expected to have a relatively good removal effect.

Claims (1)

(57)【特許請求の範囲】 放射性物質と結合し得る官能基を有する粘弾性体中に放
射性物質含有水を添加し、系が粘弾性を示す状態を保ち
ながら混練することを特徴とする、放射性物質含有水よ
り放射性物質を分離する方法
(57) [Claims] characterized in that radioactive substance-containing water is added to a viscoelastic body having a functional group capable of binding to a radioactive substance, and kneading is performed while maintaining a state in which the system exhibits viscoelasticity. Method of separating radioactive substances from radioactive substance-containing water
JP3173484A 1991-04-16 1991-04-16 Treatment method for radioactive water Expired - Lifetime JP3026234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173484A JP3026234B2 (en) 1991-04-16 1991-04-16 Treatment method for radioactive water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173484A JP3026234B2 (en) 1991-04-16 1991-04-16 Treatment method for radioactive water

Publications (2)

Publication Number Publication Date
JPH0643291A JPH0643291A (en) 1994-02-18
JP3026234B2 true JP3026234B2 (en) 2000-03-27

Family

ID=15961361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173484A Expired - Lifetime JP3026234B2 (en) 1991-04-16 1991-04-16 Treatment method for radioactive water

Country Status (1)

Country Link
JP (1) JP3026234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022705B4 (en) * 2004-05-05 2012-05-31 Atc-Advanced Technologies Dr. Mann Gmbh A method of separating uranium species from water and using a weakly basic anion exchanger therefor

Also Published As

Publication number Publication date
JPH0643291A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
WO2019223223A1 (en) Iron-modified chitosan/vermiculite composite material for simultaneously removing anion and cation heavy metals, and preparation and application thereof
JP6055059B2 (en) Aggregation method
Hoong et al. Removal of dye in wastewater by adsorption-coagulation combined system with Hibiscus sabdariffa as the coagulant
CN102935352B (en) Method for absorbing and removing heavy metal and hexavalent chromium from waste liquid by using mangosteen slag
EP2981508B1 (en) Method for removing fluorinated organic compounds from contaminated fluids, and adsorbent component and adsorbent kit used therefor
CN103055722A (en) Nanofiber membrane with heavy metal absorption function and preparation method thereof
CN108793305A (en) A kind of ammonia nitrogen removal agent
Francesco et al. Heavy metal removal by cellulose-based textile waste product
DE1642443A1 (en) Process for the desalination of boiler feed water
JP3026234B2 (en) Treatment method for radioactive water
JP5550459B2 (en) Recovery phosphorus and recovery method
AU644303B2 (en) Method of preparing insoluble hydrolysable tannin and method of treating waste liquid with the tannin
CN104556551B (en) Household water disinfecting, cleaning and purifying filter element
JP7319619B2 (en) Arsenic-adsorbing cellulose material
Samoilova et al. Chitin-based magnetic composite for the removal of contaminating substances from aqueous media
JP3227517B2 (en) Treatment method for phosphorus-containing wastewater
US2312198A (en) Coagulant and method of making same
JP2010082497A (en) Water treating agent and method for treating water
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP6076264B2 (en) Cellulose phosphate powder product, process for producing the same, and use for removing contaminants from aqueous solutions
CN103551127A (en) Preparation method of modified resin mercury-removing adsorbent
CN108865514A (en) It is a kind of for removing formaldehyde and the composition of heavy metal ion in infantile clothes
JP3272216B2 (en) Treatment of chromium-containing wastewater
US428509A (en) Ebenezer kennard hitting
WO2022145278A1 (en) Harmful substance remover and method for treating harmful substance with use of same