JP3025933B2 - Boiler water-based corrosion inhibitor - Google Patents

Boiler water-based corrosion inhibitor

Info

Publication number
JP3025933B2
JP3025933B2 JP5186408A JP18640893A JP3025933B2 JP 3025933 B2 JP3025933 B2 JP 3025933B2 JP 5186408 A JP5186408 A JP 5186408A JP 18640893 A JP18640893 A JP 18640893A JP 3025933 B2 JP3025933 B2 JP 3025933B2
Authority
JP
Japan
Prior art keywords
hydrazine
corrosion inhibitor
boiler water
salts
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5186408A
Other languages
Japanese (ja)
Other versions
JPH0741966A (en
Inventor
司 前川
和則 福村
嘉仁 福村
宏康 林
昭範 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP5186408A priority Critical patent/JP3025933B2/en
Publication of JPH0741966A publication Critical patent/JPH0741966A/en
Application granted granted Critical
Publication of JP3025933B2 publication Critical patent/JP3025933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ボイラー水系の腐食防
止剤に関する。
The present invention relates to a boiler water-based corrosion inhibitor.

【0002】[0002]

【従来の技術とその課題】ボイラー水系においては、常
時水蒸気が還流する高圧及び高熱下にあるので、該水系
に溶解している酸素(溶存酸素)量が僅かであっても、
給水管などの内壁部に腐食やスケールを発生させる原因
となる。そのため通常は、溶存酸素の大部分を物理的に
除去した後、残りを脱酸素剤の添加により除去してい
る。またボイラー水のpHが酸性側であると腐食などが
促進されるので、通常ボイラー水はpH8.0程度以上
に調整されている。
2. Description of the Related Art In a boiler water system, since it is under high pressure and high heat at which steam is constantly refluxed, even if the amount of oxygen (dissolved oxygen) dissolved in the water system is small,
It causes corrosion and scale on the inner wall of the water supply pipe. Therefore, usually, most of the dissolved oxygen is physically removed, and the rest is removed by adding an oxygen scavenger. In addition, when the pH of the boiler water is on the acidic side, corrosion and the like are promoted, so that the boiler water is usually adjusted to a pH of about 8.0 or more.

【0003】従来脱酸素剤としては、主にヒドラジンが
使用されている。ヒドラジンは、その優れた還元作用に
よって溶存酸素を除去し、且つボイラー給水管内壁部に
黒色酸化鉄(マグネタイト)保護膜を形成維持させるこ
とができ、しかも有害な残渣を全く発生させることがな
いため、広くボイラー水系の腐食防止剤として使用され
ている。
Conventionally, hydrazine has been mainly used as an oxygen scavenger. Hydrazine removes dissolved oxygen by its excellent reducing action, and can form and maintain a black iron oxide (magnetite) protective film on the inner wall of the boiler water supply pipe, and does not generate any harmful residue. It is widely used as a corrosion inhibitor in boiler water systems.

【0004】より詳しくはヒドラジンは、少量の酸素の
存在下において基本的には、 N2 4 +O2 →N2 +2H2 O と反応し、更に温度や圧力の変化によっては、 2N2 4 →2NH3 +N2 +H2 及び/又は 3N2 4 →4NH3 +N2 と反応することもあるが、いずれの場合にも、ボイラー
水系に有害な酸やその他の有害物質を生成することはな
い。また、ヒドラジンはマグネタイト(Fe3 4 )が
酸化して錆成分であるFe2 3 が生成するのを妨げる
作用を示す。
More specifically, hydrazine basically reacts with N 2 H 4 + O 2 → N 2 + 2H 2 O in the presence of a small amount of oxygen, and further reacts with 2N 2 H 4 depending on changes in temperature and pressure. Reacts with → 2NH 3 + N 2 + H 2 and / or 3N 2 H 4 → 4NH 3 + N 2 , but does not generate harmful acids or other harmful substances in the boiler water system in any case . In addition, hydrazine has an effect of preventing magnetite (Fe 3 O 4 ) from being oxidized to produce Fe 2 O 3 as a rust component.

【0005】上記の様な優れた効果を有するヒドラジン
であるが、作業者の安全性に対する要求が高まると共
に、ヒドラジンと同等程度の優れた還元性を有し、しか
もより安全性(特に人体に対する安全性)の高い薬剤が
要望され、例えばカルボヒドラジドが提案されている
(特公昭63−63272号公報)。カルボヒドラジド
はヒドラジンよりも安全性の点ではやや優れ、常温域で
はヒドラジンと同等の効果を有するが、高温域ではヒド
ラジンよりも著しく劣っている。この様なカルボヒドラ
ジドの特性は、その大部分が高温下にあるボイラー水系
では性能が劣り、問題になる。
Although hydrazine has the above-mentioned excellent effects, it is required that the safety of workers is increased, and at the same time, it has an excellent reducing property comparable to hydrazine and is more safe (especially for humans). For example, carbohydrazide has been proposed (Japanese Patent Publication No. 63-63272). Carbohydrazide is slightly superior to hydrazine in terms of safety, and has the same effect as hydrazine at normal temperature, but is significantly inferior to hydrazine at high temperature. Such properties of carbohydrazide are inferior in boiler water systems in which most of them are at high temperatures, which is problematic.

【0006】また、常に大量の溶存酸素を含む開放循環
冷却水系の添加剤として、ヒドラジン塩が提案されてい
る(特公平4−46640号公報)。開放循環冷却水系
においては、冷却装置で熱を受け取って温まった水を、
冷却塔にて空気と接触させてその一部を蒸発させること
により熱を放出させて冷却し、再び冷却水として使用す
る。ところで該系にて使用する冷却水は主として無機塩
類などを含む水道水や井戸水であり、しかも前記の様に
蒸発を伴うので、冷却水中の塩類は次第に濃縮されて高
濃度となり、スケールやスライムの発生など種々の障害
を引き起こす原因となっていた。この様な障害の発生を
防止するため、従来は水の補給や濃縮水の排出が行われ
ていたが、水資源の節約を目的とし、最近では高濃縮運
転が積極的に行われている。ここで特に問題となるの
が、冷却水の濃縮に伴うpHの上昇(冷却水の強アルカ
リ性化)が前記障害の発生を一層助長することである。
前記公報の技術は、開放循環冷却水系において炭酸ヒド
ラジンなどのヒドラジン塩が酸(pH調整剤)として働
くことを利用し、循環使用により濃縮されて強アルカリ
性化した冷却水に該ヒドラジン塩を加えてpHを5.0
〜7.0程度に調整し、スケールやスライムの発生を防
止するものである。即ち、該公報の技術は、ボイラー水
系とは全く異なった因子が要求される開放循環冷却水系
において、ボイラー水系では要求されない目的でヒドラ
ジン塩が使用されているに過ぎない。
A hydrazine salt has been proposed as an additive for an open circulation cooling water system which always contains a large amount of dissolved oxygen (Japanese Patent Publication No. 4-46640). In the open circulation cooling water system, water that has received heat from the cooling device and warmed
The cooling tower makes contact with air and evaporates a part of the cooling tower to release heat, cool it, and use it again as cooling water. By the way, the cooling water used in the system is mainly tap water or well water containing inorganic salts and the like, and since it is accompanied by evaporation as described above, the salts in the cooling water are gradually concentrated to a high concentration, and scale and slime are reduced. It caused various obstacles such as occurrence. Conventionally, replenishment of water and discharge of concentrated water have been performed in order to prevent the occurrence of such an obstacle. However, recently, high-concentration operation has been actively performed for the purpose of saving water resources. What is particularly problematic here is that the increase in pH (concentration of the cooling water to be highly alkaline) accompanying the concentration of the cooling water further promotes the occurrence of the obstacle.
The technology disclosed in the above-mentioned publication utilizes the fact that hydrazine salts such as hydrazine carbonate act as an acid (pH adjuster) in an open circulation cooling water system, and the hydrazine salts are added to cooling water which is concentrated and strongly alkalized by circulation use. pH 5.0
It is adjusted to about 7.0 to prevent the generation of scale and slime. That is, the technology disclosed in this publication merely uses hydrazine salts for the purpose not required in boiler water systems in open circulation cooling water systems requiring completely different factors from boiler water systems.

【0007】[0007]

【課題を解決するための手段】本発明者は上記従来技術
の課題を解決すべく鋭意研究を重ねた結果、特定のヒド
ラジン誘導体であるカルバジン酸及びその塩が、高温域
においてもヒドラジンと同等の優れた酸素除去効果を有
し、且つヒドラジンよりも著しく高い人体に対する安全
性を有することを見い出し、ここに本発明を完成するに
至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, it has been found that carbazic acid and a salt thereof, which are specific hydrazine derivatives, are equivalent to hydrazine even at a high temperature range. It has been found that the present invention has an excellent oxygen removing effect and has a significantly higher safety for the human body than hydrazine, and has completed the present invention.

【0008】即ち本発明は、カルバジン酸及びその塩か
ら選ばれる少なくとも1種を有効成分とするボイラー水
系の腐食防止剤に係る。
That is, the present invention relates to a boiler water-based corrosion inhibitor containing at least one selected from carbazic acid and salts thereof as an active ingredient.

【0009】本発明のボイラー水系の腐食防止剤におい
て、有効成分として使用するカルバジン酸は、式NH2
NHCOOHで表わされる公知化合物である。またカル
バジン酸の塩としては公知のものが使用でき、例えば、
ヒドラジン塩(CH4 2 2 ・N2 4 )、ナトリウ
ムなどのアルカリ金属塩、モノエタノールアミン、イソ
プロパノールアミン、ジエタノールアミン、ジイソプロ
パノールアミン、トリエタノールアミンなどのアルカノ
ールアミン塩、メチルアミン、エチルアミン、イソプロ
ピルアミン、n−ブチルアミン、シクロヘキシルアミ
ン、モルホリン、1,8−ジアザビシクロウンデセン
(DBU)などのアミン塩などを挙げることができ、こ
れらの少なくとも1種を使用できる。なお本発明者の検
討の結果、従来から慣用的に言われている炭酸ヒドラジ
ン〔(N2 4 2 CO2 〕が、カルバジン酸のヒドラ
ジン塩であることが判明している。
In the boiler water-based corrosion inhibitor of the present invention, the carbazic acid used as an active ingredient is of the formula NH 2
It is a known compound represented by NHCOOH. Known salts of carbazic acid can be used, for example,
Hydrazine salts (CH 4 N 2 O 2 .N 2 H 4 ), alkali metal salts such as sodium, alkanolamine salts such as monoethanolamine, isopropanolamine, diethanolamine, diisopropanolamine, triethanolamine, methylamine, ethylamine, Examples thereof include amine salts such as isopropylamine, n-butylamine, cyclohexylamine, morpholine, and 1,8-diazabicycloundecene (DBU), and at least one of these can be used. As a result of the study by the present inventors, it has been found that hydrazine carbonate [(N 2 H 4 ) 2 CO 2 ], which has been conventionally used, is a hydrazine salt of carbazic acid.

【0010】本発明のボイラー水系の腐食防止剤(以下
単に「腐食防止剤」という)は、ボイラー水系のpHに
関係なくその効果を発揮し得るが、通常pH7〜14程
度、好ましくはpH8〜11程度のボイラー水系に用い
るのがよい。
[0010] The boiler water-based corrosion inhibitor of the present invention (hereinafter simply referred to as "corrosion inhibitor") can exhibit its effects irrespective of the pH of the boiler water system, but is usually about pH 7 to 14, preferably pH 8 to 11. It is good to use it for boiler water system.

【0011】本発明の腐食防止剤を用いてその効果を発
揮させるには、該腐食防止剤をボイラー水系に添加すれ
ばよい。添加方法は特に制限されず公知の方法が採用で
き、例えば、間欠的に投入する方法(具体的には数時間
〜数十時間毎に投入する方法)、一定量を連続的に投入
する方法などを挙げることができる。一定量を連続的に
投入する場合には、後記する本発明腐食防止剤の通常の
使用濃度よりかなり低い濃度でも、充分その効果を発揮
し得る。
In order to exert the effect by using the corrosion inhibitor of the present invention, the corrosion inhibitor may be added to a boiler water system. The addition method is not particularly limited, and a known method can be adopted. For example, a method of intermittently charging (specifically, a method of charging every several hours to several tens of hours), a method of continuously charging a fixed amount, and the like. Can be mentioned. When a certain amount is continuously added, the effect can be sufficiently exerted even at a concentration much lower than the usual concentration of the corrosion inhibitor of the present invention described later.

【0012】本発明腐食防止剤のボイラー水系における
使用濃度は特に制限されず広い範囲から適宜選択できる
が、経済性などを考慮すると、通常除去すべき溶存酸素
濃度の当量以上とするのがよい。
The concentration of the corrosion inhibitor of the present invention in the boiler water system is not particularly limited and can be appropriately selected from a wide range. However, in consideration of economy and the like, it is preferable that the concentration be equal to or higher than the dissolved oxygen concentration to be usually removed.

【0013】本発明の腐食防止剤には、該剤と溶存酸素
とによる酸化還元反応を更に促進するために、公知の添
加剤、例えばキノン類や金属塩を添加してもよい。
The corrosion inhibitor of the present invention may contain known additives such as quinones and metal salts in order to further promote the oxidation-reduction reaction between the agent and dissolved oxygen.

【0014】キノン類の具体例としては、例えば、p−
ベンゾキノン、2−メチル−p−ベンゾキノン、ジメチ
ル−メチル−p−ベンゾキノン、2−フェニル−p−ベ
ンゾキノン、2−クロロ−p−ベンゾキノン、ハイドロ
キノン、2−フェニル−フェニルハイドロキノン、2−
メチル−ハイドロキノン、ジメチルベンゾハイドロキノ
ン、2−クロロ−ハイドロキノンなどを挙げることがで
きる。これらは1種を単独で又は2種以上を混合して使
用できる。この様なキノン類の添加量は特に制限はな
く、溶存酸素濃度などに応じて適宜選択すればよいが、
通常カルバジン酸及びその塩から選ばれる少なくとも1
種とキノン類との重量比を、通常10〜10000:1
程度、好ましくは100〜1000:1程度とするのが
よい。
Specific examples of quinones include, for example, p-
Benzoquinone, 2-methyl-p-benzoquinone, dimethyl-methyl-p-benzoquinone, 2-phenyl-p-benzoquinone, 2-chloro-p-benzoquinone, hydroquinone, 2-phenyl-phenylhydroquinone, 2-
Examples thereof include methyl-hydroquinone, dimethylbenzohydroquinone, and 2-chloro-hydroquinone. These can be used alone or in combination of two or more. The addition amount of such quinones is not particularly limited, and may be appropriately selected according to the dissolved oxygen concentration and the like.
Usually at least one selected from carbazic acid and salts thereof
The weight ratio between the species and the quinones is usually from 10 to 10,000: 1.
Degree, preferably about 100 to 1000: 1.

【0015】金属塩としてはこの分野に常用される公知
のものが使用でき、例えば、コバルト、銅、マンガン、
鉄などの有機酸塩、無機酸塩、錯塩などを挙げることが
できる。より具体的には、下記(イ)〜(ニ)のものを
例示できる。
As the metal salt, known salts commonly used in this field can be used. For example, cobalt, copper, manganese,
Organic acid salts such as iron, inorganic acid salts, complex salts and the like can be mentioned. More specifically, the following (a) to (d) can be exemplified.

【0016】(イ)コバルト塩 塩化コバルト、硝酸コバルト、硫酸コバルト、酢酸コバ
ルト、塩化コバルトアンモニウム、コバルトEDTA錯
塩、コバルトアセチルアセトネートなど。この場合コバ
ルトは2価又は3価のいずれでもよい。
(A) Cobalt salts Cobalt chloride, cobalt nitrate, cobalt sulfate, cobalt acetate, cobalt ammonium chloride, cobalt EDTA complex salt, cobalt acetylacetonate and the like. In this case, cobalt may be divalent or trivalent.

【0017】(ロ)銅塩 塩化銅、硝酸銅、硫酸銅、酢酸銅、銅アンモニア錯塩、
銅EDTA錯塩、銅アセチルアセトネートなど。銅は1
価又は2価のいずれでもよい。
(B) Copper salt Copper chloride, copper nitrate, copper sulfate, copper acetate, copper ammonia complex,
Copper EDTA complex salt, copper acetylacetonate and the like. 1 for copper
It may be either divalent or divalent.

【0018】(ハ)マンガン塩 塩化マンガン、硝酸マンガン、硫酸マンガン、酢酸マン
ガン、マンガンEDTA錯塩、マンガンアセチルアセト
ネートなど。マンガンは2価又は3価のいずれでもよ
い。
(C) Manganese salts Manganese chloride, manganese nitrate, manganese sulfate, manganese acetate, manganese EDTA complex salt, manganese acetylacetonate and the like. Manganese may be divalent or trivalent.

【0019】(ニ)鉄塩 塩化鉄、硝酸鉄、硫酸鉄、酢酸鉄、鉄EDTA錯塩、鉄
アセチルアセトネートなど。鉄は2価又は3価のいずれ
でもよい。
(D) Iron salt Iron chloride, iron nitrate, iron sulfate, iron acetate, iron EDTA complex salt, iron acetylacetonate and the like. Iron may be divalent or trivalent.

【0020】上記金属塩は、1種を単独で使用でき、又
は同種金属もしくは異種金属の2種以上を併用できる。
金属塩の添加量も特に制限はなく、溶存酸素濃度などに
応じて適宜選択すればよいが、通常カルバジン酸及びそ
の塩から選ばれる少なくとも1種と金属塩(金属換算重
量)との重量比を、通常10〜10000:1程度、好
ましくは100〜1000:1程度とするのがよい。
The above metal salts can be used alone or in combination of two or more of the same or different metals.
The addition amount of the metal salt is not particularly limited and may be appropriately selected depending on the concentration of dissolved oxygen and the like. Usually, the weight ratio of at least one selected from carbazic acid and its salt to the metal salt (weight in terms of metal) is determined. It is usually about 10 to 10000: 1, preferably about 100 to 1000: 1.

【0021】[0021]

【発明の効果】本発明のカルバジン酸及びその塩から選
ばれる少なくとも1種を有効成分とする腐食防止剤は、
以下の様な優れた効果を達成できる。
According to the present invention, the corrosion inhibitor containing at least one selected from carbazic acid and salts thereof as an active ingredient is:
The following excellent effects can be achieved.

【0022】(1)ヒドラジンと同等の優れた酸素除去
効果を有する。
(1) It has the same excellent oxygen removing effect as hydrazine.

【0023】(2)ヒドラジンよりも著しく高い人体に
対する安全性を有する。特に経口、経皮、吸入毒性で問
題となる急性毒性が著しく低い。
(2) It has significantly higher safety for the human body than hydrazine. Particularly acute toxicity which is a problem in oral, dermal and inhalation toxicity is extremely low.

【0024】(3)その水溶液がアルカリ性であるため
ボイラー給水管を腐食させることがなく、ヒドラジン分
が消費されてアンモニア、窒素ガス、水素ガスなどが生
成すると共に極微量の無害な炭酸ガスが残るだけなので
有害な残渣を発生させることがない。
(3) Since the aqueous solution is alkaline, the boiler feed pipe is not corroded, hydrazine is consumed, ammonia, nitrogen gas, hydrogen gas, etc. are generated, and a trace amount of harmless carbon dioxide gas remains. No harmful residue is generated.

【0025】(4)熱に対する安定性が高いので、特に
高温負荷がかかるボイラー水系において有用である。
(4) Since it has high stability to heat, it is particularly useful in a boiler water system subjected to a high temperature load.

【0026】[0026]

【実施例】以下に実施例及び比較例を挙げ、本発明を一
層明瞭なものとする。
The following examples and comparative examples are given to further clarify the present invention.

【0027】実施例1〜6 均一に攪拌できるマグネチックスターラー及び溶存酸素
計(東芝ベックマン社製)を備えた、主管高さ250m
m、内容量750mlのガラス製容器に、水酸化ナトリ
ウム−リン酸第1ナトリウムでpH10に調整した水
(溶存酸素量:8.0ppm)を加え、40℃又は80
℃に保ちながら攪拌した。これに脱酸剤を、下記表1に
示す初期濃度(ppm、ヒドラジン換算100ppm)
となるように加え、溶存酸素量の経時変化を求めた。
Examples 1 to 6 Main pipe height of 250 m equipped with a magnetic stirrer and a dissolved oxygen meter (manufactured by Toshiba Beckman) capable of uniformly stirring.
m, water (dissolved oxygen content: 8.0 ppm) adjusted to pH 10 with sodium hydroxide-monobasic sodium phosphate is added to a glass container having a content of 750 ml, and the mixture is added at 40 ° C or 80 ° C.
The mixture was stirred while being kept at ° C. The deoxidizing agent was added thereto at an initial concentration shown in Table 1 below (ppm, 100 ppm in terms of hydrazine).
And the change with time in the amount of dissolved oxygen was determined.

【0028】[0028]

【表1】 [Table 1]

【0029】結果を図1及び図2に示す。The results are shown in FIG. 1 and FIG.

【0030】比較例1〜6 使用する脱酸剤の種類及び初期濃度(ppm、ヒドラジ
ン換算100ppm)を下記表2の記載の通り変更する
以外は、上記実施例と同様にして、溶存酸素量の経時変
化を求めた。
Comparative Examples 1 to 6 In the same manner as in the above Examples, except that the type of deoxidizing agent used and the initial concentration (ppm, 100 ppm in terms of hydrazine) were changed as shown in Table 2 below, the amount of dissolved oxygen was Changes over time were determined.

【0031】[0031]

【表2】 [Table 2]

【0032】結果を図3及び図4に示す。The results are shown in FIGS. 3 and 4.

【0033】図1〜図4から、以下の結論が得られる。The following conclusions can be drawn from FIGS.

【0034】(a)本発明の腐食防止剤は、水温及び触
媒添加の有無に関係なく、ヒドラジンと同等又はそれ以
上の溶存酸素除去能力を有する。
(A) The corrosion inhibitor of the present invention has a dissolved oxygen removing ability equal to or higher than that of hydrazine regardless of the water temperature and the presence or absence of a catalyst.

【0035】(b)本発明の腐食防止剤、特にカルバジ
ン酸を有効成分とする腐食防止剤は、40℃ではカルボ
ヒドラジドと同程度であるが、ボイラー水系の実際の温
度に近い80℃ではカルボヒドラジドよりも著しく優れ
た酸素除去能力を有する。
(B) The corrosion inhibitor of the present invention, particularly the corrosion inhibitor containing carbazic acid as an active ingredient, is similar to carbohydrazide at 40 ° C., but at 80 ° C. which is close to the actual temperature of the boiler water system, It has significantly better oxygen scavenging capacity than hydrazide.

【0036】(c)本発明の腐食防止剤は、カルボヒド
ラジドに比べ、触媒の添加により発揮される相乗効果が
大きい。
(C) The corrosion inhibitor of the present invention has a greater synergistic effect exhibited by the addition of a catalyst than carbohydrazide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3における溶存酸素濃度(ppm)
と時間(分)との関係を示す図面である。
FIG. 1 shows the dissolved oxygen concentration (ppm) in Examples 1 to 3.
6 is a drawing showing the relationship between the time and the time (minutes).

【図2】実施例4〜6における溶存酸素濃度(ppm)
と時間(分)との関係を示す図面である。
FIG. 2 shows the dissolved oxygen concentration (ppm) in Examples 4 to 6.
6 is a drawing showing the relationship between the time and the time (minutes).

【図3】比較例1〜3における溶存酸素濃度(ppm)
と時間(分)との関係を示す図面である。
FIG. 3 shows the concentration of dissolved oxygen (ppm) in Comparative Examples 1 to 3.
6 is a drawing showing the relationship between the time and the time (minutes).

【図4】比較例4〜6における溶存酸素濃度(ppm)
と時間(分)との関係を示す図面である。
FIG. 4 shows the dissolved oxygen concentration (ppm) in Comparative Examples 4 to 6.
6 is a drawing showing the relationship between the time and the time (minutes).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 宏康 徳島県徳島市川内町加賀須野463 大塚 化学株式会社徳島工場内 (72)発明者 岡 昭範 徳島県徳島市川内町加賀須野463 大塚 化学株式会社徳島工場内 (58)調査した分野(Int.Cl.7,DB名) C23F 11/12 - 11/14 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Hiroyasu Hayashi 463 Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Prefecture Inside Otsuka Chemical Co., Ltd. In the Tokushima Plant (58) Fields surveyed (Int. Cl. 7 , DB name) C23F 11/12-11/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カルバジン酸及びその塩から選ばれる少
なくとも1種を有効成分とするボイラー水系の腐食防止
剤。
1. A boiler water-based corrosion inhibitor comprising at least one selected from carbazic acid and salts thereof as an active ingredient.
【請求項2】 更に金属塩及びキノン類の少なくとも1
種を含有する請求項1記載の腐食防止剤。
2. The method according to claim 1, further comprising at least one of a metal salt and a quinone.
The corrosion inhibitor according to claim 1, comprising a seed.
JP5186408A 1993-07-28 1993-07-28 Boiler water-based corrosion inhibitor Expired - Lifetime JP3025933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5186408A JP3025933B2 (en) 1993-07-28 1993-07-28 Boiler water-based corrosion inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5186408A JP3025933B2 (en) 1993-07-28 1993-07-28 Boiler water-based corrosion inhibitor

Publications (2)

Publication Number Publication Date
JPH0741966A JPH0741966A (en) 1995-02-10
JP3025933B2 true JP3025933B2 (en) 2000-03-27

Family

ID=16187898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5186408A Expired - Lifetime JP3025933B2 (en) 1993-07-28 1993-07-28 Boiler water-based corrosion inhibitor

Country Status (1)

Country Link
JP (1) JP3025933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353160C (en) * 2005-09-22 2007-12-05 上海宝钢设备检修有限公司 Chemicals feeding method of hydrazine analyzer
CN117187820A (en) * 2022-03-15 2023-12-08 苏州热工研究院有限公司 Composition for wet maintenance of nuclear power station as well as preparation method and application thereof
CN115448473B (en) * 2022-08-29 2023-06-20 常熟金陵海虞热电有限公司 Scale inhibitor for circulating cooling water of thermal power plant and preparation method thereof

Also Published As

Publication number Publication date
JPH0741966A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
US5217686A (en) Alkoxybenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
JPH04231484A (en) Phenyl mercaptotetrazole/tolyl triazole corrosion inhibitory composition
US3650957A (en) Etchant for cupreous metals
JPS62109988A (en) Boiler corrosion inhibiting composition of stabilized sodiumerthorbate and its production
JP3025933B2 (en) Boiler water-based corrosion inhibitor
FI97627B (en) Composition and method for preventing corrosion
US3650958A (en) Etchant for cupreous metals
EP0538969A2 (en) Composition and method for inhibiting scale and corrosion using naphthylamine polycarboxylic acids
JPH01155988A (en) Oxygen collecting agent for boiler water and use thereof
US3650959A (en) Etchant for cupreous metals
JPH02209493A (en) Anticorrosive for steam or condensate system
JP3160051B2 (en) Pickling accelerator, pickling liquid composition containing pickling accelerator, and method for promoting pickling of metal using the same
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
US3579447A (en) Method of removing copper deposits from ferrous metal surfaces using hydroxyalkyl thiourea
JP3561768B2 (en) Oxygen scavenger
JP3838612B2 (en) Water-based anticorrosion method
JPS604273B2 (en) Metal corrosion suppression method
HU185932B (en) Anti-corrosive preparation for systems used for trating gases with alkanolamino
JPH0222487A (en) Method for preventing corrosion of caustic alkali evaporation boiler using catalyst added hydroquinone
JPS6050874B2 (en) Corrosion inhibitor for freezing liquids containing alkali metal salts or alkaline earth metal salts
US3585142A (en) Method of removing copper-containing incrustations from ferrous metal surfaces using an aqueous acid solution of aminoalkyl thiourea
US4956016A (en) Anticorrosive agents and use thereof
RU2360200C2 (en) Method of cleaning and removing magnetite-containing deposits from thermal power plant overhead tank
US3585143A (en) Method of removing copper-containing iron oxide incrustations from ferrous metal surfaces using an aqueous acid solution of o-amino thiophenol
JPS63166981A (en) Aqueous composite antiscale agent for boiler