JP3021530B2 - Method for producing high-purity titanyl phthalocyanine - Google Patents

Method for producing high-purity titanyl phthalocyanine

Info

Publication number
JP3021530B2
JP3021530B2 JP2091531A JP9153190A JP3021530B2 JP 3021530 B2 JP3021530 B2 JP 3021530B2 JP 2091531 A JP2091531 A JP 2091531A JP 9153190 A JP9153190 A JP 9153190A JP 3021530 B2 JP3021530 B2 JP 3021530B2
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
purity
present
phthalocyanine
quinoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2091531A
Other languages
Japanese (ja)
Other versions
JPH03291281A (en
Inventor
宏記 鈴木
広明 沢登
昭 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2091531A priority Critical patent/JP3021530B2/en
Publication of JPH03291281A publication Critical patent/JPH03291281A/en
Application granted granted Critical
Publication of JP3021530B2 publication Critical patent/JP3021530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子写真用感光体の電荷発生層材などの光導
電材料として好適する、高純度チタニルフタロシアニン
の安定かつ工業的な製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a stable and industrial method for producing high-purity titanyl phthalocyanine, which is suitable as a photoconductive material such as a charge generating layer material of an electrophotographic photoreceptor. It is.

(従来技術とその問題点) フタロシアニンは優れた光導電材料として近時着目さ
れ、これを例えば第1図のように電荷発生層(2)(図
中(1)は導電性基体、(3)は電荷輸送層)として用
いた電子写真用感光体は、長波長領域まで高い感度が得
られるため、研究が盛んである。特にその中でも更に高
感度を有する材料として、チタニルフタロシアニンが最
近注目され、これを用いた電子写真用感光体が既に製品
化されている。
(Prior art and its problems) Phthalocyanine has recently been attracting attention as an excellent photoconductive material, and is referred to as, for example, a charge generation layer (2) as shown in FIG. 1 ((1) is a conductive substrate, (3) The electrophotographic photoreceptor used as the charge transporting layer) has been actively studied because high sensitivity can be obtained up to a long wavelength region. In particular, titanyl phthalocyanine has recently attracted attention as a material having higher sensitivity, and a photoconductor for electrophotography using the same has already been commercialized.

ところでチタニルフタロシアニンは一般に次式のよう
に、O−フタロニトリルと四塩化チタンを不活性溶液中
において100〜300℃の温度で反応させて得られたジクロ
ロチタニルフタロシアニンを加水分解することによって
製造されるが、これによって得られたチタニルフタロシ アニンを感光体材として使用するに当たっては結晶化工
程や結晶型の均一化工程が必要である。
By the way, titanyl phthalocyanine is generally produced by hydrolyzing dichlorotitanyl phthalocyanine obtained by reacting O-phthalonitrile and titanium tetrachloride at a temperature of 100 to 300 ° C. in an inert solution as shown in the following formula. Is the titanyl phthalosyl In using anin as a photosensitive material, a crystallization step and a step of homogenizing a crystal form are required.

そこでその手段として各種の手法、例えば粗合成品を
芳香族溶媒中で加熱して結晶を成長させたのち、食塩の
ような硬度の高い無機塩とともにボールミル中で粉砕す
るソルトミリング法などが提唱されている。しかし、こ
れら従来の手段では操作が面倒であり、しかも処理ロッ
トにより電子写真感光体において最も重要である感度特
性が変動したり、同一結晶構造でも感度特性が異なった
りする難点があり、感光体材としては未だ不十分であ
る。
Therefore, various methods have been proposed as such means, for example, a salt milling method in which a crude synthetic product is heated in an aromatic solvent to grow crystals, and then crushed in a ball mill together with a hard inorganic salt such as salt. ing. However, these conventional means are cumbersome to operate, and the most important sensitivity characteristics of the electrophotographic photosensitive member vary depending on the processing lot, and the sensitivity characteristics differ even with the same crystal structure. Is still inadequate.

(発明の目的) 本発明は結晶化工程や結晶の均一工程を必要とするこ
となく、感光体を安定かつ工業的に作ることができる高
純度チタニルフタロシアニンの工業的な製造方法を提供
しようとするものである。
(Object of the Invention) The present invention intends to provide an industrial production method of high-purity titanyl phthalocyanine that can stably and industrially produce a photoreceptor without requiring a crystallization step or a uniform step of crystallizing. Things.

(問題点を解決するための本発明の手段) 本発明者等のよる種々の実験的研究によれば、従来方
法により製造されたチタニルフタロシアニンによる感光
体の前記感光特性などの変動が、フタロシアニン錯体の
純度に原因するものであり、フタルイミド含有量を5%
以下、特に0.5%以下に高純度化できれば、従来方法の
ように結晶化工程や結晶の均一工程を必要とすることな
く、製造されたチタニルフタロシアニンを用いて高感度
の感光体を安定かつ工業的に製造できることが見出され
た。
(Means of the Invention for Solving the Problems) According to various experimental studies by the present inventors, fluctuations in the photosensitivity and the like of a photoreceptor caused by titanyl phthalocyanine produced by a conventional method are caused by a phthalocyanine complex. Phthalimide content of 5%
In the following, in particular, if it can be highly purified to 0.5% or less, a highly sensitive photoreceptor can be stably and industrially manufactured using the produced titanyl phthalocyanine without requiring a crystallization step or a uniform crystal step as in the conventional method. It has been found that it can be manufactured.

本発明は上記の如き要求を満たしうる高純度なチタニ
ルフタロシアニンを工業的に提供しようとするもので、
その特徴とするところは、O−フタロニトリルと四塩化
チタンを反応させたのち、加水分解して得られたチタニ
ルフタロシアニンを、溶媒であるキノリンと共に50℃以
上に加熱して製造する点にある。
The present invention is to industrially provide high-purity titanyl phthalocyanine that can satisfy the above requirements,
It is characterized in that titanyl phthalocyanine obtained by reacting O-phthalonitrile with titanium tetrachloride and then hydrolyzing it is heated to 50 ° C. or higher together with quinoline as a solvent.

以下に本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

(実施例1) 攪拌機,還流量,温度計及び滴下ロートを備えた容器
2lの四つ口フラスコ内に、O−フタロニトリル322grと
溶媒としてキノリン996grを仕込んで攪拌し、ここに四
塩化チタン125.5grを滴下ロートにより約10分かけて滴
下する。その終了後、マントルヒータにより200℃以上
で1時間加熱して反応を完結させる。放冷後ここにメタ
ノール500mlを加えて攪拌したのち吸引濾過して、その
残渣をメタノールで充分に洗浄し、得られたジクロロチ
タニルフタロシアニンを、濃アンモニア水600mlと交換
水600mlの混合液により、沸点下で10時間の加水分解反
応を行う。そして室温で吸引濾過し、イオン交換水で洗
液が中性になるまで洗浄し、その後更にメタノールで洗
浄したのち、90℃の熱風で10時間乾燥して青紫色のチタ
ニルフタロシアニン281.7grを得た。
(Example 1) A container equipped with a stirrer, a reflux amount, a thermometer, and a dropping funnel.
Into a 2 l four-necked flask, 322 gr of O-phthalonitrile and 996 gr of quinoline as a solvent are charged and stirred, and 125.5 gr of titanium tetrachloride is dropped by a dropping funnel over about 10 minutes. After the completion, the reaction is completed by heating at 200 ° C. or more for 1 hour using a mantle heater. After standing to cool, 500 ml of methanol was added thereto, followed by stirring, followed by suction filtration.The residue was sufficiently washed with methanol, and the obtained dichlorotitanyl phthalocyanine was heated to a boiling point of a mixture of 600 ml of concentrated aqueous ammonia and 600 ml of exchanged water. The hydrolysis reaction is carried out for 10 hours under the following conditions. Then, the mixture was subjected to suction filtration at room temperature, washed with ion-exchanged water until the washing liquid became neutral, and then further washed with methanol, and then dried with hot air at 90 ° C. for 10 hours to obtain 281.7 gr of a blue-purple titanyl phthalocyanine. .

この従来方法により製造されたチタニルフタロシアニ
ン25grと、溶媒であるキノリン250grを攪拌機,還流
管、温度計を備えた四つ口フラスコ内に仕込み、マント
ルヒータにより200℃で2時間加熱攪拌する。放冷後吸
引濾過してその残渣をメタノールで充分に洗浄したの
ち、90℃の熱風で10時間乾燥して高純度化されたチタニ
ルフタロシアニン21.8grを得た。
25 gr of titanyl phthalocyanine produced by this conventional method and 250 gr of quinoline as a solvent are charged into a four-necked flask equipped with a stirrer, a reflux tube and a thermometer, and heated and stirred at 200 ° C. for 2 hours by a mantle heater. After allowing to cool, suction filtration was performed, and the residue was sufficiently washed with methanol, and then dried with hot air at 90 ° C. for 10 hours to obtain 21.8 gr of highly purified titanyl phthalocyanine.

(実施例2) 実施例1におけるチタニルフタロシアニンとキノリン
の加熱攪拌温度を150℃として高純度化した。
Example 2 The purity of the titanyl phthalocyanine and quinoline in Example 1 was increased by heating and stirring at 150 ° C.

(実施例3) 実施例1におけるチタニルフタロシアニンとキノリン
の加熱攪拌温度を100℃として製造した。
(Example 3) Production was performed by setting the heating and stirring temperature of titanyl phthalocyanine and quinoline in Example 1 to 100 ° C.

(実施例4) 実施例1におけるチタニルフタロシアニンとキノリン
の加熱攪拌温度を50℃として製造した。
(Example 4) Production was carried out by setting the heating and stirring temperature of titanyl phthalocyanine and quinoline in Example 1 to 50 ° C.

以上の実施例1〜4による本発明高純度手段を適用し
て製造させた高純度チタニルフタロシアニンと、実施例
1において説明した従来方法、即ち本発明による高純度
化前のチタニルフタロシアニンについて、フタルイミド
を定量したところ、第1表に結果を得た。なお定量方法
として実施例1〜4の高純度チタニルフタロシアニン及
び高純度前のチタニルフタロシアニン4grに、それぞれ
クロロホルム400grを加えてボールミルにより20時間磨
砕し、その抽出液中のフタルイミドを高速液体クロマト
グラフにより定量する方法を用いた。
For the high-purity titanyl phthalocyanine produced by applying the high-purity means of the present invention according to Examples 1 to 4 and the conventional method described in Example 1, that is, titanyl phthalocyanine before high-purification according to the present invention, phthalimide was used. Table 1 shows the results of the quantification. As a quantitative method, 400 g of chloroform was added to 4 g of the high-purity titanyl phthalocyanine and 4 g of the titanyl phthalocyanine before the high purity in Examples 1 to 4, and the mixture was ground by a ball mill for 20 hours. The method of quantification was used.

また更に実施例1〜4において説明した高純度化チタ
ニルフタロシアニンと、本発明による高純度以前のチタ
ニルフタロシアニンのそれぞれにより感光体を形成し
て、電子写真特性の判定条件である半減露光エネルギー
(E/2erg/cm2)を求めたところ、第1表及び第2図の結
果を得た。
Further, a photoreceptor is formed by each of the highly purified titanyl phthalocyanine described in Examples 1 to 4 and the titanyl phthalocyanine before the high purity according to the present invention, and the half-exposure energy (E / 2erg / cm 2 ), the results shown in Table 1 and FIG. 2 were obtained.

なお感光体の製造条件は次の通りである。導電性基体
であるアルミニウム製ドラム上に圧力10-5torr、加熱温
度500℃で膜厚500Åになるように、実施例1〜4の高純
度化チタニルフタロシアニンと本発明による高純度以前
のチタニルフタロシアニンを蒸着して第1図の電荷発生
層を形成する。そののちその表面に2−メチル−4−ジ
ベンジル・アミノベンゾ−1−1−ジフェニルヒドラゾ
ン1重量部に対し、ポリカーボネート1重量部からなる
電荷移動層(2)を20μmになるように塗工し、最後に
80℃で1時間乾燥して電子写真用感光体を形成した。ま
た半減露光エネルギーの測定は、暗所でコロナ放電電流
が17μAとなるように電圧が設定された、印加電圧によ
るコロナ放電により感光体を負帯電したのち、白色光で
露光し、表面電位が−750ボルトから−375ボルトに半減
する露光エネルギを求めた。
The manufacturing conditions of the photoreceptor are as follows. The highly purified titanyl phthalocyanine of Examples 1 to 4 and the pre-high purity titanyl phthalocyanine according to the present invention so that the film thickness becomes 500 ° C. at a pressure of 10 −5 torr and a heating temperature of 500 ° C. on an aluminum drum as a conductive substrate. Is deposited to form the charge generation layer of FIG. After that, a charge transfer layer (2) consisting of 1 part by weight of polycarbonate and 1 part by weight of 2-methyl-4-dibenzylaminobenzo-1-diphenylhydrazone was applied on the surface so as to have a thickness of 20 μm. To
After drying at 80 ° C. for 1 hour, a photoconductor for electrophotography was formed. The half-exposure energy was measured by setting the voltage so that the corona discharge current was 17 μA in a dark place. After negatively charging the photoreceptor by corona discharge with an applied voltage, the photosensitive member was exposed to white light, and the surface potential was − Exposure energy was halved from 750 volts to -375 volts.

第1表から明らかなように実施例1に示した本発明に
よる高純度化チタニルフタロシアニンは、従来のものに
比べてフタルイミド含有重量が著しく小となり、しかも
処理温度によって制御が可能である。また第1表及び第
2図から明らかなように、半減露光エネルギも従来のも
のに比べて著しく小さく、感度の高い感光体が得られる
ことを示している。
As is clear from Table 1, the highly purified titanyl phthalocyanine according to the present invention shown in Example 1 has a significantly lower phthalimide content than the conventional one, and can be controlled by the treatment temperature. As is clear from Table 1 and FIG. 2, the half-life exposure energy is significantly smaller than that of the conventional one, indicating that a photosensitive member having high sensitivity can be obtained.

また前述の各実施例においては溶媒としてキノリンを
用いたが、比較例としてピリジン,ジメチルホルムアミ
ド,メタノール,ジオキサン,エタノール,テトラヒド
ロフラン,トルエン,酢酸エチル,クロロホルム,アセ
トンを用いて処理したものについて、それぞれフタルイ
ミドを定量したところ第3図の結果を得た。これから明
らかなように本発明のキノリンを溶媒として用いたもの
が優れていることが判る。
In each of the above embodiments, quinoline was used as a solvent. As a comparative example, phthalimide was used for those treated with pyridine, dimethylformamide, methanol, dioxane, ethanol, tetrahydrofuran, toluene, ethyl acetate, chloroform and acetone. Was obtained, the result of FIG. 3 was obtained. As is clear from this, it is found that the quinoline of the present invention using the quinoline as the solvent is excellent.

なお各溶媒による高純度化操作は以下のようにして行
われた。攪拌機,還流管,温度計を備えた容量100mlの
四つ口フラスコに、本発明による高純度化前のチタニル
フタロシアニン6grと、溶媒60grを仕込み、マントルヒ
ータにより沸点下で2時間加熱攪拌する。放冷後吸引濾
過してその残渣をメタノールで充分洗浄したのち、90℃
の熱風で10時間乾燥した。
The purification operation with each solvent was performed as follows. In a 100 ml four-necked flask equipped with a stirrer, a reflux tube, and a thermometer, 6 gr of titanyl phthalocyanine before purification according to the present invention and 60 gr of a solvent are charged, and the mixture is heated and stirred at a boiling point for 2 hours by a mantle heater. After standing to cool and suction filtration, the residue is sufficiently washed with methanol, and then 90 ° C.
For 10 hours.

また更に本発明の実施例1による高純度化されたチタ
ニルフタロシアニンと、従来方法によるチタニルフタロ
シアニンを用いて前記製造条件により各100本の感光体
を製造し、それぞれの半減露光エネルギを求めたところ
第4図の如き結果を得た。
Further, using the highly purified titanyl phthalocyanine according to Example 1 of the present invention and the titanyl phthalocyanine according to the conventional method, 100 photoconductors were manufactured under the above-described manufacturing conditions, and the half-exposure energy was determined. The results as shown in FIG. 4 were obtained.

これから明らかなように、本発明によれば高感度であ
る感光体を製造ロットによるばらつきが少なく製造でき
るもので、工業的な製造において有効である。
As is apparent from the above, according to the present invention, a photosensitive member having high sensitivity can be manufactured with little variation among manufacturing lots, and is effective in industrial manufacturing.

(発明の効果) 以上のように本発明によれば、結晶化工程や結晶の均
一化工程を必要とすることなく、感度の高い電子写真用
感光体を性能のばらつき少なく製造しうる、高純度チタ
ニルフタロシアニンを工業的に安定に製造しうる方法を
提供しうるもので、電子写真用感光体の製造に用いてそ
の効果は大きい。
(Effects of the Invention) As described above, according to the present invention, a high-sensitivity electrophotographic photoreceptor can be manufactured with a small variation in performance without requiring a crystallization step or a crystal homogenization step. It can provide a method for industrially stably producing titanyl phthalocyanine, and has a great effect when used in the production of electrophotographic photoreceptors.

【図面の簡単な説明】[Brief description of the drawings]

第1図は機能分離型電子写真用感光体の断面図、第2
図,第3図,第4図は本発明チタニルフタロシアニンに
よる感光体の露光感度曲線、溶媒効果の比較図、及び製
造ロットによる半減露光エネルギ分布図である。
FIG. 1 is a cross-sectional view of a function-separated type electrophotographic photoconductor, and FIG.
FIGS. 3, 3 and 4 are an exposure sensitivity curve of the photoreceptor using the titanyl phthalocyanine of the present invention, a comparison diagram of the solvent effect, and a half-exposure energy distribution diagram according to the production lot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 昭 山梨県甲府市宮原町1014番地 山梨電子 工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Mochizuki 1014 Miyaharacho, Kofu City, Yamanashi Prefecture Inside Yamanashi Electronics Industry Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】O−フタロニトリルと四塩化チタンを反応
させたのち加水分解して製造されたチタニルフタロシア
ニンを、溶媒であるキノリンと共に50℃以上に加熱する
ことを特徴とする高純度チタニルフタロシアニンの製造
方法。
1. A high-purity titanyl phthalocyanine characterized in that titanyl phthalocyanine produced by reacting O-phthalonitrile with titanium tetrachloride and then hydrolyzing is heated together with a solvent quinoline to 50 ° C. or higher. Production method.
JP2091531A 1990-04-06 1990-04-06 Method for producing high-purity titanyl phthalocyanine Expired - Fee Related JP3021530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091531A JP3021530B2 (en) 1990-04-06 1990-04-06 Method for producing high-purity titanyl phthalocyanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091531A JP3021530B2 (en) 1990-04-06 1990-04-06 Method for producing high-purity titanyl phthalocyanine

Publications (2)

Publication Number Publication Date
JPH03291281A JPH03291281A (en) 1991-12-20
JP3021530B2 true JP3021530B2 (en) 2000-03-15

Family

ID=14029030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091531A Expired - Fee Related JP3021530B2 (en) 1990-04-06 1990-04-06 Method for producing high-purity titanyl phthalocyanine

Country Status (1)

Country Link
JP (1) JP3021530B2 (en)

Also Published As

Publication number Publication date
JPH03291281A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
JPH1069107A (en) Electrophotographic photoreceptor
JPS63116158A (en) Photosemiconductor material and electrophotographic sensitive body prepared by using it
JPH01299874A (en) Gamma-form titanium phthalocyanine compound, its production and electrophotographic photorecptor prepared by using same
JP3021530B2 (en) Method for producing high-purity titanyl phthalocyanine
JP2589705B2 (en) Optical semiconductor material and electrophotographic photosensitive member using the same
JP2748497B2 (en) Method for producing oxytitanium phthalocyanine crystal
JP2599170B2 (en) Electrophotographic photoreceptor
JPH06336554A (en) Production of oxytitanium (iv) phthalocyanine and titanyl (iv) phthalocyanine
JP2815648B2 (en) Method for producing crystalline titanyl phthalocyanine and crystalline titanyl phthalocyanine
JP2745639B2 (en) Method for producing oxytitanium phthalocyanine crystal
JP3859291B2 (en) Electrophotographic photoreceptor using silicon phthalocyanine compound
JPH0256657B2 (en)
JP4326032B2 (en) Process for producing β-type titanyl phthalocyanine
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
JP3592754B2 (en) Oxymolybdenum phthalocyanine having a novel crystal modification and method for producing the same
JP3781067B2 (en) Method for producing dihydroxysilicon phthalocyanine compound
JP3768310B2 (en) Silicon phthalocyanine compound and electrophotographic photosensitive member using the same
JP2502892B2 (en) Process for producing oxytitanium phthalocyanine crystal and electrophotographic photoreceptor containing the compound
JPH11305462A (en) Electrophotographic photoreceptor
JPH0360350B2 (en)
JP2003183534A (en) Method for producing charge-generating material and photosensitive product for electronic photography
JP3827034B2 (en) Electrophotographic photoreceptor using silicon phthalocyanine compound
JP3737981B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP2001033999A (en) Electrophotographic photoreceptor
JPH01204969A (en) Titanium phthalocyanine compound and electrophotographic photoreceptor containing same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees