JP3021412B2 - Gas storage / delivery method and gas storage / delivery device - Google Patents
Gas storage / delivery method and gas storage / delivery deviceInfo
- Publication number
- JP3021412B2 JP3021412B2 JP10034460A JP3446098A JP3021412B2 JP 3021412 B2 JP3021412 B2 JP 3021412B2 JP 10034460 A JP10034460 A JP 10034460A JP 3446098 A JP3446098 A JP 3446098A JP 3021412 B2 JP3021412 B2 JP 3021412B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- activated carbon
- storage
- arsine
- delivery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/382—Making shaped products, e.g. fibres, spheres, membranes or foam
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は例えば半導体工業で
イオン注入ガス用として用いられるアルシン、ホスフィ
ン、3フッ化ホウ素等の水素化化合物又はハロゲン化化
合物気体を貯蔵及び送出する方法及び装置に関し、より
詳細には相当量の該気体を高純度に長期間安定、安全に
吸着貯蔵し、該気体の大気への放出を抑制しつつ安全に
送出するのに優れた気体貯蔵・供給方法及び装置に関す
る。The present invention relates to a method and an apparatus for storing and delivering hydride or halide gas such as arsine, phosphine and boron trifluoride used for ion implantation gas in the semiconductor industry, for example. More specifically, the present invention relates to a gas storage / supply method and apparatus excellent in stably and safely adsorbing and storing a considerable amount of the gas with high purity for a long period of time and transmitting the gas safely while suppressing release of the gas to the atmosphere.
【0002】[0002]
【従来の技術】例えば半導体業界では、アルシン(As
H3 )、ホスフィン(PH3 )、3フッ化ホウ素(BF
3 )などの人体に極めて有毒な気体が、半導体の製造の
ためのイオン注入プロセスに用いるなどの目的で広く用
いられている。代表的には、アルシンはこれらの商業的
な用途のために、純アルシン或いは水素或いはヘリウム
のようなバランスガスとの混合アルシンのいずれかを含
有するシリンダ或いはボンベによって都合よく供給され
る。これらのアルシン含有シリンダの漏れは、特にこれ
らのシリンダの移送及び出荷中、潜在的に非常に危険で
ある。かかる課題を解決するべくアルシンを多孔質結晶
状のアルミナケイ酸塩であるゼオライトに吸着させて負
圧の下で貯蔵する方法が、例えば1988年5月17日
発行の米国特許第474421号に開示されている。こ
の方法によれば、一旦負圧下でゼオライトに吸着させた
アルシンを可逆反応としてゼオライトから脱着させて、
必要な現場に送出する際、かかる負圧によって有毒なア
ルシンが大気に拡散する危険性を回避することができ
る。2. Description of the Related Art For example, in the semiconductor industry, arsine (As)
H 3 ), phosphine (PH 3 ), boron trifluoride (BF
Gases that are extremely toxic to the human body, such as 3 ), are widely used for purposes such as being used in ion implantation processes for semiconductor manufacturing. Typically, arsine is conveniently supplied for these commercial applications by cylinders or cylinders containing either pure arsine or a mixture of hydrogen or arsine with a balance gas such as helium. Leakage of these arsine-containing cylinders is potentially very dangerous, especially during transport and shipping of these cylinders. In order to solve this problem, a method of adsorbing arsine on zeolite, which is a porous crystalline alumina silicate, and storing it under negative pressure is disclosed in, for example, US Pat. No. 4,744,421 issued May 17, 1988. Have been. According to this method, arsine once adsorbed on zeolite under negative pressure is desorbed from zeolite as a reversible reaction,
When delivered to the required site, such negative pressure can avoid the danger of toxic arsine diffusing into the atmosphere.
【0003】しかしながら、ゼオライトを用いると室温
においてアルシンが砒素と水素に分解するため、取り出
し可能な純アルシンの濃度が低下するとともに、時間の
経過とともに発生する水素に起因してボンベ内圧が上昇
して、場合によっては大気圧以上になり、アルシンが外
部に漏れ出す危険が生じる。However, when zeolite is used, arsine is decomposed into arsenic and hydrogen at room temperature, so that the concentration of pure arsine that can be taken out decreases, and the internal pressure of the cylinder increases due to hydrogen generated over time. In some cases, the pressure becomes higher than the atmospheric pressure, and there is a risk that arsine leaks to the outside.
【0004】これら危険を回避するために、PCT W
O96/11739では不純物が少ない活性炭が半導体
工業でイオン注入ガス用として用いられるアルシン、ホ
スフィン、3フッ化ホウ素などの気体化合物貯蔵に適す
ることが開示されている。しかし、一般の活性炭はヤシ
殻、石炭等の天然物を原料とするため、活性炭の製造工
程の一つである賦活工程で細孔形成を行うと、原料中に
存在する不純物の影響、又は原料組成及び構造の不均質
性に起因し、細孔径分布が幅広くなり、特定の気体化合
物を効率よく吸着貯蔵するためには不適切であった。さ
らに原料は産地、採取時期等に由来するロット間差があ
るために、細孔径分布を厳密に制御するのは困難であ
る。In order to avoid these dangers, PCT W
O96 / 11739 discloses that activated carbon with few impurities is suitable for storing gaseous compounds such as arsine, phosphine and boron trifluoride used as ion implantation gas in the semiconductor industry. However, since activated carbon is generally made of natural products such as coconut shell and coal, if pores are formed in the activation step, which is one of the production processes of activated carbon, the influence of impurities present in the raw material, Due to the inhomogeneity of the composition and structure, the pore size distribution was widened, which was inappropriate for efficiently adsorbing and storing a specific gaseous compound. Furthermore, raw materials have lot-to-lot differences derived from the place of production, the time of collection, and the like, so that it is difficult to strictly control the pore size distribution.
【0005】また、ボンベ内に詰めた活性炭粒子は充分
に高い強度を有していないと、ボンベ移動時及び気体の
吸脱着時に生じる圧力変動により、活性炭粒子相互又は
活性炭粒子とボンベ壁面と擦れ合う可能性があるため、
活性炭が劣化しボンベ内で炭素微粉が発生し、ボンベか
ら気体化合物を取り出す際に通過させる気体濾過器のフ
ィルターにこの炭素微粒子が目詰まりを生じてしまう等
の問題があった。If the activated carbon particles packed in the cylinder do not have a sufficiently high strength, the activated carbon particles may rub against each other or between the activated carbon particles and the cylinder wall surface due to pressure fluctuations generated during the movement of the cylinder and the adsorption and desorption of gas. Because
Activated carbon deteriorates, carbon fines are generated in the cylinder, and there is a problem that the carbon fine particles are clogged in a filter of a gas filter through which a gaseous compound is taken out from the cylinder.
【0006】天然物由来の活性炭には不純物として各種
金属類が存在しているが、これを含有したままアルシ
ン、ホスフィン等の吸着貯蔵に用いると、例えば次式に
示すようにアルシンが砒素と水素に分解されるなど、前
述のゼオライトを吸着材として用いた時と同様に、吸着
した気体化合物の分解が生じる。 AsH3 →As+3/2H2 [0006] Activated carbon derived from natural products contains various metals as impurities. If these metals are contained and used for adsorption and storage of arsine, phosphine, etc., for example, arsine becomes arsenic and hydrogen as shown in the following formula. The adsorbed gaseous compound is decomposed as in the case where the above-mentioned zeolite is used as the adsorbent. AsH 3 → As + 3 / 2H 2
【0007】これに伴い、第一に送出の際、取り出し可
能な純アルシンの濃度が低下する。第二に時間の経過と
共に、発生する水素に起因してボンベ内圧力が上昇し、
場合によっては初期の負圧状態から大気圧以上となり、
送出の際、アルシン等の猛毒性の気体が外部に漏れ出す
危険を生じる。[0007] Along with this, first, the concentration of pure arsine that can be taken out at the time of delivery decreases. Second, with the passage of time, the pressure inside the cylinder increases due to the generated hydrogen,
In some cases, the pressure may be higher than the atmospheric pressure from the initial negative pressure,
At the time of delivery, there is a danger that highly toxic gas such as arsine leaks out.
【0008】そこで、一般には活性炭の純度を高めるた
めに塩酸、硝酸、りん酸、硫酸等の酸で洗浄を行う。し
かし、酸洗浄を行うと、酸洗浄に用いた物質のアニオン
が活性炭に残存することがあり、これら活性炭をアルシ
ン、ホスフィン等の吸着貯蔵に用いると、これらアニオ
ンが還元され、窒素ガス、酸素ガス等が発生し、前述の
場合と同様、貯蔵気体の純度が低下、気体漏出などの問
題が生じることがあった。Therefore, in general, washing with an acid such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid or the like is performed to increase the purity of the activated carbon. However, when acid cleaning is performed, anions of the substance used for acid cleaning may remain on the activated carbon, and when these activated carbons are used for adsorption storage of arsine, phosphine, etc., these anions are reduced and nitrogen gas, oxygen gas As in the case described above, problems such as a decrease in the purity of the stored gas and gas leakage may occur.
【0009】また、高純度の原料を用いて製造した高純
度活性炭を用いた場合に於いては、例えばアルシンが砒
素と水素に分解される問題は回避されるものの、該高純
度活性炭とアルシンなどの気体が反応し、水素、窒素、
一酸化炭素、二酸化炭素などの不純物を発生する。この
場合によって生じる不純物気体は、前述のアルシンなど
の自己分解によって発生する水素ガスとは異なり、通常
貯蔵容器内の気体圧力が大気圧以上に達することはな
く、その点で送出の際の外部環境への漏出の危険性は少
ないものの、アルシン、ホスフィン、3フッ化ホウ素等
は、たとえば半導体業界でイオン注入プロセスに於いて
使用されるものであり、例えばSEMIInterna
tional Standards(1990年)によ
れば、その要求純度はいずれも少なくとも99.9%以
上であるため、気体の純度の低下がこれらの気体の価値
を著しく損なう場合があった。In the case of using a high-purity activated carbon produced from a high-purity raw material, for example, although the problem that arsine is decomposed into arsenic and hydrogen is avoided, the high-purity activated carbon and arsine are not used. the gas reacts, hydrogen, nitrogen,
Generates impurities such as carbon monoxide and carbon dioxide. Unlike the hydrogen gas generated by self-decomposition such as arsine described above, the impurity gas generated in this case usually does not reach a gas pressure in the storage vessel higher than the atmospheric pressure, and at that point, the external environment at the time of delivery is reduced. Although there is little risk of leakage to the atmosphere, arsine, phosphine, boron trifluoride, etc., are used, for example, in the semiconductor industry in ion implantation processes, such as SEMIInterna.
According to Tional Standards (1990), since the required purity is at least 99.9% or more, a decrease in the purity of the gas may significantly impair the value of these gases.
【0010】また、通常の作業環境温度下で吸着して貯
蔵した半導体製造に用いる特定の水素化化合物及びハロ
ゲン化化合物気体を流量を制御しながら真空ポンプを用
いて吸引、脱着して送出し使用する場合、該気体の流量
及び/又は真空ポンプの性能にもよるが、最終的に少な
からぬ該気体が容器内に残存してしまい、有効に利用で
きる該気体の量が限られていた。[0010] Further, while controlling the flow rate, a specific hydride gas and a halogenated compound gas used for the production of semiconductors which are adsorbed and stored under normal working environment temperature are suctioned, desorbed and sent out using a vacuum pump while controlling the flow rate. In such a case, depending on the flow rate of the gas and / or the performance of the vacuum pump, a considerable amount of the gas eventually remains in the container, and the amount of the gas that can be effectively used is limited.
【0011】[0011]
【発明が解決しようとする課題】本発明者らは上記の課
題を解決すべく鋭意研究した結果、 本発明を完成したも
のであって、 本発明の目的は特定の相当量の気体化合物
を効率よく吸着し、安全、安定に貯蔵し、該気体の大気
への放出を抑制しつつ安全にかつ効率よく送出する方法
及び装置を提供することにある。DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. It is an object of the present invention to provide a method and an apparatus for adsorbing well, storing the gas safely and stably, and sending the gas safely and efficiently while suppressing release of the gas to the atmosphere.
【0012】[0012]
【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、所定量の用いる水素化
化合物又はハロゲン化化合物気体をフェノール樹脂を主
原料とする活性炭と接触させて、大気圧以下の貯蔵環境
下で該活性炭に吸着させて貯蔵し、吸着した該気体の少
なくとも一部を脱着して、作業環境下へ送出する方法を
開発した。In the present invention, in order to solve the above-mentioned problems, a predetermined amount of a hydrogenated compound or a halogenated compound gas is brought into contact with activated carbon mainly composed of a phenol resin, A method was developed in which the activated carbon was adsorbed and stored in a storage environment under atmospheric pressure and stored, and at least a part of the adsorbed gas was desorbed and sent to the working environment.
【0013】また、この発明においては、所定量の用い
る水素化化合物又はハロゲン化化合物気体をフェノール
樹脂を主原料とする活性炭と接触させて、大気圧以下の
貯蔵環境下で該活性炭に吸着させて貯蔵し、吸着した該
気体の少なくとも一部を脱着して、作業環境下へ送出す
る装置を開発した。Further, in the present invention, a predetermined amount of a hydride compound or a halogenated compound gas to be used is brought into contact with activated carbon containing a phenol resin as a main raw material, and is adsorbed to the activated carbon under a storage environment at atmospheric pressure or lower. A device was developed that desorbs at least a portion of the stored and adsorbed gas and delivers it to the working environment.
【0014】また、この発明においては、それらの方法
及び装置に用いるフェノール樹脂を主原料とする活性炭
として、フェノール樹脂粉末の炭化、 賦活粒子が結合し
てなる粒状炭素成形物で、 その比表面積が700〜15
00m 2 /g、細孔直径0.01〜10μmの細孔容積
が0.1〜1.0cc/g、細孔直径10nm以下の細
孔容積が0.20〜0.80cc/gであり、かつ細孔
直径10nm以下の細孔容積に占める細孔直径0.6〜
0.8nmの細孔容積の割合が75vol%以上、粒子
嵩密度が0.4〜 1.1g/cc、充填密度が0.3
0〜0.70g/cc、灰分量が1.0%以下、活性炭
粒子の引張り強度が30kg/cm2 以上であることを
特徴とする活性炭を使用する方法及び装置を開発した。[0014] In the present invention, the activated carbon mainly composed of phenol resin used in the method and apparatus is a granular carbon molded product obtained by combining carbonized and activated particles of phenol resin powder, and has a specific surface area. 700-15
00 m 2 / g, pore volume of pore diameter 0.01 to 10 μm is 0.1 to 1.0 cc / g, pore volume of pore diameter 10 nm or less is 0.20 to 0.80 cc / g, And a pore diameter 0.6 to a pore volume of 10 nm or less.
The ratio of the pore volume of 0.8 nm is 75 vol% or more, the particle bulk density is 0.4 to 1.1 g / cc, and the packing density is 0.3.
A method and an apparatus using activated carbon, characterized in that the activated carbon particles are 0 to 0.70 g / cc, the ash content is 1.0% or less, and the tensile strength of the activated carbon particles is 30 kg / cm 2 or more.
【0015】また、この発明においては、水素化化合物
及びハロゲン化化合物気体と密閉空間内で事前に接触さ
せて吸着させる吸着工程と、該吸着反応を経た系を反応
促進する工程と、該反応促進工程を経た該気体を該密閉
空間から排出する排出工程の一連の工程により活性炭を
処理して、該気体と同種又は異種の水素化化合物及びハ
ロゲン化化合物気体を吸着して貯蔵する時に、該活性炭
と該貯蔵気体の接触により生じる不純物気体に起因す
る、該貯蔵気体の純度低下が起きることを防止する方法
を開発した。Further, in the present invention, an adsorption step of preliminarily contacting and adsorbing a hydrogenated compound and a halogenated compound gas in an enclosed space, a step of accelerating a system which has undergone the adsorption reaction, and a step of accelerating the reaction When the activated carbon is treated by a series of discharge steps of discharging the gas having passed through the step from the enclosed space to absorb and store a hydrogen compound and a halogenated compound gas of the same type or different from the gas, the activated carbon is removed. A method has been developed to prevent the purity of the stored gas from being reduced due to the impurity gas generated by the contact between the gas and the stored gas.
【0016】また、この発明においては、水素化化合物
及びハロゲン化化合物気体と密閉空間内で事前に接触さ
せて吸着させる吸着工程と、該吸着反応を経た系を反応
促進する工程と、該反応促進工程を経た該気体を該密閉
空間から排出する排出工程の一連の工程により活性炭を
処理して、該気体と同種又は異種の水素化化合物及びハ
ロゲン化化合物気体を吸着して貯蔵する時に、該活性炭
と該貯蔵気体の接触により生じる不純物気体に起因す
る、該貯蔵気体の純度低下が起きることを防止する装置
を開発した。Further, in the present invention, an adsorption step of adsorbing a hydrogenated compound and a halogenated compound gas in advance by contacting them in a closed space, a step of accelerating the system after the adsorption reaction, and a step of accelerating the reaction When the activated carbon is treated by a series of discharge steps of discharging the gas having passed through the step from the enclosed space to absorb and store a hydrogen compound and a halogenated compound gas of the same type or different from the gas, the activated carbon is removed. A device has been developed to prevent the purity of the stored gas from being reduced due to the impurity gas generated by contact between the gas and the stored gas.
【0017】また、この発明においては、それらの用い
る水素化化合物又はハロゲン化化合物気体をフェノール
樹脂を主原料とする活性炭と接触させて、大気圧以下の
貯蔵環境下で該活性炭に吸着させて貯蔵し、吸着した該
気体の少なくとも一部を脱着して、作業環境下へ送出す
る装置の構造が、貯蔵された該気体の有効に利用できる
量を増加させるために、該活性炭を収納する容器を該活
性炭ごと加熱することができる、温度制御機能付き加熱
ユニットを具備した方法又は装置を開発した。Further, in the present invention, the hydrogenated compound or halogenated compound gas used is brought into contact with activated carbon containing phenolic resin as a main raw material, and adsorbed on the activated carbon under a storage environment at atmospheric pressure or lower to store the gas. Then, the structure of the device for desorbing at least a part of the adsorbed gas and delivering it to the working environment increases the amount of stored gas that can be effectively used. We have developed a method or a device equipped with a heating unit with a temperature control function that can heat the activated carbon together.
【0018】[0018]
【発明の実施の形態】以下に本発明の実施形態を詳細に
記載する。Embodiments of the present invention will be described below in detail.
【0019】本発明において、所定量の水素化化合物又
はハロゲン化化合物気体をフェノール樹脂を主原料とす
る活性炭と接触させて、大気圧以下の貯蔵環境下で該活
性炭に吸着させて貯蔵し、吸着した該気体の少なくとも
一部を脱着して、作業環境下へ送出するために、負圧に
引くことを特徴とする水素化化合物又はハロゲン化化合
物気体を貯蔵し、その後に送出する装置は、例えば図1
に示すように、容器1、容器弁2、容器弁内蔵フィルタ
ー3、上部空間4、パージ弁5、圧力計6、バイパス弁
7、ラインフィルタ8、エアー駆動弁9、マスフローコ
ントローラー10、接続配管11、活性炭12により構
成される。該装置は、少なくとも容器1及び活性炭12
を加熱するヒーターと加熱温度を制御するユニットを同
時に具備してもかまわない。また、上記の容器1から接
続配管11は、充分な真空気密性能を有することが好ま
しい。In the present invention, a predetermined amount of a hydrogenated compound or a halogenated compound gas is brought into contact with activated carbon containing phenolic resin as a main raw material, and is adsorbed and stored on the activated carbon under a storage environment under atmospheric pressure. For desorbing at least a part of the gas and storing the hydride or halogenated compound gas, which is characterized by drawing a negative pressure in order to send it to the working environment, the device for sending the gas is, for example, FIG.
As shown in the figure, container 1, container valve 2, container valve built-in filter 3, upper space 4, purge valve 5, pressure gauge 6, bypass valve 7, line filter 8, air drive valve 9, mass flow controller 10, connection pipe 11 , Activated carbon 12. The device comprises at least a container 1 and activated carbon 12
And a unit for controlling the heating temperature may be provided at the same time. Further, it is preferable that the connection pipe 11 from the container 1 has sufficient vacuum tightness.
【0020】本発明において、所定量の水素化化合物又
はハロゲン化化合物気体を高純度活性炭と接触させて、
大気圧以下の貯蔵環境下で該活性炭に吸着させて貯蔵
し、吸着した該気体の少なくとも一部を脱着して、作業
環境下へ送出するために、負圧に引くことを特徴とする
水素化化合物又はハロゲン化化合物気体を貯蔵し、その
後に送出する方法又は装置に使用する活性炭は、細孔直
径、細孔容積が微妙に制御可能であり、原料としての均
一性、ロット間の均一性に優れるフェノール樹脂を原料
とする活性炭が好ましく、さらに好ましくは、フェノー
ル樹脂粉末の炭化、 賦活粒子が結合してなる粒状炭素成
形物で、 その比表面積が800〜1500m2 /g、細
孔直径0.01〜10μmの細孔容積が0.1〜1.0
cc/g、細孔直径10nm以下の細孔容積が0.20
〜0.80cc/gであり、かつ細孔直径10nm以下
の細孔容積に占める細孔直径0.6〜0.8nmの細孔
容積の割合が75vol%以上、粒子嵩密度が0.4〜
1.1g/cc、充填密度が0.30〜0.70g/c
c、灰分量が1.0%以下、粒子の引張り強度が30k
g/cm2 以上である。In the present invention, a predetermined amount of a hydrogenated compound or a halogenated compound gas is brought into contact with high-purity activated carbon,
Hydrogenation characterized in that it is adsorbed and stored on the activated carbon under a storage environment at atmospheric pressure or lower, and at least a part of the adsorbed gas is desorbed and reduced to a negative pressure in order to send it to the working environment. Activated carbon used in a method or an apparatus for storing a compound or a halogenated compound gas and then sending it out has a pore diameter and a pore volume that can be delicately controlled, and assures uniformity as a raw material and uniformity between lots. Activated carbon made of a superior phenol resin is preferred, and more preferably, a granular carbon molded product obtained by combining carbonized and activated particles of a phenol resin powder, having a specific surface area of 800 to 1500 m 2 / g and a pore diameter of 0. The pore volume of 0.1 to 10 μm is 0.1 to 1.0.
cc / g, pore volume of 0.20 or less
0.80 cc / g, and the ratio of the pore volume of the pore diameter of 0.6 to 0.8 nm to the pore volume of the pore diameter of 10 nm or less is 75 vol% or more, and the particle bulk density is 0.4 to
1.1 g / cc, packing density 0.30 to 0.70 g / c
c, ash content is 1.0% or less, tensile strength of particles is 30k
g / cm 2 or more.
【0021】さらに好ましくは、本発明において別途提
案されている、例えばアルシン、ホスフィン、3フッ化
ホウ素等の水素化化合物及びハロゲン化化合物気体と密
閉空間内で事前に接触させて吸着させる吸着工程と、該
吸着反応を経た系を反応促進する工程と、該反応促進工
程を経た該気体を該密閉空間から排出する排出工程の一
連の工程により処理されたフェノール樹脂を主原料とす
る活性炭である。More preferably, an adsorption step separately proposed in the present invention, in which a hydride compound such as arsine, phosphine and boron trifluoride and a halogenated compound gas are brought into contact in advance in a closed space and adsorbed. Activated carbon containing phenolic resin as a main raw material, which has been subjected to a series of steps of a step of promoting the reaction of the system that has undergone the adsorption reaction and a step of discharging the gas that has undergone the reaction promoting step from the closed space.
【0022】該活性炭の比表面積は700〜1500m
2 /g、好ましくは850〜1400m2 /g、最も好
ましくは900〜1300m2 /g、である。比表面積
が800m2 /gより小さい場合は、アルシン、ホスフ
ィン等の気体化合物の吸着サイトの量が少なすぎて吸着
容量が低く好ましくない。また、比表面積が1500m
2 /g以上ではアルシン、ホスフィン等の気体化合物の
吸着に有効に働くと考えられる細孔直径0.6〜0.8
nmの細孔容積が小さくなり好ましくない。The specific surface area of the activated carbon is 700 to 1500 m
2 / g, preferably 850 to 1400 m 2 / g, most preferably 900 to 1300 m 2 / g. When the specific surface area is less than 800 m 2 / g, the amount of adsorption sites for gaseous compounds such as arsine, phosphine and the like is too small, and the adsorption capacity is undesirably low. In addition, the specific surface area is 1500 m
When the content is 2 / g or more, the pore diameter is considered to be effective for the adsorption of gaseous compounds such as arsine and phosphine.
The pore volume of nm is undesirably small.
【0023】該活性炭の細孔直径0.01〜10μmの
細孔容積は0.1〜1.0cc/g、好ましくは0.2
〜0.8cc/g、最も好ましくは0.3〜0.7cc
/gである。この範囲の細孔容積が0.1cc/gより
小さいと、アルシン、ホスフィン等の気体化合物の細孔
内の拡散速度が遅くなって、吸着速度、脱着速度が低下
し好ましくない。また、この細孔直径0.01〜10μ
mの細孔容積が1.0cc/gより大きいと粒子嵩密度
及び粒子の機械的強度が小さくなり好ましくない。The activated carbon has a pore volume of a pore diameter of 0.01 to 10 μm, preferably 0.1 to 1.0 cc / g, preferably 0.2 to 1.0 cc / g.
~ 0.8cc / g, most preferably 0.3-0.7cc
/ G. If the pore volume in this range is smaller than 0.1 cc / g, the diffusion rate of gaseous compounds such as arsine and phosphine in the pores becomes slow, and the adsorption rate and desorption rate are undesirably reduced. In addition, the pore diameter is 0.01 to 10 μm.
If the pore volume of m is larger than 1.0 cc / g, the bulk density of the particles and the mechanical strength of the particles become undesirably small.
【0024】また、該活性炭は細孔直径10nm以下の
細孔容積が0.20〜0.80cc/g、かつ細孔直径
10nm以下の細孔容積に占める細孔直径0.6〜0.
8nmの細孔容積の割合が75vol%以上である。細
孔直径10nm以下の細孔容積は、好ましくは0.30
〜0.70cc/g、最も好ましくは0.30〜0.6
0cc/gである。この細孔直径10nm以下の細孔容
積が小さくなると、細孔直径0.6〜0.8nmの細孔
容積も低下するので、アルシン、ホスフィン等の気体化
合物の吸着容量が低下し、また細孔直径10nm以下の
細孔容積が大きすぎると、細孔直径0.6〜0.8nm
の細孔容積の割合が減少して好ましくない。The activated carbon has a pore volume of 0.20 to 0.80 cc / g having a pore diameter of 10 nm or less, and a pore diameter of 0.6 to 0.8 occupies the pore volume of a pore diameter of 10 nm or less.
The ratio of the pore volume of 8 nm is 75 vol% or more. The pore volume with a pore diameter of 10 nm or less is preferably 0.30
0.70.70 cc / g, most preferably 0.30 to 0.6
0 cc / g. When the pore volume with a pore diameter of 10 nm or less decreases, the pore volume with a pore diameter of 0.6 to 0.8 nm also decreases, so that the adsorption capacity of gaseous compounds such as arsine and phosphine decreases. If the pore volume with a diameter of 10 nm or less is too large, the pore diameter is 0.6 to 0.8 nm.
Is unfavorable because the ratio of the pore volume decreases.
【0025】また、細孔直径0.6〜0.8nmの細孔
容積は細孔直径10nm以下の細孔容積の75vol%
以上、好ましくは78vol%以上、最も好ましくは8
0vol%以上である。アルシン(As H3 )、ホスフ
ィ ン(PH3 )の分子の大きさを分子力学法で計算した
構造に対して、各分子のvan der Waals半
径を用いて計算した結果、それぞれの分子の長軸は0.
45nm、0.49nm程度となるが、これら分子を吸
着するのに有効に作用する細孔は、その分子径を少し上
回る程度の直径を有する細孔であり、細孔直径0.6〜
0.8nmの細孔と考えられる。細孔直径が分子の大き
さに対して小さ過ぎる細孔では、分子の吸着速度が小さ
くなり好ましくない。また、細孔直径が分子の大きさに
対してかなり大きい場合には吸着速度と同時に脱着速度
も高くなり、平衡吸着量が低下し好ましくない。The pore volume with a pore diameter of 0.6 to 0.8 nm is 75 vol% of the pore volume with a pore diameter of 10 nm or less.
Or more, preferably 78 vol% or more, most preferably 8 vol%
0 vol% or more. Arsine (As H 3), phosphine emissions (PH 3) with respect to the magnitude calculated by molecular mechanics structure of the molecule, the result of calculation using the van der Waals radius of each molecule, the long axes of the molecules Is 0.
The pores effectively acting to adsorb these molecules are pores having a diameter slightly larger than the molecular diameter, and the pore diameter is about 0.6 to 0.49 nm.
It is considered a 0.8 nm pore. If the pore diameter is too small relative to the size of the molecule, the rate of molecule adsorption is undesirably low. On the other hand, if the pore diameter is considerably large relative to the size of the molecule, the adsorption rate and the desorption rate both increase, which is undesirable because the equilibrium adsorption amount decreases.
【0026】従って、これら分子を吸着するのに有効に
作用する細孔直径0.6〜0.8nmの細孔容積が細孔
直径10nm以下の細孔容積の75vol%より小さく
なるとアルシン(AsH3 )、ホスフィ ン(PH3 )等
の気体化合物の吸着容量が低下し好ましくない。Therefore, if the pore volume having a pore diameter of 0.6 to 0.8 nm, which effectively acts to adsorb these molecules, becomes smaller than 75 vol% of the pore volume having a pore diameter of 10 nm or less, arsine (AsH 3) ), The adsorption capacity of gaseous compounds such as phosphine (PH 3 ) is undesirably reduced.
【0027】また、活性炭の粒子嵩密度は0.4〜1.
2g/cc、好ましくは0.5〜1.0g/cc、最も
好ましくは0.6〜0.8g/ccである。粒子嵩密度
が小さすぎるとボンベ等の容器に充填した際に、容器の
内容積当たりの吸着能力が低下し好ましくない。また、
大き過ぎると活性炭の細孔の連通性が低下し吸着能力の
低下を来すので好ましくない。The activated carbon has a particle bulk density of 0.4-1.
2 g / cc, preferably 0.5-1.0 g / cc, most preferably 0.6-0.8 g / cc. If the bulk density of the particles is too small, the adsorption capacity per internal volume of the container is undesirably reduced when the container is filled in a container such as a cylinder. Also,
If it is too large, the porosity of the activated carbon decreases, leading to a decrease in adsorption capacity, which is not preferable.
【0028】また、活性炭をボンベ等の容器に充填した
際の充填密度は0.3〜 0.7g/cc、好ましくは
0.5〜0.65g/ccである。充填密度が小さすぎ
るとボンベ等の内容積当たりの吸着能力が低下し好まし
くない。本発明の活性炭の形状は円柱状、球状等の他、
円筒状やその他の異形断面のものを用いることができ
る。The packing density of the activated carbon in a container such as a cylinder is 0.3 to 0.7 g / cc, preferably 0.5 to 0.65 g / cc. If the packing density is too low, the adsorbing capacity per internal volume of a cylinder or the like decreases, which is not preferable. The shape of the activated carbon of the present invention is columnar, spherical, etc.,
Cylindrical or other irregular cross-sections can be used.
【0029】また、活性炭粒子の大きさは0.3〜5m
m、好ましくは0.6〜4mm、最も好ましくは0.8
〜3mmである。粒子が大きすぎるとボンベ等の容器に
充填した際に、充填密度を高くできず好ましくない。粒
子が小さすぎると粒子製造時、及びボンベ等への充填作
業時の作業性が悪く好ましくない。The size of the activated carbon particles is 0.3 to 5 m.
m, preferably 0.6-4 mm, most preferably 0.8
33 mm. If the particles are too large, the filling density cannot be increased when the particles are filled in a container such as a cylinder, which is not preferable. If the particles are too small, the workability during the production of the particles and the filling operation into a cylinder or the like is poor, which is not preferable.
【0030】また、例えば活性炭をアルシン、ホスフィ
ン、3フッ化ホウ素等の水素化化合物及びハロゲン化化
合物気体と密閉空間内で事前に接触させて吸着させる吸
着工程と、該吸着反応を経た系を反応促進する工程と、
該反応促進工程を経た該気体を該密閉空間から排出する
排出工程の一連の工程を活性炭に対して施す。その理由
は、活性炭の細孔表面に存在する水素、窒素、酸素、炭
素原子を予め強制的に除去することにより、貯蔵する気
体化合物中に不純物の混入するのを防ぐためである。事
前に注入される気体化合物は活性炭表面に単に物理吸着
するだけでなく、活性炭表面の水素、窒素、酸素、炭素
原子と化学的に反応し水素、窒素、一酸化炭素、二酸化
炭素の発生を引き起こし、事前に注入された気体化合物
中に混入する。従って、もはや活性炭中には貯蔵する気
体化合物と反応して生じる不純物の原因となる原子は減
少しており、貯蔵する気体化合物中への不純物の混入は
回避できる。Further, for example, an adsorption step in which activated carbon is brought into contact with a hydrogenated compound such as arsine, phosphine or boron trifluoride or a halogenated compound gas in advance in a closed space to adsorb the activated carbon, and a reaction is carried out by reacting the system after the adsorption reaction. Accelerating;
A series of steps of a discharging step of discharging the gas having passed through the reaction promoting step from the closed space is performed on the activated carbon. The reason is that hydrogen, nitrogen, oxygen, and carbon atoms present on the pore surface of the activated carbon are forcibly removed in advance to prevent impurities from being mixed into the gaseous compound to be stored. The pre-injected gaseous compounds not only physically adsorb to the activated carbon surface, but also chemically react with hydrogen, nitrogen, oxygen and carbon atoms on the activated carbon surface, causing the generation of hydrogen, nitrogen, carbon monoxide and carbon dioxide. , Mixed into the previously injected gaseous compounds. Therefore, the number of atoms causing impurities generated by reacting with the gaseous compound to be stored in the activated carbon has been reduced, so that contamination of the gaseous compound to be stored with impurities can be avoided.
【0031】また、該反応促進工程は、該密閉空間内の
所定量のアルシン、ホスフィン、3フッ化ホウ素等の気
体化合物を加熱する段階を含むのが好ましい。この加熱
工程における温度は、水素化化合物又はハロゲン化化合
物気体を貯蔵し、その後に送出する装置が使用される一
般的な使用環境温度である30℃以上であることが好ま
しく、50℃以上であることがさらに好ましく、100
℃から200℃であることが最も好ましい。200℃を
越えるとアルシンなどの気体化合物が自己分解を起こし
てしまうため好ましくない。The reaction promoting step preferably includes a step of heating a predetermined amount of a gaseous compound such as arsine, phosphine or boron trifluoride in the closed space. The temperature in the heating step is preferably 30 ° C. or higher, which is a general use environment temperature in which a device for storing a hydrogenated compound or a halogenated compound gas and thereafter sending out the gas is 50 ° C. or higher. More preferably, 100
Most preferably, it is between 200C and 200C. If the temperature exceeds 200 ° C., a gaseous compound such as arsine is undesirably self-decomposed.
【0032】該反応促進工程の加熱に要する時間は、加
熱温度に大きく依存するが、例えば100℃以上の加熱
温度の条件下では、1時間以上が好ましく、さらに好ま
しくは5時間以上、最も好ましくは8時間以上である。
加熱時間が短いと反応が不完全で実際の貯蔵中の不純物
気体の発生を期待通りに防ぐことができないため好まし
くない。また、加熱に数日を要するような条件は実施上
効率が非常に悪く、好ましくない。The time required for heating in the reaction accelerating step greatly depends on the heating temperature, but is preferably 1 hour or more, more preferably 5 hours or more, and most preferably the heating temperature of 100 ° C. or more. 8 hours or more.
If the heating time is short, the reaction is incomplete and the generation of impurity gas during actual storage cannot be prevented as expected, which is not preferable. Conditions in which heating requires several days are not preferable because the efficiency is extremely low in practice.
【0033】さらに、該排出工程における該密閉空間内
の圧力が、大気圧以下となるように、例えばアルシン、
ホスフィン、3フッ化ホウ素等の気体化合物の充填量及
び/又は加熱温度を選択するのがよい。Further, the pressure in the closed space in the discharging step is controlled to be equal to or less than the atmospheric pressure, for example, arsine,
It is preferable to select the amount of gaseous compound such as phosphine and boron trifluoride and / or the heating temperature.
【0034】さらにまた、該反応促進工程によって生
じ、アルシン、ホスフィン、3フッ化ホウ素等の気体化
合物に混入した不純物気体を該排出工程において円滑に
排出するためのバッファ空間を該密閉空間に設けてもよ
い。Further, a buffer space is provided in the closed space for smoothly discharging the impurity gas generated in the reaction promoting step and mixed in the gaseous compound such as arsine, phosphine and boron trifluoride in the discharging step. Is also good.
【0035】該反応促進工程を経た該気体を該密閉空間
から排出する排出工程は、温度を100℃〜200℃で
維持したまま、真空ポンプで10〜5mmHg程度まで
減圧して行う。これら、活性炭の気体化合物による処理
は、気体化合物を貯蔵する活性炭をボンベに充填する前
に、複数のボンベの分をまとめて処理しても良いし、各
ボンベに活性炭を充填後行っても良い。例えば猛毒のア
ルシンで処理した活性炭を取り出して、各ボンベへ分配
する煩雑さから、予め活性炭を各ボンベに分配した後に
各ボンベ毎に気体化合物処理を行った方が作業性は良好
である。The discharging step of discharging the gas having passed through the reaction promoting step from the closed space is performed by reducing the pressure to about 10 to 5 mmHg with a vacuum pump while maintaining the temperature at 100 ° C. to 200 ° C. The treatment of the activated carbon with the gaseous compound may be performed before the cylinder is filled with the activated carbon for storing the gaseous compound, by treating a plurality of cylinders at once, or after each cylinder is filled with the activated carbon. . For example, from the complexity of taking out activated carbon treated with highly toxic arsine and distributing it to each cylinder, it is better to perform the gaseous compound treatment for each cylinder after distributing the activated carbon to each cylinder in advance.
【0036】前処理に用いる例えばアルシン、ホスフィ
ン、3フッ化ホウ素等の水素化化合物又はハロゲン化化
合物気体は容器内の活性炭吸着材に単に物理吸着される
だけでなく、活性炭吸着材の表面の水素、窒素、酸素、
炭素原子との化学反応を伴う化学吸着も引き起こすた
め、その結果該ガス中に不純物として、水素、窒素、一
酸化炭素及び二酸化炭素の発生を引き起こし、該ガス中
に混入するのである。The hydride or halogenated compound gas such as arsine, phosphine or boron trifluoride used in the pretreatment is not only physically adsorbed to the activated carbon adsorbent in the container, but also the hydrogen on the surface of the activated carbon adsorbent. , Nitrogen, oxygen,
Since it also causes chemisorption accompanied by a chemical reaction with carbon atoms, as a result, hydrogen, nitrogen, carbon monoxide and carbon dioxide are generated as impurities in the gas, and are mixed into the gas.
【0037】この方法の実施態様としては、貯蔵する例
えばアルシン、ホスフィン、3フッ化ホウ素等の水素化
化合物又はハロゲン化化合物気体をすぐに使用したい場
合には、例えばアルシン、ホスフィン、3フッ化ホウ素
等の水素化化合物又はハロゲン化化合物気体自体が熱分
解しない程度の高温で加熱すれば、数時間で効率的に前
処理を完了することができ、貯蔵用の例えばアルシン、
ホスフィン、3フッ化ホウ素等の水素化化合物又はハロ
ゲン化化合物気体をその後吸着させて、使用環境に、例
えばボンベごと搬送することができる。一方、化合物気
体を使用するまで充分時間がある場合には、前処理に用
いる例えばアルシン、ホスフィン、3フッ化ホウ素等の
水素化化合物又はハロゲン化化合物気体を入れて放置
し、使用段階になって貯蔵用の例えばアルシン、ホスフ
ィン、3フッ化ホウ素等の水素化化合物又はハロゲン化
化合物気体と置換すれば良い。なお、前処理に用いる例
えばアルシン、ホスフィン、3フッ化ホウ素等の水素化
化合物又はハロゲン化化合物気体の必要量は、活性炭と
の反応が完全に完了するのに必要な量で足り、この点で
例えばアルシン、ホスフィン、3フッ化ホウ素等の水素
化化合物又はハロゲン化化合物気体を無駄に使用する必
要は生じない。As an embodiment of this method, when it is desired to immediately use a hydrogenated compound or a halogenated compound gas such as arsine, phosphine or boron trifluoride, for example, arsine, phosphine or boron trifluoride is used. If heated at such a high temperature that the hydrogenated compound or the halogenated compound gas itself does not thermally decompose, the pretreatment can be completed efficiently in several hours, and for storage, for example, arsine,
A hydride gas such as phosphine or boron trifluoride or a halogenated compound gas is then adsorbed and transported to the use environment, for example, together with the cylinder. On the other hand, if there is sufficient time until the compound gas is used, a hydrogenation compound or a halogenated compound gas such as arsine, phosphine, boron trifluoride or the like used in the pretreatment is put into the apparatus and left to stand. What is necessary is just to replace it with a hydrogenated compound or a halogenated compound gas such as arsine, phosphine or boron trifluoride for storage. In addition, the required amount of a hydride compound such as arsine, phosphine, boron trifluoride or the like used in the pretreatment or a halogenated compound gas is sufficient to complete the reaction with the activated carbon completely. For example, there is no need to use hydride compounds such as arsine, phosphine and boron trifluoride or halogenated compound gases wastefully.
【0038】また、前処理に用いる例えばアルシン、ホ
スフィン、3フッ化ホウ素等の水素化化合物又はハロゲ
ン化化合物気体の量及び/又は加熱温度を適当に選択し
て密閉空間内を大気圧以下とすれば、前処理に用いる例
えばアルシン、ホスフィン、3フッ化ホウ素等の水素化
化合物又はハロゲン化化合物気体の排出時に、外部環境
への漏れを防止することが可能になるので、安全に不純
物の除去を行うことができる。The amount of the hydride or halogenated compound gas such as arsine, phosphine, boron trifluoride or the like used in the pretreatment and / or the heating temperature is appropriately selected to reduce the pressure in the enclosed space to below atmospheric pressure. For example, it is possible to prevent leakage to the external environment at the time of discharging a hydride compound or a halogenated compound gas such as arsine, phosphine, boron trifluoride, etc. used in the pretreatment, so that impurities can be safely removed. It can be carried out.
【0039】以上、本発明の内、水素化化合物及びハロ
ゲン化化合物気体と密閉空間内で事前に接触させて吸着
させる吸着工程と、該吸着反応を経た系を反応促進する
工程と、該反応促進工程を経た該気体を該密閉空間から
排出する排出工程の一連の工程により活性炭を処理し
て、該気体と同種又は異種の水素化化合物及びハロゲン
化化合物気体を吸着して貯蔵する時に、該活性炭と該貯
蔵気体の接触により生じる不純物気体に起因する、該貯
蔵気体の純度低下が起きることを防止する方法又は装置
に関して、詳細に説明したが、本内容は請求の範囲に記
載された本発明の範囲内で種々の変更、修正が可能であ
る。As described above, in the present invention, an adsorption step of preliminarily contacting and adsorbing a hydrogenated compound and a halogenated compound gas in an enclosed space, a step of accelerating a system having undergone the adsorption reaction, and a step of accelerating the reaction When the activated carbon is treated by a series of discharge steps of discharging the gas having passed through the step from the enclosed space to absorb and store a hydrogen compound and a halogenated compound gas of the same type or different from the gas, the activated carbon is removed. The method or apparatus for preventing the purity of the stored gas from being reduced due to the impurity gas generated by the contact of the gas with the storage gas has been described in detail, but the content of the present invention is described in the claims. Various changes and modifications are possible within the scope.
【0040】例えば、活性炭吸着剤の充填量は、貯蔵用
アルシンの貯蔵量との関係で適宜選定すればよい。ま
た、密閉空間内で事前に接触させるガスと貯蔵ガスは必
ずしも同じガスである必要はない。例えば、密閉空間内
で事前に接触させるガスとしてアルシンと並んで半導体
のドープ工程においてイオン注入ガスとして用いられて
いるホスフィン、或いは三フッ化ホウ素を用いて、活性
炭吸着剤の不純物を強制的に除去した後、貯蔵ガスとし
てアルシンを注入しても全く問題はない。For example, the filling amount of the activated carbon adsorbent may be appropriately selected in relation to the storage amount of arsine for storage. Further, the gas to be brought into contact in advance in the enclosed space and the storage gas do not necessarily need to be the same gas. For example, phosphine or boron trifluoride, which is used as an ion implantation gas in a semiconductor doping process along with arsine as a gas to be brought into contact in advance in a closed space, is used to forcibly remove impurities of the activated carbon adsorbent. After that, there is no problem if arsine is injected as a storage gas.
【0041】本発明における、水素化化合物又はハロゲ
ン化化合物気体を貯蔵しその後に送出す方法及び/又は
装置として提案する装置の構造に、加熱ユニットを具備
させ、吸着した半導体製造に用いる特定の水素化化合物
及びハロゲン化化合物気体の少なくとも一部を脱着して
送出する時に、該気体の貯蔵環境を該活性炭ごと加熱す
ることができるようにするのは、加熱により該活性炭の
吸着容量を低減させ、同一圧力下で送出できる該気体の
量を増加させるのが目的で、これにより貯蔵された該気
体の有効に利用できる量を増加させることができる。In the present invention, the structure of the apparatus proposed as a method and / or apparatus for storing and subsequently sending out a hydride or halogenated compound gas is provided with a heating unit, so that a specific hydrogen used for the production of an adsorbed semiconductor is provided. When desorbing and sending out at least a part of the fluorinated compound and the halogenated compound gas, the storage environment of the gas can be heated together with the activated carbon, by reducing the adsorption capacity of the activated carbon by heating, The purpose is to increase the amount of the gas that can be delivered under the same pressure, so that the effectively available amount of the stored gas can be increased.
【0042】該気体の少なくとも一部を脱着して送出す
る時に該気体の貯蔵環境を該活性炭ごと加熱するときの
加熱温度は、該装置が使用される一般的な使用環境温度
である30℃以上であることが好ましく、40℃以上で
あることがさらに好ましく、50℃から200℃である
ことが最も好ましい。200℃を越えるとアルシンなど
の気体化合物が自己分解を起こしてしまうため好ましく
ない。The heating temperature for heating the storage environment of the gas together with the activated carbon when desorbing and sending at least a part of the gas is 30 ° C. or higher, which is a general use environment temperature in which the apparatus is used. Is preferably 40 ° C. or more, and most preferably 50 ° C. to 200 ° C. If the temperature exceeds 200 ° C., a gaseous compound such as arsine is undesirably self-decomposed.
【0043】該加熱を施す際は、本発明に記載の、水素
化化合物及びハロゲン化化合物気体と密閉空間内で事前
に接触させて吸着させる吸着工程と、該吸着反応を経た
系を反応促進する工程と、該反応促進工程を経た該気体
を該密閉空間から排出する排出工程の一連の工程により
処理した活性炭を用いるのが好ましい。When the heating is performed, an adsorption step according to the present invention in which the compound is brought into contact with a hydrogenated compound and a halogenated compound gas in advance in a closed space and adsorbed, and the system which has undergone the adsorption reaction is accelerated. It is preferable to use activated carbon that has been treated in a series of steps of a step and a discharge step of discharging the gas that has passed through the reaction promoting step from the closed space.
【0044】以下に本発明に利用する活性炭の製造方法
の一例を詳述する。Hereinafter, an example of a method for producing activated carbon used in the present invention will be described in detail.
【0045】一般に、フェノール樹脂は大別するとレゾ
ール樹脂とノボラック樹脂およびその他の特殊フェノー
ル樹脂や変性品等に分けられるが、 本発明に利用する活
性炭を製造するのに用いられるフェノール樹脂粉末は特
に限定するものではないが、例えば、特公昭62−30
210号公報、特公昭62−30212号公報等に開示
された粒状ないし粉末状の特殊フェノール樹脂を用いる
ことができる。その製造法の概要は以下の如くである。In general, phenol resins are roughly classified into resol resins, novolak resins and other special phenol resins and modified products. The phenol resin powder used for producing the activated carbon used in the present invention is not particularly limited. Although it is not something to do, for example,
No. 210, Japanese Patent Publication No. Sho 62-30212 and the like can be used as the granular or powdery special phenol resin. The outline of the production method is as follows.
【0046】室温下、15〜22重量%の塩酸と7〜1
5重量%のホルムアルデヒドとからなる混合水溶液を撹
拌しながら、フェノール又はフェノールと尿素、メラミ
ン、アニリン等の含窒素化合物とからなる混合物を該混
合水溶液に対して15分の1以下の割合で加え、反応系
内に白濁が生成する前に撹拌を停止し静置する。静置し
ている間に反応系内にはピンク色の粒状フェノール樹脂
が生成・沈降する。次に反応系全体を再度撹拌しながら
40〜90℃の温度にまで加熱・昇温して反応を完了せ
しめた後水洗し、引き続きアンモニア水溶液で中和処理
後、水洗、脱水、乾燥する。こうして得られた粒状フェ
ノール樹脂は、その殆どが粒径0.1〜150μmの一
次粒子、又はその二次凝集物からなる。At room temperature, 15 to 22% by weight of hydrochloric acid and 7-1
While stirring the mixed aqueous solution composed of 5% by weight of formaldehyde, phenol or a mixture composed of phenol and a nitrogen-containing compound such as urea, melamine, or aniline is added to the mixed aqueous solution at a ratio of 1/15 or less, Stirring is stopped and the mixture is allowed to stand before cloudiness is formed in the reaction system. During the standing, a pink granular phenol resin is formed and settles in the reaction system. Next, the whole reaction system is heated and heated to a temperature of 40 to 90 ° C. while stirring again to complete the reaction, washed with water, then neutralized with an aqueous ammonia solution, washed with water, dehydrated and dried. Most of the thus obtained granular phenolic resin is composed of primary particles having a particle size of 0.1 to 150 μm or secondary aggregates thereof.
【0047】このフェノール樹脂はレゾール樹脂、ノボ
ラック樹脂と性状を異にする特殊フェノール樹脂粉末で
あり、本発明に利用する活性炭を製造するのに用いられ
るフェノール樹脂粉末として好適に用いることができ
る。また、このフェノール樹脂は、実質的に無水のメタ
ノール500ml中で加熱還流した場合に、下記式 S={(W0 −W1 )/W0 }×100 ここで、W0 :使用した該樹脂の重量(g) W1 :加熱還流後に残存した該樹脂の重量(g) S :該樹脂のメタノール溶解度(重量%) で表されるメタノール溶解度を反応性を表す指標として
用いることができる。すなわち、メタノール溶解度の大
きいものは反応性も高くなる。本発明では、通常メタノ
ール溶解度が70重量%以下、好ましくは30重量以下
%、最も好ましくは10重量%以下のフェノール樹脂粉
末を用いる。This phenolic resin is a special phenolic resin powder having properties different from those of resole resins and novolak resins, and can be suitably used as a phenolic resin powder used for producing activated carbon used in the present invention. When the phenol resin is heated and refluxed in 500 ml of substantially anhydrous methanol, the following formula S = {(W 0 −W 1 ) / W 0 } × 100, where W 0 : the used resin W 1 : Weight (g) of the resin remaining after heating and refluxing S: Methanol solubility (% by weight) of the resin can be used as an index indicating reactivity. That is, those having high methanol solubility have high reactivity. In the present invention, a phenol resin powder having a methanol solubility of usually 70% by weight or less, preferably 30% by weight or less, and most preferably 10% by weight or less is used.
【0048】その理由は、該メタノール溶解度が70重
量%以上では、熱融着性が高く、炭化途中の加熱過程に
おいて、熱融解のために、フェノール樹脂粒子間の連通
空隙が埋められてしまい、炭化物の気孔の連通性が低下
し吸着能力の低下を来すことになるからである。充分な
吸着能力を有する活性炭を得るには、上述の範囲のメタ
ノール溶解度を有するフェノール樹脂粉末を用いるとよ
い。The reason is that when the methanol solubility is 70% by weight or more, the heat fusibility is high, and in the heating process during carbonization, the communication gap between the phenolic resin particles is filled due to the heat fusion, This is because the continuity of the pores of the carbide is reduced and the adsorption capacity is reduced. In order to obtain activated carbon having a sufficient adsorption capacity, it is preferable to use a phenol resin powder having a methanol solubility in the above range.
【0049】また、本発明に利用する活性炭を製造する
のに用いる他のフェノール樹脂粉末を製造する方法とし
ては、フェノール類とアルデヒドを少なくとも含窒素化
合物の存在下で反応させて得られる縮合物に親水性高分
子化合物を添加し反応させる方法(特公昭53−129
58号公報)、フェノールとホルムアルデヒドを塩基性
水溶液中で反応させて得られるプレポリマーを保護コロ
イドと混合し、酸性下で不活性固形ビーズ状に凝固させ
る方法(特公昭51−13491号公報)等がある。そ
の他にも例えば、特開昭61−51019号公報、特開
昭61−127719号公報、特開昭61−25881
9号公報、特開昭62−272260号公報、特開昭6
2−1748号公報等に記載の方法により製造したフェ
ノール樹脂粉末を用いることもできる。As another method for producing a phenol resin powder used for producing the activated carbon used in the present invention, a phenol resin and an aldehyde are reacted at least in the presence of a nitrogen-containing compound to obtain a condensate. A method in which a hydrophilic polymer compound is added and reacted (Japanese Patent Publication No. 53-129)
No. 58), a method in which a prepolymer obtained by reacting phenol and formaldehyde in a basic aqueous solution is mixed with a protective colloid, and coagulated into inert solid beads under acidic conditions (Japanese Patent Publication No. 51-13491). There is. Other examples include JP-A-61-51019, JP-A-61-127719, and JP-A-61-25881.
No. 9, JP-A-62-272260, JP-A-62-272260
A phenol resin powder produced by a method described in, for example, JP-A-2-1748 can also be used.
【0050】レゾール樹脂は、通常、例えば水酸化ナト
リウム、アンモニア又は有機アミンの如き塩基性触媒の
存在下でフェノール対ホルムアルデヒドのモル比が1:
1〜2の如きホルムアルデヒド過剰の条件下で反応す
ることによって製造される。かくして得られるレゾール
樹脂は、比較的多量の遊離メチロール基を有するフェノ
ールの1〜3量体が主成分をなし、反応性が大きい。The resole resin usually has a molar ratio of phenol to formaldehyde of 1: 1, in the presence of a basic catalyst such as, for example, sodium hydroxide, ammonia or an organic amine.
It is produced by reacting under an excess of formaldehyde such as 1-2. The resol resin thus obtained has a large amount of phenol having a relatively large amount of free methylol groups, and has high reactivity.
【0051】また、ノボラック樹脂は、通常、例えばシ
ュウ酸の如き酸触媒の存在下でフェノール対ホルムアル
デヒドのモル比が1:0.7 〜0.9となるようなフ
ェノール過剰の条件下で反応させることによって製造さ
れる。かかる方法で得られるノボラック樹脂は、フェノ
ールが主としてメチレン基によって結合された3〜5量
体が主成分をなし、遊離メチロール基を殆ど含有せず、
従ってそれ自体では自己架橋性を有せず、熱可塑性を有
する。そこでノボラック樹脂は、例えばヘキサメチレン
テトラミンの如き、それ自体ホルムアルデヒド発生剤で
あると共に有機塩基触媒発生剤でもある架橋剤を加える
か、あるいは、例えば固体酸触媒とパラホルムアルデヒ
ド等を混合し、加熱下で反応させることによって硬化物
を得ることができる。The novolak resin is usually reacted in the presence of an acid catalyst such as oxalic acid under a phenol-excess condition such that the molar ratio of phenol to formaldehyde is 1: 0.7 to 0.9. Manufactured by The novolak resin obtained by such a method is mainly composed of a trimer to pentamer in which phenol is bonded by a methylene group, and hardly contains a free methylol group,
Therefore, it does not have self-crosslinking property by itself but has thermoplasticity. Therefore, the novolak resin is added with a crosslinking agent which is itself a formaldehyde generator and an organic base catalyst generator, such as hexamethylenetetramine, or, for example, a solid acid catalyst and paraformaldehyde are mixed and heated. A cured product can be obtained by the reaction.
【0052】これらのレゾール樹脂、ノボラック樹脂等
は一度硬化された後、粉砕することにより本発明の原料
樹脂粉末として用いることができる。These resol resins, novolak resins and the like can be used as the raw material resin powder of the present invention by being cured once and then pulverized.
【0053】本発明に利用する活性炭を製造するのに用
いるフェノール樹脂粉末の粒径は通常0.1〜150μ
m、好ましくは0.5〜50μm、最も好ましくは1〜
30μmである。The particle diameter of the phenol resin powder used for producing the activated carbon used in the present invention is usually 0.1 to 150 μm.
m, preferably 0.5 to 50 μm, most preferably 1 to
30 μm.
【0054】本発明に利用する活性炭を製造するのに用
いられるところのバインダーとしては、特にその種類を
限定するものではないが、液状熱硬化性樹脂やポリビニ
ルアルコール(PVA)、クレオソート油などが好まし
く用いられる。The binder used for producing the activated carbon used in the present invention is not particularly limited, and examples thereof include a liquid thermosetting resin, polyvinyl alcohol (PVA), and creosote oil. It is preferably used.
【0055】液状熱硬化性樹脂としては、液状レゾール
樹脂、液状メラミン樹脂、又はこれらの変性樹脂などが
挙げられる。Examples of the liquid thermosetting resin include a liquid resol resin, a liquid melamine resin, and modified resins thereof.
【0056】ここで、液状レゾール樹脂は、先述したよ
うに塩基性触媒の存在下でフェノールを過剰のアルデヒ
ドと反応させることによって製造され、比較的多量の遊
離メチロール基を有するフェノールの1〜3量体が主成
分を成す。Here, the liquid resole resin is produced by reacting phenol with an excess of aldehyde in the presence of a basic catalyst as described above. The body is the main component.
【0057】液状メラミン樹脂はいわゆる熱硬化性樹脂
であり、加熱により化学反応が促進され親水性の初期重
合物の形態、或いは、やや縮合の進んだ疎水性縮合物の
状態を経て最終的には不溶不融の硬化物になる。The liquid melamine resin is a so-called thermosetting resin, and after a chemical reaction is promoted by heating, it undergoes a form of a hydrophilic initial polymer or a state of a slightly condensed hydrophobic condensate. It becomes an insoluble and infusible cured product.
【0058】液状メラミン樹脂は、メラミンにアルデヒ
ド、通常はホルムアルデヒドを付加させて製造される。
また、種々のアルコールが同時に使用されることもあ
る。メラミン樹脂の生成は、先ずメラミンにホルムアル
デヒドがメチロール基として付加し、ついでメチロール
基が他の分子のアミノ基やイミノ基との間で脱水縮合し
てメチレン基となる反応や、メチロール基同士で脱水縮
合してジメチレンエーテル結合となる反応、あるいはメ
チロール基とアルコールとの間で脱水してエーテル化す
る反応により進行する。The liquid melamine resin is produced by adding aldehyde, usually formaldehyde, to melamine.
Also, various alcohols may be used simultaneously. Melamine resin is formed by first adding formaldehyde to melamine as a methylol group, then dehydrating and condensing the methylol group with the amino group or imino group of another molecule to form a methylene group, or dehydration between methylol groups. The reaction proceeds by a reaction of condensing into a dimethylene ether bond or a reaction of dehydration and etherification between a methylol group and an alcohol.
【0059】液状メラミン樹脂は、水溶性樹脂と油溶性
樹脂とに分けることができ、一般に水溶性樹脂はアルコ
ールとしてメタノールを使用して製造される。一方油溶
性樹脂は、ブチル化メラミン樹脂ともいわれ、通常アル
コールとしてブタノールを使用する。本発明に利用する
活性炭を製造するのに用いられるバインダーとして使用
される液状メラミン樹脂は、水溶性、油溶性いずれでも
よく、既知の方法にて製造されたものでよい。The liquid melamine resin can be divided into a water-soluble resin and an oil-soluble resin, and the water-soluble resin is generally produced using methanol as an alcohol. On the other hand, the oil-soluble resin is also called a butylated melamine resin, and usually uses butanol as an alcohol. The liquid melamine resin used as a binder used for producing the activated carbon used in the present invention may be water-soluble or oil-soluble, and may be produced by a known method.
【0060】本発明に利用する活性炭を製造するのに用
いられるポリビニルアルコールは、好ましくは重合度1
00〜5000、けん化度70%以上のものであり、カ
ルボキシル基等で一部変性されたものも好適に用いられ
る。The polyvinyl alcohol used to produce the activated carbon used in the present invention preferably has a degree of polymerization of 1
It has a saponification degree of 70% or more and a degree of saponification of 70 to 5000, and those partially modified with a carboxyl group or the like are also preferably used.
【0061】本発明に利用する活性炭を製造するに於い
ては、上記フェノール樹脂粉末とバインダー成分を混合
した後造粒することによって粒状成形物を得るが、本発
明に規定するバインダーの含有量は、フェノール樹脂粉
末100重量部に対し5〜90重量部である。In producing the activated carbon used in the present invention, a granular molded product is obtained by mixing the phenol resin powder and the binder component and then granulating the mixture. 5 to 90 parts by weight based on 100 parts by weight of phenol resin powder.
【0062】バインダーの含有量は、好ましくは10〜
60重量部、最も好ましくは20〜40重量部である。
バインダーの含有量が5重量部より少ないと造粒時の作
業性が低下してダイスよりの押出しが困難になり、造粒
物の形状が不揃いで強度が低く、粉が発生しやすくなる
等の問題が生じる。また、90重量部より多くなると、
やはり造粒時の作業性が低下するとともに炭化賦活後の
ペレット内の細孔の連通性が低下し、吸着剤としての性
能が悪くなり好ましくない。The content of the binder is preferably from 10 to
60 parts by weight, most preferably 20 to 40 parts by weight.
If the content of the binder is less than 5 parts by weight, the workability at the time of granulation is reduced and extrusion from a die becomes difficult, the shape of the granulated material is irregular, the strength is low, and powder is easily generated. Problems arise. Also, if it exceeds 90 parts by weight,
Again, the workability during granulation is reduced, and the continuity of the pores in the pellets after the carbonization is activated is reduced, and the performance as an adsorbent deteriorates, which is not preferable.
【0063】このフェノール樹脂粉末とバインダー成分
の混合は、室温あるいは加熱下で、リボンミキサー、V
型ミキサー、コーンミキサー、ニーダー等の市販の混合
撹拌機で行えばよい。The mixing of the phenolic resin powder and the binder component is performed at room temperature or under heating by using a ribbon mixer,
What is necessary is just to perform with a commercially available mixing stirrer, such as a mold mixer, a cone mixer, and a kneader.
【0064】本発明に利用する活性炭を製造するに於い
ては、上記フェノール樹脂とバインダー成分の他に、他
の添加成分を加えることを何ら制限するものでなく、例
えば、澱粉、結晶性セルロース粉末、メチルセルロー
ス、水、溶媒等を適量加えることができる。また、少量
のコークス、ヤシ殻炭等を添加することも何ら制限され
るものではない。In the production of the activated carbon used in the present invention, the addition of other additional components in addition to the phenolic resin and the binder component is not limited at all, and examples thereof include starch and crystalline cellulose powder. , Methylcellulose, water, a solvent and the like can be added in appropriate amounts. Further, addition of a small amount of coke, coconut shell charcoal and the like is not limited at all.
【0065】更に本発明に利用する活性炭を製造するに
於いては、その特性を損なわない範囲で混合および造粒
時の作業性の向上のため、例えばエチレングリコール、
ポリオキシエチレン、アルキルエーテル、ポリオキシエ
チレン脂肪酸エステル、ポリカルボン酸アンモニウム塩
等の界面活性剤、ポリビニルアルコールの架橋剤、押出
造粒用の可塑剤等を少量加えることができる。Further, in producing the activated carbon used in the present invention, for example, ethylene glycol,
A small amount of a surfactant such as polyoxyethylene, alkyl ether, polyoxyethylene fatty acid ester, and ammonium polycarboxylate, a crosslinking agent for polyvinyl alcohol, and a plasticizer for extrusion granulation can be added.
【0066】本発明に利用する活性炭を製造するに於い
ては、 上記の如く混合装置により均一に混合された後、
次いで粒状物に成形される。粒状物への成形は、例えば
単軸あるいは二軸の湿式押出造粒機、バスケットリュー
ザーの如き竪型造粒機、半乾式ディスクペレッター等に
より行うことができる。この成形は通常室温で行われる
が、場合によっては加熱下で実施してもよい。こうして
得られた造粒物を通常50〜400℃程度の温度範囲で
乾燥処理を行って、粒状成形物を得る。In the production of the activated carbon used in the present invention, after being uniformly mixed by the mixing device as described above,
Then it is formed into granules. The shaping into granules can be performed by, for example, a single-screw or twin-screw wet extrusion granulator, a vertical granulator such as a basketluser, a semi-dry disc pelleter, or the like. This molding is usually performed at room temperature, but may be performed under heating depending on the case. The granulated material thus obtained is subjected to a drying treatment in a temperature range of usually about 50 to 400 ° C. to obtain a granular molded product.
【0067】粒状成形物の形状は、通常、円柱状あるい
は球状ペレットであり、炭化賦活後のペレット形状が所
定の形状となるよう造粒時に調整する。The shape of the granular molded product is usually a columnar or spherical pellet, and is adjusted at the time of granulation so that the pellet shape after carbonization activation becomes a predetermined shape.
【0068】本発明に利用する活性炭を製造するには、
上述の如くして得られた粒状成形物、又はそれを非酸化
性雰囲気下500〜900℃で熱処理した炭化物を、7
00〜1100℃の温度範囲で炭化物を基準とした重量
減少率が5〜40%となる範囲で賦活処理を行うことに
より目的の活性炭を得る。For producing the activated carbon used in the present invention,
The granular molded product obtained as described above, or the carbide obtained by heat-treating it at 500 to 900 ° C. in a non-oxidizing atmosphere,
The desired activated carbon is obtained by performing an activation treatment in a temperature range of 00 to 1100 ° C. so that the weight reduction rate based on the carbide is 5 to 40%.
【0069】本発明に利用する活性炭を製造するにおい
て、 賦活処理を行う前の粒状成形物の炭化は、電気炉、
外熱式ガス炉などの熱処理装置を用いて非酸化性雰囲気
下500〜900℃で行われる。この場合の非酸化性雰
囲気とは、例えば、窒素、アルゴン、ヘリウム等の雰囲
気である。In the production of the activated carbon used in the present invention, the carbonization of the granular molded product before the activation treatment is performed by an electric furnace,
The heat treatment is performed at 500 to 900 ° C. in a non-oxidizing atmosphere using a heat treatment apparatus such as an externally heated gas furnace. The non-oxidizing atmosphere in this case is, for example, an atmosphere of nitrogen, argon, helium, or the like.
【0070】また、この炭化温度は通常500〜900
℃であるが、好ましくは550〜850℃、最も好まし
くは600〜800℃である。炭化温度が900℃より
高いと次の賦活処理工程での賦活速度が遅くなり、賦活
を効率的に進めることができなくなるので好ましくな
い。また炭化温度が500℃以下の場合には温度が低過
ぎて炭化があまり進まず好ましくない。The carbonization temperature is usually 500 to 900.
° C, preferably 550-850 ° C, most preferably 600-800 ° C. If the carbonization temperature is higher than 900 ° C., the activation rate in the next activation treatment step becomes slow, and the activation cannot be efficiently advanced, which is not preferable. When the carbonization temperature is 500 ° C. or lower, the temperature is too low, and carbonization does not progress very much, which is not preferable.
【0071】本発明に利用する活性炭を製造するには、
上記粒状成形物、又はそれを非酸化性雰囲気下500〜
900℃で熱処理した炭化物を賦活処理する。賦活処理
の温度領域は700〜1100℃、好ましくは800〜
1000℃、最も好ましくは850〜950℃である。
賦活処理の温度が1100℃より高い場合には、細孔容
積が熱収縮により減少してしまったり、 活性炭表面が酸
化し、耐磨耗強度が低下してしまうため好ましくない。
また600℃より低い場合には賦活が十分に行われず、
吸着能力が低く好ましくない。To produce the activated carbon used in the present invention,
The above-mentioned granular molded product, or the same under a non-oxidizing atmosphere of 500 to
The carbide heat treated at 900 ° C. is activated. The temperature range of the activation treatment is 700 to 1100 ° C, preferably 800 to
1000 ° C, most preferably 850-950 ° C.
If the temperature of the activation treatment is higher than 1100 ° C., the pore volume is decreased by heat shrinkage, or the surface of the activated carbon is oxidized, so that the abrasion resistance is undesirably reduced.
If the temperature is lower than 600 ° C., the activation is not performed sufficiently,
Adsorption capacity is low, which is not preferable.
【0072】また、本発明に利用する活性炭を製造する
においては、 賦活処理には、酸素、二酸化炭素、水蒸気
もしくはこれらの二種類以上の混合ガス、あるいはこれ
らのガスを含んだ窒素、アルゴン、ヘリウム等の雰囲気
ガス、メタン、プロパン、ブタン等の燃焼排ガスなどを
用いることができ、炭化物を基準とした重量減少率が5
〜40%となる範囲で賦活を行う。In the production of activated carbon used in the present invention, the activation treatment includes oxygen, carbon dioxide, water vapor or a mixed gas of two or more of these, or nitrogen, argon, helium containing these gases. Atmosphere gas such as methane, propane, butane and the like, and the weight reduction rate based on carbide is 5%.
Activation is performed within a range of 4040%.
【0073】重量減少率が5%より小さい場合には細孔
の発達が不十分であり、細孔容積が小さすぎて十分な性
能を確保できず好ましくない。また、重量減少率が40
%より大きい場合にはアルシン、ホスフィン等の気体化
合物の吸着に有効に働く0.6〜0.8nmの細孔の割
合が小さくなり、また粒子嵩密度が小さくなり、活性炭
をボンベ等の容器に充填した際、有効に作用する吸着サ
イトの単位体積当たりの量が減少して好ましくない。If the weight reduction ratio is less than 5%, the development of the pores is insufficient, and the pore volume is too small, so that sufficient performance cannot be secured, which is not preferable. In addition, the weight loss rate is 40
%, The ratio of pores of 0.6 to 0.8 nm that effectively works for the adsorption of gaseous compounds such as arsine and phosphine decreases, and the particle bulk density decreases. When filled, the amount of effective adsorption sites per unit volume decreases, which is not preferable.
【0074】本発明に利用する活性炭は、例えばガス製
造事業所でボンベ等の容器内に充填し、半導体工業でイ
オン注入ガス用として用いられるアルシン、ホスフィ
ン、3フッ化ホウ素等の気体化合物を吸着させ、使用時
までこれら気体化合物を安定に貯蔵するのに用いられ
る。半導体等の製造現場では必要に応じてこれら気体化
合物を負圧に引いてボンベから取り出す。ボンベ内は大
気圧以下に保持しているため、猛毒のアルシン、ホスフ
ィン等がボンベから周囲環境に漏れ出す危険は極めて小
さい。The activated carbon used in the present invention is filled in a container such as a cylinder at a gas manufacturing facility, and adsorbs gaseous compounds such as arsine, phosphine and boron trifluoride used for ion implantation gas in the semiconductor industry. And used to stably store these gaseous compounds until use. At a manufacturing site for semiconductors or the like, these gaseous compounds are taken out of the cylinder by drawing a negative pressure as necessary. Since the pressure inside the cylinder is kept below the atmospheric pressure, the danger of highly toxic arsine, phosphine, etc. leaking from the cylinder to the surrounding environment is extremely small.
【0075】本発明に利用する活性炭による吸着貯蔵の
対象となる気体化合物は、例えばアルシン、ホスフィ
ン、3フッ化ホウ素、3塩化ホウ素、六フッ化タングス
テン、シラン、ジボラン、塩素、B2 D6 、(CH3 )
3 Sb、フッ化水素、塩化水素、沃化水素、ゲルマン、
アンモニア、スチビン、硫化水素、セレン化水素、テル
ル化水素ならびにNF3 からなる群から選ばれる気体化
合物であり、吸着貯蔵に最適な化合物としてアルシン、
ホスフィン、3フッ化ホウ素が挙げられる。The gaseous compounds to be adsorbed and stored by activated carbon used in the present invention include, for example, arsine, phosphine, boron trifluoride, boron trichloride, tungsten hexafluoride, silane, diborane, chlorine, B 2 D 6 , (CH 3 )
3 Sb, hydrogen fluoride, hydrogen chloride, hydrogen iodide, germane,
Ammonia, stibine, a gaseous compound selected from the group consisting of hydrogen sulfide, hydrogen selenide, hydrogen telluride and NF 3, arsine as the best compound adsorption storage,
Phosphine and boron trifluoride.
【0076】[0076]
【実施例】先ず、本発明に用いた測定評価方法について
以下に示す。First, the measurement and evaluation method used in the present invention will be described below.
【0077】(1)吸着アルシン量及び放出アルシン量
の測定方法 一端にダイアフラム式締切弁を備えた内径30mm、長
さ150mm、内容量100mlのステンレス製試験容
器を予め化学天秤で秤量しておく。このときの試験容器
の重量をW0とする。試験に用いる吸着剤をそれぞれ試
験容器内に充填した後、締切弁を介して試験容器を真空
ポンプに接続し、試験容器内が0.01mmHg以下と
なるまで真空引きする。さらに加熱装置により試験容器
内が350℃となるまで徐々に試験容器を外部から加熱
して、引き続き真空ポンプで試験容器内部を真空引きし
て0.01mmHg以下にする。その後、放熱して常温
に戻し、試験容器を再度秤量する。このときの試験容器
の重量をW1とする。(1) Method for measuring the amount of adsorbed arsine and the amount of released arsine A stainless steel test container having an inner diameter of 30 mm, a length of 150 mm, and a capacity of 100 ml having a diaphragm type shut-off valve at one end is weighed in advance by an analytical balance. The weight of the test container at this time is W0. After each of the adsorbents used for the test is filled in the test container, the test container is connected to a vacuum pump through a shutoff valve, and the test container is evacuated until the pressure in the test container becomes 0.01 mmHg or less. Further, the test container is gradually heated from the outside by a heating device until the inside of the test container reaches 350 ° C., and then the inside of the test container is evacuated by a vacuum pump to 0.01 mmHg or less. Thereafter, heat is released to return to room temperature, and the test container is weighed again. The weight of the test container at this time is defined as W1.
【0078】次いで、試験容器を恒温装置で一定温度2
0℃に保ちながら、アルシンを締切弁を介して試験容器
内を大気圧以下の700mmHgに調圧しながら、これ
以上吸収されないまで試験容器に導入する。このときの
試験容器の重量をW2とする。Next, the test container was heated at a constant temperature of 2 using a thermostat.
While maintaining the temperature at 0 ° C., the arsine is introduced into the test container through the shut-off valve while adjusting the pressure in the test container to 700 mmHg or less at atmospheric pressure until it is not absorbed any more. The weight of the test container at this time is W2.
【0079】試験容器を圧力計、流量制御器及び真空ポ
ンプを介してガスクロマトグラフィ質量分析計に接続し
て、定量分析を行う。圧力計は、真空ポンプで試験容器
内を真空引きしたときの内部圧力を測定するために設置
し、流量制御器は、試験容器から流出する際の放出アル
シンの流量を制御するために設置する。放出アルシンの
流量を1ml/min乃至10ml/minに制御しな
がら、内部圧力20mmHgまで真空ポンプで試験容器
内を引き、アルシンを試験容器から外部に送出する。次
いで、試験容器を再度秤量する。このときの試験容器の
重量をW3とする。The test container is connected to a gas chromatography mass spectrometer via a pressure gauge, a flow controller and a vacuum pump to perform quantitative analysis. The pressure gauge is installed to measure the internal pressure when the inside of the test vessel is evacuated by the vacuum pump, and the flow controller is installed to control the flow rate of the released arsine when flowing out of the test vessel. While controlling the flow rate of the released arsine to 1 ml / min to 10 ml / min, the inside of the test container is pulled by a vacuum pump to an internal pressure of 20 mmHg, and arsine is sent out from the test container to the outside. The test container is then weighed again. The weight of the test container at this time is defined as W3.
【0080】さらに、試験容器内を0.01mmHgま
で真空ポンプで引き、その後加熱装置によって試験容器
内を加熱し、100℃乃至150℃で約4時間保持し、
試験容器を再度秤量する。このときの試験容器の重量を
W4とする。放出アルシン量をそれぞれW2−W3、W
2−W4、残留アルシン量をそれぞれW3−W1、W4
−W1によって決定する。Further, the inside of the test container was pulled down to 0.01 mmHg by a vacuum pump, and then the inside of the test container was heated by a heating device and kept at 100 ° C. to 150 ° C. for about 4 hours.
Weigh the test container again. The weight of the test container at this time is defined as W4. The amount of released arsine is W2-W3, W
2-W4, the residual arsine amount was W3-W1, W4, respectively.
Determined by -W1.
【0081】(2)20日後の圧力変化測定法 試験に用いる吸着剤をそれぞれ、一端にダイアフラム式
締切弁を備えた内径30mm、長さ150mm、内容量
100mlのステンレス製試験容器に充填した後、締切
弁を介して試験容器を真空ポンプに接続し、試験容器内
が0.01mmHg以下となるまで真空引きする。さら
に加熱装置により試験容器内が350℃となるまで徐々
に試験容器を外部から加熱して、引き続き真空ポンプで
試験容器内部を真空引きして0.01mmHg以下にす
る。その後、放熱して常温に戻す。(2) Method of Measuring Pressure Change After 20 Days Each of the adsorbents used for the test was charged into a stainless steel test container having an inner diameter of 30 mm, a length of 150 mm, and a capacity of 100 ml, each having a diaphragm shutoff valve at one end. The test container is connected to a vacuum pump via a shutoff valve, and the inside of the test container is evacuated to 0.01 mmHg or less. Further, the test container is gradually heated from the outside by a heating device until the inside of the test container reaches 350 ° C., and then the inside of the test container is evacuated by a vacuum pump to 0.01 mmHg or less. Thereafter, heat is released and the temperature is returned to room temperature.
【0082】次いで、試験容器を恒温装置で一定温度2
0℃に保ちながら、アルシンを締切弁を介して試験容器
内を大気圧以下の700mmHgに調圧しながら、これ
以上吸収されないまで試験容器に導入する。このときの
試験容器の重量をW0とする。Then, the test container was heated at a constant temperature of 2 using a thermostat.
While maintaining the temperature at 0 ° C., the arsine is introduced into the test container through the shut-off valve while adjusting the pressure in the test container to 700 mmHg or less at atmospheric pressure until it is not absorbed any more. The weight of the test container at this time is W0.
【0083】次いで、試験容器を恒温装置で一定温度2
0℃に保ちながら、20日後の重量を測定する。このと
きの試験容器の重量をW1とする。W1−W0を計算
し、漏れによる差異が無いことを確認して、内圧を読み
とる。Next, the test container was heated to a constant temperature of 2 using a thermostat.
The weight after 20 days is measured while maintaining at 0 ° C. The weight of the test container at this time is defined as W1. Calculate W1-W0, confirm that there is no difference due to leakage, and read the internal pressure.
【0084】(3)複数圧力下における吸着アルシン量
の測定方法 一端にダイアフラム式締切弁を備えた内径30mm、長
さ150mm、内容量100mlのステンレス製試験容
器を予め化学天秤で秤量しておく。このときの試験容器
の重量をW0とする。(3) Method of measuring the amount of adsorbed arsine under a plurality of pressures A stainless steel test container having an inner diameter of 30 mm, a length of 150 mm, and a capacity of 100 ml having a diaphragm type shut-off valve at one end is weighed in advance by an analytical balance. The weight of the test container at this time is W0.
【0085】次いで、試験に用いる吸着剤をそれぞれ試
験容器内に充填した後、締切弁を介して試験容器を真空
ポンプに接続し、試験容器内が0.01mmHg以下と
なるまで真空引きする。さらに加熱装置により試験容器
内が350℃となるまで徐々に試験容器を外部から加熱
して、引き続き真空ポンプで試験容器内部を真空引きし
て0.01mmHg以下にする。その後、放熱して常温
に戻し、試験容器を再度秤量する。このときの試験容器
の重量をW1とする。Next, the test container is filled with the adsorbent used for the test, and the test container is connected to a vacuum pump through a shutoff valve, and the test container is evacuated until the pressure in the test container becomes 0.01 mmHg or less. Further, the test container is gradually heated from the outside by a heating device until the inside of the test container reaches 350 ° C., and then the inside of the test container is evacuated by a vacuum pump to 0.01 mmHg or less. Thereafter, heat is released to return to room temperature, and the test container is weighed again. The weight of the test container at this time is defined as W1.
【0086】次いで、試験容器を恒温装置で一定温度2
5℃に保ちながら、アルシンを締切弁を介して試験容器
内を大気圧以下の10、20、30、50、100、2
00、300、400、500、600、700の各m
mHgに調圧しながら、各圧力時にこれ以上吸収されな
いまで試験容器に導入する。このときの試験容器の重量
をWnとする。なお、Wnのnにはそれぞれ低圧から順
に2から11までの数字を当てる。その後、吸着剤、吸
着アルシンの量をそれぞれW1−W0、Wn−W1によ
って決定する。Next, the test container was heated at a constant temperature of 2 using a thermostat.
While maintaining the temperature at 5 ° C., the arsine was passed through the shut-off valve through the test vessel to a pressure of 10, 20, 30, 50, 100, 2 below atmospheric pressure.
Each of 00, 300, 400, 500, 600, 700
The pressure is adjusted to mHg and introduced into the test vessel at each pressure until no more is absorbed. The weight of the test container at this time is defined as Wn. In addition, numbers from 2 to 11 are assigned to n of Wn in order from the low pressure. Thereafter, the amounts of the adsorbent and the adsorbed arsine are determined by W1-W0 and Wn-W1, respectively.
【0087】(4)粒子引張り強度測定法 活性炭粒子の引張り強度は木屋式硬度計にて測定した。
強度測定で評価する引張強度は、粒子が破砕時の荷重値
と粒子直径、粒子長より、次式で計算した。 引張強度:σ[kg/cm2 ]= 2P/(πdl) P: 荷重[kg]、d:粒子直径[cm]、l: 粒子長
[cm](4) Particle Tensile Strength Measurement Method The tensile strength of activated carbon particles was measured with a Kiya hardness meter.
The tensile strength evaluated by the strength measurement was calculated from the load value at the time of crushing of the particles, the particle diameter, and the particle length by the following formula. Tensile strength: σ [kg / cm 2 ] = 2P / (πdl) P: load [kg], d: particle diameter [cm], l: particle length [cm]
【0088】(5)活性炭の比表面積の測定法 被測定活性炭0.1g程度を正確に秤量した後、 高精度
全自動ガス吸着装置BELSORP28(日本ベル株式
会社製)の専用セルに入れ、 該装置を用いて窒素を吸着
させB.E.T法により求めた。(5) Method for measuring the specific surface area of activated carbon After about 0.1 g of the activated carbon to be measured is accurately weighed, it is placed in a dedicated cell of a high-precision fully automatic gas adsorption apparatus BELSORP28 (manufactured by Nippon Bell Co., Ltd.). To adsorb nitrogen using B. E. FIG. It was determined by the T method.
【0089】(6)細孔容積の測定法 本発明の吸着剤の細孔容積の測定は、細孔直径0.01
〜10μmの範囲についてはポロシメーターによる水銀
圧入法(島津製作所製、ポアサイザー9310)により
測定し、細孔直径10nm以下の細孔容積は全自動ガス
吸着測定装置(日本ベル株式会社製、ベルソープ28)
で窒素吸着測定を行った。具体的には、細孔直径2〜1
0nmの範囲の細孔容積は77Kに於ける窒素ガスの吸
着等温線をD−H解析することにより求め、細孔直径2
nm以下の細孔容積は77Kに於ける窒素ガスの吸着等
温線のt−plotからMP法を用いて解析することに
より求めた。(6) Method for Measuring Pore Volume The pore volume of the adsorbent of the present invention was measured using a pore diameter of 0.01.
The range of 10 to 10 μm is measured by a mercury intrusion method using a porosimeter (Pore Sizer 9310, manufactured by Shimadzu Corporation).
The nitrogen adsorption measurement was carried out. Specifically, the pore diameter is 2 to 1
The pore volume in the range of 0 nm was obtained by DH analysis of the adsorption isotherm of nitrogen gas at 77 K, and the pore diameter was 2 nm.
The pore volume of nm or less was determined by analyzing the t-plot of the adsorption isotherm of nitrogen gas at 77K using the MP method.
【0090】(7)灰分の測定法 105℃で2時間乾燥した試料約1gを白金坩堝に精秤
し、700℃、2時間灰化し、再度精秤して灰分量を求
めた。(7) Measuring method of ash About 1 g of a sample dried at 105 ° C. for 2 hours was precisely weighed in a platinum crucible, ashed at 700 ° C. for 2 hours, and weighed again to determine the amount of ash.
【0091】次に本発明を実施例によりさらに具体的に
説明するが、 本発明は実施例により限定されるものでは
ない。Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
【0092】(実施例1) フェノール樹脂粉末(鐘紡株式会社製、ベルパールR8
00:平均粒子径20μm)100重量部に対し、バイ
ンダーとしてメラミン樹脂水溶液(住友化学工業株式会
社製、スミテックスレジンM−3、固形分濃度80重量
%)、重合度1700、けん化度99%のポリビニルア
ルコール( 以下PVAと略す。)を、そして添加物とし
て馬鈴薯澱粉、界面活性剤(花王株式会社製、レオドー
ルSP−L10)および水を所定量計量した。Example 1 Phenol resin powder (manufactured by Kanebo Co., Ltd., Bellpearl R8)
(00: average particle diameter: 20 μm) 100 parts by weight of a melamine resin aqueous solution (Sumitec Resin M-3, manufactured by Sumitomo Chemical Co., Ltd., solid content concentration: 80% by weight) as a binder, having a degree of polymerization of 1700 and a degree of saponification of 99%. A predetermined amount of polyvinyl alcohol (hereinafter abbreviated as PVA) and potato starch, a surfactant (Rhodol SP-L10, manufactured by Kao Corporation) and water as additives were weighed.
【0093】上記原料のうちまず、フェノール樹脂粉末
と馬鈴薯澱粉をニーダーで15分間乾式混合した。一
方、上記ポリビニルアルコールを温水で15重量%の水
溶液となるように溶解し、このポリビニルアルコール水
溶液とメラミン樹脂水溶液、界面活性剤および水をニー
ダーに加えて更に15分間混合した。First, phenol resin powder and potato starch were dry-mixed in a kneader for 15 minutes. On the other hand, the polyvinyl alcohol was dissolved in warm water to form a 15% by weight aqueous solution, and the aqueous polyvinyl alcohol solution, melamine resin aqueous solution, surfactant and water were added to a kneader and mixed for another 15 minutes.
【0094】この混合組成物を2軸押出造粒機(不二パ
ウダル株式会社製、ペレッタダブルEXDF−100
型)で押出し、外径が約1.0mmのバインダー含有量
の異なるペレット状成形体の造粒を行った。各原料成分
の組成比を表1に示す。This mixed composition was subjected to a twin-screw extrusion granulator (Peretta Double EXDF-100, manufactured by Fuji Paudal Co., Ltd.).
), And pelletized compacts having an outer diameter of about 1.0 mm and different binder contents were granulated. Table 1 shows the composition ratio of each raw material component.
【0095】[0095]
【表1】 [Table 1]
【0096】こうして得た試料について、内径70mm
φの円筒型電気炉を用いて窒素雰囲気下、昇温速度50
℃/Hで650℃まで昇温し1時間保持して炭化させ
た。次いでこの炭化物20gを異なる条件で水蒸気賦活
して、 7つの試料を得た。 すなわち、 試料1は750
℃、1.5時間、試料2は900℃、1.5時間、試料
3は950℃、1.5時間、試料4は980℃,1.5
時間、試料5は1000℃,1.5時間、試料6は10
00℃,2.0時間、試料7は700℃,1.5時間、
水蒸気を含んだ窒素ガス(賦活ガス組成モル比:N2 /
H2 O=1/1、流量 1.0NL/min)を用いて
賦活処理を行った。得られた炭化賦活品の賦活条件およ
び特性値を表2に示す。[0096] The sample obtained in this way has an inner diameter of 70 mm.
Using a φ cylindrical electric furnace, under nitrogen atmosphere, heating rate 50
The temperature was raised to 650 ° C./° C./H and maintained for 1 hour to carbonize. Next, 20 g of the carbide was activated with steam under different conditions to obtain seven samples. That is, sample 1 is 750
C, 1.5 hours, Sample 2 was 900C, 1.5 hours, Sample 3 was 950C, 1.5 hours, Sample 4 was 980C, 1.5 hours.
Time, sample 5 is 1000 ° C., 1.5 hours, sample 6 is 10
00 ° C, 2.0 hours, Sample 7 is 700 ° C, 1.5 hours,
Nitrogen gas containing water vapor (activation gas composition molar ratio: N 2 /
The activation treatment was performed using H 2 O = 1/1 and a flow rate of 1.0 NL / min). Table 2 shows the activation conditions and characteristic values of the obtained carbonization activated product.
【0097】[0097]
【表2】 [Table 2]
【0098】また、これらの活性炭のアルシンの吸着
量、放出量を表3に示す。Table 3 shows the adsorption and release of arsine on these activated carbons.
【0099】[0099]
【表3】 [Table 3]
【0100】試料1〜4はいずれの特性値も本発明に使
用する活性炭の規定する範囲内であり、吸着アルシン
量、放出アルシン量とも高くなっている。In Samples 1 to 4, all the characteristic values were within the range specified by the activated carbon used in the present invention, and both the amount of adsorbed arsine and the amount of released arsine were high.
【0101】一方、試料5〜7は比表面積、10nm以
下の細孔容積、0.6〜0.8nm以下の細孔容積の割
合、引っ張り強度、粒子嵩密度、充填密度等の何れか一
つ以上が本発明の規定する範囲内に入っておらず、吸収
アルシン量、放出アルシン量とも低下している。On the other hand, Samples 5 to 7 have any one of specific surface area, pore volume of 10 nm or less, ratio of pore volume of 0.6 to 0.8 nm or less, tensile strength, particle bulk density, packing density, etc. The above does not fall within the range specified by the present invention, and both the amount of absorbed arsine and the amount of released arsine are reduced.
【0102】また、試料1、試料2、及び一般のガス吸
着用ヤシ殻活性炭(一般用活性炭)を用いて、アルシン
を吸着貯蔵した際の内圧の変化を表3に合わせて示し
た。この結果、一般用活性炭を用いた場合には、灰分量
が多くなると共に、内圧の上昇が認められるが、本発明
に使用する活性炭の範囲内である試料1、試料2の場合
には、灰分量が少なく、内圧の上昇も認められなかっ
た。Table 3 also shows changes in the internal pressure when arsine was adsorbed and stored using Sample 1, Sample 2, and general coconut shell activated carbon for gas adsorption (general activated carbon). As a result, when the activated carbon for general use is used, the amount of ash increases and the internal pressure increases. However, in the case of the samples 1 and 2 which are within the range of the activated carbon used in the present invention, the ash is The amount was small and no increase in internal pressure was observed.
【0103】(実施例2) 実施例2では、実施例1で製造した試料2と、前処理を
行わないで或いは種々の加熱温度で密閉空間内で事前に
接触させるアルシン又はホスフィン(以下、予備アルシ
ン又はホスフィン)によって前処理を行って、その後に
貯蔵用アルシン(ホスフィン)を試験容器に注入して、
時間の経過による試験容器内の圧力の変化及び貯蔵アル
シン(ホスフィン)の純度変化を測定する比較実験を行
った。Example 2 In Example 2, arsine or phosphine (hereinafter referred to as “preliminary”) was brought into contact with the sample 2 prepared in Example 1 in an enclosed space without performing pretreatment or at various heating temperatures. Pretreatment with arsine or phosphine), after which arsine (phosphine) for storage is injected into the test vessel,
A comparative experiment was performed to measure the change in pressure in the test vessel over time and the change in purity of stored arsine (phosphine).
【0104】図2に実験装置の概略を示す。実験装置
は、ガス注入系統、ガス排出系統、ガス分析系統及び試
験容器系統からなり、各系統は、常時閉の締切弁V1〜
V10を備えた配管によって接続されている。ガス注入
系統は、アルシン、ホスフィン、及びヘリウムのガス源
R1〜R3からそれぞれ締切弁V1〜V3を介して独立
に試験容器系統に接続されている。ガス排出系統は、試
験容器系統から真空ポンプP1及び分子ターボポンプP
2を介してS1に接続され、猛毒アルシン、ホスフィン
を安全に外部に排出できるようになっている。ガス分析
系統は、ガスクロマトグラフィによる通常のガス分析計
A1、圧力計G1,ピラニ真空計G2及び電離真空計G
3(前者は、10-1mmHgオーダー、後者は、10-5
mmHgオーダーの測定に用いる)からなり、それぞれ
仕切弁V6〜V10を介して各試験容器に接続されてい
る。FIG. 2 shows an outline of the experimental apparatus. The experimental apparatus is composed of a gas injection system, a gas exhaust system, a gas analysis system, and a test container system, and each system is a normally closed shutoff valve V1 to V1.
They are connected by pipes provided with V10. The gas injection system is independently connected to the test vessel system from shutoff valves V1 to V3 from arsine, phosphine, and helium gas sources R1 to R3, respectively. The gas discharge system is composed of a vacuum pump P1 and a molecular turbo pump P from the test container system.
2 to S1 so that the highly toxic arsine and phosphine can be safely discharged outside. The gas analysis system includes a normal gas analyzer A1, a pressure gauge G1, a Pirani vacuum gauge G2, and an ionization vacuum gauge G based on gas chromatography.
3 (the former is of the order of 10 -1 mmHg, the latter is of the order of 10 -5 mmHg)
mmHg order) and are connected to the respective test vessels via gate valves V6 to V10.
【0105】試験容器系統は、それぞれ出入口部に出入
口締切弁CV1〜CV4を備えた、4本の試験容器C1
〜C4を有し、それぞれ試験容器の外部から試験容器内
を加熱するための電熱ヒーターユニットを有し、各電熱
ヒーターユニットは、熱電対センサーT1〜T4による
温度コントロールユニットを有する。各試験容器内に
は、試料2を吸着材として充填してある。この時、充填
量は、各試験容器の入り口側上部の密閉空間内にバッフ
ァ空間を設けることができる程度である。The test container system includes four test containers C1 each having an inlet / outlet shutoff valve CV1 to CV4 at the entrance / exit portion.
To C4, each having an electric heater unit for heating the inside of the test container from the outside of the test container, and each electric heater unit has a temperature control unit using thermocouple sensors T1 to T4. Each test container is filled with sample 2 as an adsorbent. At this time, the filling amount is such that a buffer space can be provided in the closed space above the entrance side of each test container.
【0106】(1)初期真空処理工程 不純物が、アルシン又はホスフィンと吸着材との反応に
よって生じることを明らかにするべく、空気に曝されて
いる試験容器及び試料2からあらかじめ、酸素、窒素、
水分などを除去するべく初期真空処理工程を行った。先
ず、出入口仕切弁CV1〜CV4及び仕切弁V4を開
け、真空ポンプP1によって各試験容器内を真空度0.
1mmHgにして、試験容器内から空気を排出させた
後、仕切弁V4を閉じる。(1) Initial vacuum treatment step In order to clarify that impurities are generated by the reaction of arsine or phosphine with the adsorbent, oxygen, nitrogen,
An initial vacuum processing step was performed to remove moisture and the like. First, the inlet / outlet gate valves CV1 to CV4 and the gate valve V4 are opened, and the inside of each test container is set to a vacuum of 0. 0 by the vacuum pump P1.
After the air is discharged from the test container to 1 mmHg, the gate valve V4 is closed.
【0107】次に、仕切弁V1を開き、ガス源R3から
不活性ガスのヘリウムを略大気圧まで各試験容器内に注
入した後、仕切弁V1を閉じ、その後、仕切弁V4を開
き再度、各試験容器内を真空度約0.1mmHgまで引
く。このヘリウムは、試験容器内の空気の置換を促進す
る効果があるため、適宜ヘリウムの注入を数回繰り返し
てもよい。なお、仕切弁V1を開き、ヘリウムを注入
後、仕切弁V6を介して分析計A1にヘリウムガスを導
入して分析して、不純物の酸素、窒素、一酸化炭素及び
二酸化炭素の発生のないことを確認してもよい。因みに
ヘリウム注入によって、ヘリウムは試料2に吸着される
が、かかる吸着によって不純物の発生が生じないことを
確認してある。Next, the gate valve V1 is opened, and helium, which is an inert gas, is injected from the gas source R3 to approximately atmospheric pressure into each of the test containers. Then, the gate valve V1 is closed, and then the gate valve V4 is opened again. Each test container is evacuated to a degree of vacuum of about 0.1 mmHg. Since this helium has the effect of promoting the replacement of air in the test container, the injection of helium may be repeated several times as appropriate. In addition, after opening the gate valve V1 and injecting helium, helium gas is introduced into the analyzer A1 through the gate valve V6 for analysis, and there is no generation of oxygen, nitrogen, carbon monoxide and carbon dioxide as impurities. You may check. By the way, helium is adsorbed on the sample 2 by helium injection, but it has been confirmed that such adsorption does not generate impurities.
【0108】次に、各試験容器を電熱ヒーターユニット
で300℃〜350℃の所定温度に加熱しながら、真空
に引き続け、真空度約0.1mmHgになったら、仕切
弁V4を閉じ、仕切弁V5を開き、今度は分子ターボポ
ンプP2によって、真空度10-5mmHg以下まで高真
空処理する。最後に、出入口仕切弁CV1〜CV4及び
仕切弁V5を閉じて、初期真空処理工程を終了する。各
試験容器を常温になるまで放熱後、各試験容器の重量W
0を秤量する。Next, while each test container was heated to a predetermined temperature of 300 ° C. to 350 ° C. by an electric heater unit, the vacuum was continuously maintained, and when the degree of vacuum reached about 0.1 mmHg, the gate valve V4 was closed. V5 is opened, and high-vacuum processing is performed to a degree of vacuum of 10 −5 mmHg or less by a molecular turbo pump P2. Finally, the inlet / outlet gate valves CV1 to CV4 and the gate valve V5 are closed to end the initial vacuum processing step. After radiating the heat of each test container to room temperature, the weight W of each test container
Weigh 0.
【0109】(2)予備アルシン(アルシン)の注入工
程 各試験容器C1〜C4を20℃に保持し、仕切弁CV1
〜CV4ならびに仕切弁V2又はV3を開くとともに、
仕切弁V7を開いて圧力計G1を用いながら、各試験容
器内の圧力が略20mmHgになるまで、予備アルシン
或いは予備ホスフィンを各試験容器内に注入する。この
とき、温度コントロールユニットを用いて、試験容器内
部の温度を試験容器C1からC4の順に、50℃、10
0℃、150℃、及び200℃にそれぞれ加熱維持す
る。(2) Step of Injecting Preliminary Arsine (Arsine) Each test container C1 to C4 was kept at 20 ° C.
~ Open CV4 and gate valve V2 or V3,
With the gate valve V7 opened and using the pressure gauge G1, preliminary arsine or preliminary phosphine is injected into each test container until the pressure in each test container becomes approximately 20 mmHg. At this time, using a temperature control unit, the temperature inside the test container was set to 50 ° C. and 10 ° C. in the order of test containers C1 to C4.
Heat and maintain at 0 ° C., 150 ° C., and 200 ° C. respectively.
【0110】各試験容器内に発生する不純物及び圧力を
測定するために、各試験容器を適宜分析計A1或いは圧
力計G1に連通させる。次に、試験容器C1〜C4とも
に、予備アルシン(ホスフィン)温度を200℃に維持
しながら、真空ポンプP1及び分子ターボポンプP2に
よって真空度10-5mmHgまで引き、不純物の混入し
た予備アルシン(ホスフィン)上部に設けたバッファ空
間に溜まることができるため、排出が円滑に行われる。
各試験容器を常温になるまで放熱させた後、各試験容器
の重量W1を秤量する。In order to measure impurities and pressure generated in each test container, each test container is appropriately connected to an analyzer A1 or a pressure gauge G1. Next, while maintaining the preliminary arsine (phosphine) temperature at 200 ° C. in all of the test containers C1 to C4, the vacuum pump P1 and the molecular turbo pump P2 were used to pull the vacuum to 10 −5 mmHg, and the preliminary arsine (phosphine) containing impurities was mixed. ) Since the liquid can accumulate in the buffer space provided at the upper part, the discharge is performed smoothly.
After each test container is radiated to room temperature, the weight W1 of each test container is weighed.
【0111】(3)貯蔵用アルシン(ホスフィン)の吸
着工程 試験容器C1〜C4をそれぞれ20℃に保持し、仕切弁
CV1〜CV4ならびに仕切弁V2又はV3を開くとと
もに、仕切弁V7を開いて圧力計G1を用いながら、各
試験容器内の圧力が略400mmHgになるまで、貯蔵
用アルシ或いはホスフィンを各試験容器内C1〜C4に
注入させて、試験容器内の試料2に吸着させる。次に、
分析計A1によって各試験容器内の不純物の発生がない
ことを確認後、出入口仕切弁CV1〜CV4を閉じ、そ
れぞれの試験容器の重量W2を秤量して、各試験容器内
のガス重量W2−W1を算出する。(3) Step of adsorbing arsine (phosphine) for storage The test vessels C1 to C4 are each kept at 20 ° C., and the gate valves CV1 to CV4 and the gate valve V2 or V3 are opened. Using the total G1, until the pressure in each test container becomes approximately 400 mmHg, storage arsium or phosphine is injected into each of the test containers C1 to C4, and adsorbed on the sample 2 in the test container. next,
After confirming that no impurities are generated in each test container by the analyzer A1, the inlet / outlet gate valves CV1 to CV4 are closed, the weight W2 of each test container is weighed, and the gas weight W2-W1 in each test container is weighed. Is calculated.
【0112】(4)実験結果 図3〜図5は、イオン注入ガスとしてアルシンを用いた
場合、図6は、ホスフィンを用いた場合の実験結果であ
る。(4) Experimental Results FIGS. 3 to 5 show the experimental results when arsine was used as the ion-implanted gas, and FIG. 6 shows the experimental results when phosphine was used.
【0113】図3は、上記(2)予備アルシン(ホスフ
ィン)の注入工程に関連し、種々の加熱温度にて本発明
による方法を用いて前処理した場合の、図2の実験装置
の試験容器内の圧力の時間経過を示すグラフである。FIG. 3 relates to the above (2) preliminary arsine (phosphine) injection step and shows a test container of the experimental apparatus of FIG. 2 when pretreated using the method according to the present invention at various heating temperatures. 6 is a graph showing the passage of time of the pressure in the inside.
【0114】図3から明かなように、加熱温度が50℃
及び100℃の場合、容器内の圧力は徐々に上昇し、加
熱処理開始48時間後には、それぞれおよそ33mmH
g及び93mmHgとなった。さらに時間経過とともに
圧力が徐々に上昇する見込みである。これに対して、加
熱温度が150℃及び200℃の場合、容器内圧力は処
理開始後より急激に上昇し、150℃では処理開始後ほ
ぼ14時間後、200℃では処理開始後ほぼ8時間後で
圧力の上昇は略止まり、圧力はそれぞれ一定値役480
mmHg及び740mmHgとなった。このことから、
試験容器内への不純ガスの発生が、200℃では、約8
時間、150℃では約14時間で終了し、50℃及び1
00℃では、48時間経過後も依然として継続中である
ことが推定される。As is clear from FIG. 3, the heating temperature is 50 ° C.
And 100 ° C., the pressure in the vessel gradually increased, and after 48 hours from the start of the heat treatment, each was about 33 mmH
g and 93 mmHg. It is expected that the pressure will gradually increase over time. On the other hand, when the heating temperature is 150 ° C. and 200 ° C., the pressure in the container rises sharply from the start of the treatment, and at 150 ° C., approximately 14 hours after the start of the treatment, and at 200 ° C., approximately 8 hours after the start of the treatment. , The pressure rise almost stops, and the pressure is 480
mmHg and 740 mmHg. From this,
The generation of impurity gas in the test vessel was about 8 at 200 ° C.
Time, about 14 hours at 150 ° C, 50 ° C and 1 hour
At 00 ° C., it is estimated that it is still continuing after 48 hours.
【0115】図4は、図3における48時間経過後の活
性炭入り試験容器の重量W1の、活性炭吸着材入り試験
容器の初期重量W0に対する重量増分(W1−W0)を
示す棒グラフである。この増分は、試料2の細孔表面に
結合した酸素、窒素及び水素からなる不純物原子と、予
備アルシンとが置換反応して、アルシンが化学的吸着に
より細孔表面に不可逆的に結合したために重さが増大し
たことを推定させる。50℃及び100℃での加熱処理
の場合には、後者の増分は、前者に比べて約50%多い
けれども、150℃及び200℃の場合には、増分は略
同じで、50℃の場合の約3倍に達し、相当量の増加が
見られる。これより、150℃及び200℃で加熱処理
した場合、細孔表面の不純物原始のほとんど全てが予備
アルシンと反応して、アルシンに置換されたことが推定
される。FIG. 4 is a bar graph showing the weight increase (W1-W0) of the weight W1 of the test container containing activated carbon after 48 hours in FIG. 3 with respect to the initial weight W0 of the test container containing the activated carbon adsorbent. This increment is due to the substitution reaction of the preliminary arsine with the impurity atoms consisting of oxygen, nitrogen and hydrogen bonded to the pore surface of sample 2 and the irreversible binding of arsine to the pore surface by chemical adsorption. Is estimated to have increased. In the case of heat treatment at 50 ° C. and 100 ° C., the increment of the latter is about 50% greater than that of the former, but at 150 ° C. and 200 ° C., the increment is almost the same, About three times, a considerable increase is seen. From this, it is presumed that when heat treatment was performed at 150 ° C. and 200 ° C., almost all of the primitive impurities on the pore surface reacted with the preliminary arsine and were replaced with arsine.
【0116】図5は、上記(3)貯蔵用アルシン(ホス
フィン)の吸着工程に関連し、種々の加熱温度にて本発
明による方法を前処理を行った後に、試験容器内に貯蔵
用アルシンを注入した場合における貯蔵用アルシンの純
度変化を示すグラフである。貯蔵用アルシンは、温度2
0℃、圧力400mmHgで注入した後、35℃に静置
した。なお、アルシンの純度は、水素、酸素、窒素、メ
タン、一酸化炭素及び二酸化炭素からなる不純物濃度の
総和を求めて算出した。FIG. 5 relates to the above (3) adsorption step of arsine for storage (phosphine). After pretreatment of the method according to the present invention at various heating temperatures, arsine for storage was placed in a test container. It is a graph which shows the purity change of arsine for storage at the time of injection. Arsine for storage, temperature 2
After injection at 0 ° C. and a pressure of 400 mmHg, the mixture was allowed to stand at 35 ° C. In addition, the purity of arsine was calculated by obtaining the sum of the impurity concentrations of hydrogen, oxygen, nitrogen, methane, carbon monoxide and carbon dioxide.
【0117】図5から明かなように、前処理を行ってい
ない場合及び50℃、100℃での加熱の場合には、そ
れぞれ約2週間、約4週間、及び約7週間、総じて注入
後数週間で要求純度99.9%を下回ってしまう。それ
に対して、150℃及び200℃の場合には、このよう
な割合の純度の低下は発生せず、純度低下の進行具合か
ら推定すると、注入後1年までは99.9%を下回るこ
とはないことが予測される。従って、図5は、予備アル
シンを少なくとも150℃で加熱して活性炭を前処理す
れば、貯蔵アルシンに不純物を混入させることなく、長
期に亘って保存或いは貯蔵可能であることを明らかにす
るものである。As is clear from FIG. 5, when no pretreatment was performed and when heating was performed at 50 ° C. and 100 ° C., respectively, about 2 weeks, about 4 weeks, and about 7 weeks, respectively, The required purity falls below 99.9% in a week. On the other hand, in the case of 150 ° C. and 200 ° C., such a decrease in purity does not occur at this rate, and when estimated from the degree of progress of the purity decrease, it is not possible to fall below 99.9% until one year after injection. Not expected. Therefore, FIG. 5 demonstrates that pre-treatment of activated carbon by heating pre-arsine at at least 150 ° C. can be preserved or stored for a long time without introducing impurities into stored arsine. is there.
【0118】図6は、ホスフィンを用いた場合の図5と
同様の図であり、純度低下率はアルシンの場合より鈍い
ものの、アルシンと同じように長期保存又は貯蔵するた
めには、予備ホスフィンを150℃〜200℃まで加熱
する必要があることを示している。FIG. 6 is a diagram similar to FIG. 5 in the case of using phosphine. Although the purity reduction rate is slower than in the case of arsine, similar to arsine, in order to preserve or store for a long period of time, spare phosphine must be prepared. It indicates that it is necessary to heat to 150 ° C to 200 ° C.
【0119】(実施例3) 実施例3では、実施例1で製造した試料2及び一般のガ
ス吸着用ヤシ殻活性炭を用いて、各圧力下におけるアル
シン吸着量を測定した結果を表4に示す。Example 3 In Example 3, Table 4 shows the results of measuring the adsorbed amount of arsine under various pressures using the sample 2 produced in Example 1 and a general coconut shell activated carbon for gas adsorption. .
【0120】[0120]
【表4】 [Table 4]
【0121】表4に示される通り、本発明に使用する活
性炭の範囲内に入っている試料2は、一般のガス吸着用
ヤシ殻活性炭に比べて非常に良い結果を示した。As shown in Table 4, Sample 2, which was within the range of activated carbon used in the present invention, showed very good results as compared with ordinary coconut shell activated carbon for gas adsorption.
【0122】(実施例4) 前記の図1に示す気体貯蔵用の装置を使用して、吸着ア
ルシン量及び放出アルシン量の測定方法に記載の方法に
準じて、装置の重量を測定してW1とし、20℃、70
0mmHgの条件下でアルシンガスを充填して重量を測
定してW2とした。同様の方法に準じて20mmHgま
で徐々に圧力を減じて、重量が安定したところで重量を
測定してW3とした。その後、加熱を行い35℃、50
℃、100℃、150℃の温度でそれぞれ同様に重量測
定を行い、Wn(nはそれぞれ順に4、5、6、7)と
した。その結果を表5に示す。Example 4 Using the gas storage device shown in FIG. 1, the weight of the device was measured according to the method described in the method for measuring the amount of adsorbed arsine and the amount of released arsine, and W1 was measured. 20 ° C, 70
Arsine gas was charged under the condition of 0 mmHg, and the weight was measured to be W2. According to the same method, the pressure was gradually reduced to 20 mmHg, and when the weight became stable, the weight was measured and the value was W3. Thereafter, heating is performed at 35 ° C. and 50 ° C.
The weight was similarly measured at temperatures of ° C, 100 ° C, and 150 ° C, respectively, and was determined to be Wn (n is 4, 5, 6, 7 in order, respectively). Table 5 shows the results.
【0123】[0123]
【表5】 [Table 5]
【0124】表5から明らかなように、適当な温度に加
温することにより、得られるアルシンの量を大きく増加
させることができ、効率よく貯蔵されたアルシンを利用
することが可能となる。As is evident from Table 5, by heating to an appropriate temperature, the amount of arsine obtained can be greatly increased, and it becomes possible to efficiently use the stored arsine.
【0125】(実施例5) 前記の図1に示す気体貯蔵用の装置を利用して、吸着ホ
スフィン量及び放出ホスフィン量の測定方法に記載の方
法に準じて、装置の重量を測定してW1とし、20℃、
700mmHgの条件下でホスフィンガスを充填して重
量を測定し、W2とした。同様の方法に準じて20mm
Hgまで徐々に圧力を減じて、重量が安定したところで
重量を測定してW3とした。その後、加熱を行い35
℃、50℃、100℃、150℃の温度でそれぞれ同様
に重量測定を行い、Wn(nはそれぞれ順に4、5、
6、7)とした。その結果を表6に示す。Example 5 Using the gas storage device shown in FIG. 1, the weight of the device was measured according to the method described in the method for measuring the amount of adsorbed phosphine and the amount of released phosphine, and W1 was measured. And 20 ° C,
Phosphine gas was charged under the condition of 700 mmHg, and the weight was measured. 20 mm according to the same method
The pressure was gradually reduced to Hg, and when the weight became stable, the weight was measured to be W3. After that, heating is performed and 35
C., 50 ° C., 100 ° C., and 150 ° C., and the weight was measured in the same manner, and Wn (n is 4, 5,
6, 7). Table 6 shows the results.
【0126】[0126]
【表6】 [Table 6]
【0127】表6から明らかなように、適当な温度に加
温することにより、得られるホスフィンの量を大きく増
加させることができ、効率よく貯蔵されたホスフィンを
利用することが可能となる。As is evident from Table 6, by heating to an appropriate temperature, the amount of phosphine obtained can be greatly increased, and it becomes possible to use stored phosphine efficiently.
【0128】[0128]
【発明の効果】以上詳述したように、本願発明によれ
ば、活性炭に大気圧以下で吸着した例えば半導体工業で
イオン注入ガス用として用いられるアルシン、ホスフィ
ン、3フッ化ホウ素等の気体化合物は、差圧によって容
易に脱着する。この際、従来の発生していた問題、即ち
貯蔵中に自己分解して大気圧以下の貯蔵環境が大気圧以
上になることを防止することができる。従って、別の作
業環境下、例えば半導体製造装置に必要量のイオン注入
ガス用として用いられるアルシン、ホスフィン、3フッ
化ホウ素等の気体化合物を送出する際、負圧に引けば大
気圧の周囲環境に猛毒性の気体が漏出することなく、高
純度の気体化合物を送出することが可能となった。As described above in detail, according to the present invention, gas compounds such as arsine, phosphine, boron trifluoride and the like which are adsorbed on activated carbon at a pressure lower than the atmospheric pressure and which are used for ion implantation gas in the semiconductor industry, for example, , Easily detached by differential pressure. At this time, it is possible to prevent a problem that has occurred in the related art, that is, a situation in which a storage environment at a pressure lower than the atmospheric pressure becomes higher than the atmospheric pressure due to self-decomposition during storage. Therefore, when a gas compound such as arsine, phosphine, and boron trifluoride used as a necessary amount of ion-implanted gas for a semiconductor manufacturing apparatus is sent out in another working environment, if the pressure is reduced to a negative pressure, the ambient environment at atmospheric pressure is reduced. High-purity gaseous compounds without leaking highly toxic gases.
【0129】また、例えば吸着されたアルシン、ホスフ
ィン、3フッ化ホウ素等の気体化合物の脱着温度を高温
として該気体の脱着量を増加させることにより、貯蔵環
境内の圧力を大気圧以下に維持したままで、該気体の取
り出し割合を増大させることが可能となった。Further, by increasing the desorption temperature of the gaseous compound such as arsine, phosphine and boron trifluoride, which is adsorbed, to increase the desorption amount of the gas, the pressure in the storage environment is maintained below the atmospheric pressure. As it is, it has become possible to increase the rate of taking out the gas.
【0130】さらに、例えば半導体製造に用いる水素化
化合物及びハロゲン化化合物気体と密閉空間内で事前に
接触させて吸着させる吸着工程と、該吸着反応を経た系
を反応促進する工程と、該反応促進工程を経た該気体を
該密閉空間から排出する排出工程の一連の工程により処
理した、活性炭を用いることにより、気体貯蔵時に該活
性炭と該貯蔵気体の接触により生じる不純物気体に起因
する該貯蔵気体の純度低下が防止され、極めて純度の高
いアルシン、ホスフィン、3フッ化ホウ素等の気体化合
物を供給することが可能となった。Further, for example, an adsorption step of preliminarily contacting and adsorbing a hydride compound and a halogenated compound gas used in semiconductor production in a closed space, a step of accelerating the system after the adsorption reaction, and a step of accelerating the reaction By using activated carbon, which has been subjected to a series of steps of a discharging step of discharging the gas having passed through the closed space from the enclosed space, the storage gas caused by the impurity gas generated by the contact between the activated carbon and the stored gas during gas storage is used. Purity reduction was prevented, and gas compounds such as arsine, phosphine, and boron trifluoride with extremely high purity could be supplied.
【0131】本発明の方法又は装置に最適の活性炭を内
容量100mlのステンレス製試験容器に充填した後、
真空ポンプに接続し、試験容器内が0.01mmHg以
下となるまで真空引きし、加熱装置により試験容器内が
350℃となるまで徐々に試験容器を外部から加熱し
て、引き続き真空ポンプで試験容器内部を真空引きして
0.01mmHg以下にした後、放熱して常温に戻し、
次いで、試験容器を恒温装置で一定温度20℃に保ちな
がら、例えばアルシンを試験容器内を大気圧以下の70
0各mmHgに調圧しながら、これ以上吸収されないま
で試験容器に導入した際に、36g以上のアルシンを吸
着することが可能であり、従来の活性炭に比較して極め
て効率的にアルシンを吸着できるため、気体化合物を貯
蔵し、さらに気体化合物の使用現場に於いて、これら気
体化合物を効率良く脱着する、ボンベ等として好適に用
いることができる。After filling a 100 ml stainless steel test container with activated carbon optimal for the method or apparatus of the present invention,
Connect to a vacuum pump, evacuate the inside of the test container to 0.01 mmHg or less, gradually heat the test container from the outside until the inside of the test container reaches 350 ° C. with a heating device, and then continuously use the vacuum pump to test the test container. After evacuating the inside to 0.01 mmHg or less, radiating heat and returning to normal temperature,
Next, while maintaining the test container at a constant temperature of 20 ° C. by using a thermostat, for example, arsine was introduced into the test container at a pressure of 70 ° C. or less under atmospheric pressure.
0 It is possible to adsorb 36 g or more of arsine when introduced into a test container while adjusting the pressure to each mmHg until it is not absorbed any more, and it is possible to adsorb arsine very efficiently compared to conventional activated carbon. It can be suitably used as a cylinder for storing gaseous compounds and for efficiently desorbing these gaseous compounds at the use site of the gaseous compounds.
【0132】本発明の方法又は装置に最適の活性炭を使
用した場合、例えば前述の如く、アルシンを吸着後、2
0℃に保ちながら、シリンダーからのガスの漏れがない
状態で20日貯蔵した場合、内圧は初期圧を100%と
した際、20日後に於いてもほぼ100%を示し、従来
の活性炭に比較して極めて安定にアルシンを貯蔵できる
ため、気体化合物を貯蔵し、さらに気体化合物の使用現
場に於いて、これら気体化合物を効率良く脱着するボン
ベ等として好適に用いることができる。When the most suitable activated carbon is used in the method or the apparatus of the present invention, for example, as described above, after adsorbing arsine,
When stored at 0 ° C for 20 days without gas leakage from the cylinder, the internal pressure shows almost 100% even after 20 days when the initial pressure is set to 100%, compared to the conventional activated carbon. Since arsine can be stored very stably, the gaseous compound can be stored and can be suitably used as a cylinder for efficiently desorbing the gaseous compound at the use site of the gaseous compound.
【0133】本発明の方法又は装置に最適の活性炭を使
用した場合、例えば前述の如く、100.0%の濃度の
アルシンを吸着後、20℃に保ちながら、シリンダーか
らのガスの漏れがない状態で30日貯蔵した後、アルシ
ンの純度を測定すると、99.9%以上の純度を示し、
従来の活性炭に比較して極めて安定にアルシンを貯蔵で
きるため、気体化合物を貯蔵し、さらに気体化合物の使
用現場に於いて、これら気体化合物を効率良く脱着する
ボンベ等として好適に用いることができる。When the most suitable activated carbon is used in the method or apparatus of the present invention, for example, as described above, after adsorbing 100.0% of arsine, keeping the temperature at 20 ° C., there is no gas leakage from the cylinder. After storing for 30 days at, the purity of arsine was determined to be 99.9% or higher,
Since arsine can be stored much more stably than conventional activated carbon, it can store gaseous compounds and can be suitably used as a cylinder for efficiently desorbing these gaseous compounds at the use site of the gaseous compounds.
【図1】本発明において水素化化合物又はハロゲン化化
合物気体を貯蔵し、その後に送出する装置である。FIG. 1 is a device for storing a hydrogenated compound or a halogenated compound gas in the present invention and for sending out the gas thereafter.
【図2】本発明装置の一例のである。FIG. 2 is an example of the device of the present invention.
【図3】本発明のイオン注入ガスとしてアルシンを用い
て、種々の加熱温度にて本発明による方法を用いて前処
理した場合の、図2の実験装置の試験容器内の圧力の時
間経過を示すグラフである。FIG. 3 shows the time course of the pressure in the test vessel of the experimental apparatus of FIG. 2 when pretreatment using the method according to the present invention at various heating temperatures using arsine as the ion implantation gas of the present invention. It is a graph shown.
【図4】図3における48時間経過後の活性炭吸着材入
り試験容器の重量の活性炭吸着材入り試験容器の初期重
量に対する重量増分を示す棒グラフである。4 is a bar graph showing the weight increase of the test container containing the activated carbon adsorbent after 48 hours in FIG. 3 with respect to the initial weight of the test container containing the activated carbon adsorbent.
【図5】種々の加熱温度にて本発明に記載の内容に従い
前処理を行った後に、試験容器内に貯蔵用アルシンを注
入した場合における貯蔵用アルシンの純度変化を示すグ
ラフである。FIG. 5 is a graph showing a change in purity of storage arsine when storage arsine is injected into a test container after pretreatment at various heating temperatures in accordance with the contents described in the present invention.
【図6】種々の加熱温度にて本発明に記載の内容に従い
前処理を行った後に、試験容器内に貯蔵用ホスフィンを
注入した場合における貯蔵用ホスフィンの純度変化を示
すグラフである。FIG. 6 is a graph showing a change in purity of the storage phosphine when the storage phosphine is injected into the test container after performing the pretreatment according to the contents described in the present invention at various heating temperatures.
1 容器 2 容器弁 3 容器弁内蔵フィルター 4 上部空間 5 パージ弁 6 圧力計 7 バイパス弁 8 ラインフィルタ 9 エアー駆動弁 10 マスフローコントローラー 11 接続配管 12 活性炭 Reference Signs List 1 container 2 container valve 3 container valve built-in filter 4 upper space 5 purge valve 6 pressure gauge 7 bypass valve 8 line filter 9 air drive valve 10 mass flow controller 11 connection pipe 12 activated carbon
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 35/06 C01B 35/06 H01L 21/265 H01L 21/205 // H01L 21/205 21/265 (72)発明者 石森 浩二 東京都町田市鶴間1557 高千穂化学工業 株式会社内 (72)発明者 茨木 敏 大阪府大阪市港区夕凪2丁目18番55− 305 (72)発明者 高内 章 大阪府大阪市都島区友淵町1丁目5番10 −306 (56)参考文献 特開 平9−110409(JP,A) 特開 昭47−27181(JP,A) 国際公開96/11739(WO,A1) (58)調査した分野(Int.Cl.7,DB名) F17C 11/00 C01B 6/06 C01B 6/34 C01B 31/00 - 31/10 C01B 25/08 C01B 35/06 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI C01B 35/06 C01B 35/06 H01L 21/265 H01L 21/205 // H01L 21/205 21/265 (72) Inventor Koji Ishimori 1557 Tsuruma, Machida-shi, Tokyo Inside Takachiho Chemical Industry Co., Ltd. (72) Inventor Satoshi Ibaraki 2-18-55-305 Yuginagi 2-chome, Minato-ku, Osaka-shi, Osaka 1-5-10-306 (56) References JP-A-9-110409 (JP, A) JP-A-47-27181 (JP, A) WO 96/11739 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) F17C 11/00 C01B 6/06 C01B 6/34 C01B 31/00-31/10 C01B 25/08 C01B 35/06
Claims (13)
合物の気体を活性炭と接触させて、上記の気体を大気圧
以下の貯蔵環境下で活性炭に吸着させて貯蔵する工程
と、負圧に引いて吸着された上記の気体の少なくとも一
部を上記の活性炭から離脱させて作業環境下へ送出させ
る工程とを有する気体の貯蔵・送出方法において、上記
の活性炭として、フェノール樹脂粉末の炭化、 賦活粒子
が結合してなる粒状炭素成形物で、 その比表面積が70
0〜1500m2 /g、細孔直径0.01〜10μmの
細孔容積が0.1〜1.0cc/g、細孔直径10nm
以下の細孔容積が0.20〜0.80cc/gであり、
かつ細孔直径10nm以下の細孔容積に占める細孔直径
0.6〜0.8nmの細孔容積の割合が75vol%以
上、粒子嵩密度が0.4〜1.1g/cc、充填密度が
0.30〜0.70g/cc、灰分量が1.0%以下、
活性炭粒子の引張り強度が30kg/cm2以上の活性
炭であって、この活性炭に対して貯蔵・送出させる上記
の水素化化合物又はハロゲン化化合物の気体を密閉空間
内において事前に接触させて吸着させる吸着工程と、上
記の気体を活性炭と反応させる反応促進工程と、この反
応促進工程により生じた不純物気体を上記の密閉空間か
ら排出する排出工程とを経て処理した活性炭を用いたこ
とを特徴とする気体の貯蔵・送出方法。1. A step of contacting a predetermined amount of a gas of a hydrogenated compound or a halogenated compound with activated carbon, adsorbing the gas on activated carbon under a storage environment at a pressure lower than atmospheric pressure, and storing the gas. Desorbing and adsorbing at least a portion of the gas from the activated carbon and sending it to the working environment, wherein the activated carbon is a carbonized phenol resin powder, activated particles. Is a granular carbon molded product having a specific surface area of 70
0 to 1500 m 2 / g, pore volume of 0.01 to 10 μm, pore volume of 0.1 to 1.0 cc / g, pore diameter of 10 nm
The following pore volume is 0.20 to 0.80 cc / g,
The ratio of the pore volume of the pore diameter of 0.6 to 0.8 nm to the pore volume of the pore diameter of 10 nm or less is 75 vol% or more, the particle bulk density is 0.4 to 1.1 g / cc, and the packing density is 0.30 to 0.70 g / cc, ash content is 1.0% or less,
Activated carbon having a tensile strength of activated carbon particles of 30 kg / cm 2 or more, wherein the activated carbon is stored and sent out.
Hydride or halogenated compound gas in a closed space
An adsorption step of pre-contacting and adsorbing
A reaction promoting step of reacting the gas with activated carbon
The impurity gas generated by the reaction promotion process
A method of storing and delivering gas using activated carbon that has been processed through a discharging step of discharging from a gas.
法における上記の反応促進工程において、上記の密閉空
間内を加熱させることを特徴とする気体の貯蔵・送出方
法。 2. A method for storing and sending gas according to claim 1.
In the above-described reaction promoting step in the method,
Gas storage / delivery method characterized by heating the space
Law.
送出方法において、上記の反応促進工程における密閉空
間内の圧力が大気圧以下になるように密閉空間内に供給
する上記の気体の供給量及び密閉空間内の温度を調整す
ることを特徴とする気体の貯蔵・送出方法。 3. The storage and storage of a gas according to claim 1 or 2.
In the delivery method, in the above-mentioned reaction promoting step,
Supplied in a closed space so that the pressure in the space is below atmospheric pressure
Adjust the supply amount of the above gas and the temperature in the enclosed space.
A method for storing and delivering gas.
体の貯蔵・送出方法において、上記の排出工程における
密閉空間内の圧力が大気圧以下になるように密閉空間内
に供給する上記の気体の供給量及び密閉空間内の温度を
調整することを特徴とする気体の貯蔵・送出方法。 4. The air according to claim 1, wherein
In the body storage / delivery method,
Inside the enclosed space so that the pressure inside the enclosed space is below atmospheric pressure
The supply amount of the above gas and the temperature in the enclosed space
A gas storage / delivery method characterized by adjusting.
体の貯蔵・送出方法 において、上記の密閉空間にバッフ
ァ空間を設けたことを特徴とする気体の貯蔵・送出方
法。 5. The air according to claim 1, wherein
In the body storage / delivery method , buff
Gas storage / delivery method characterized by the provision of a space
Law.
体の貯蔵・送出方法において、活性炭に吸着された上記
の気体の少なくとも一部を離脱させて作業環境下へ送出
させる工程時に、貯蔵環境を加熱することを特徴とする
気体の貯蔵・送出方法。 6. The air according to any one of claims 1 to 5,
In the method of storing and delivering the body,
Release at least a part of the gas from the working environment
Characterized by heating the storage environment during the step of causing
Gas storage / delivery method.
体の貯蔵・送出方法において、上記の水素化化合物又は
ハロゲン化化合物の気体が、アルシン、ホスフィン、3
フッ化ホウ素から選択される気体であることを特徴とす
る気体の貯蔵・送出方法。 7. The air according to any one of claims 1 to 6,
In the method for storing and delivering a body, the above hydrogenated compound or
The gas of the halogenated compound is arsine, phosphine, 3
It is a gas selected from boron fluoride
How to store and deliver gas.
合物の気体を活性炭と接触させて、上記の気体を大気圧
以下の貯蔵環境下で活性炭に吸着させて貯蔵する工程
と、負圧に引いて吸着された上記の気体の少なくとも一
部を上記の活性炭から離脱させて作業環境下へ送出させ
る工程とを行う気体の貯蔵・送出装置において、上記の
活性炭として、フェノール樹脂粉末の炭化、 賦活粒子が
結合してなる粒状炭素成形物で、 その比表面積が700
〜1500m2 /g、細孔直径0.01〜10μmの細
孔容積が0.1〜1.0cc/g、細孔直径10nm以
下の細孔容積が0.20〜0.80cc/gであり、か
つ細孔直径10nm以下の細孔容積に占める細孔直径
0.6〜0.8nmの細孔容積の割合が75vol%以
上、粒子嵩密度が0.4〜1.1g/cc、充填密度が
0.30〜0.70g/cc、灰分量が1.0%以下、
活性炭粒子の引張り強度が30kg/cm2 以上の活性
炭であって、この活性炭に対して貯蔵・送出させる上記
の水素化化合物又はハロゲン化化合物の気体を密閉空間
内において事前に接触させて吸着させる吸着工程と、上
記の気体を活性炭と反応させる反応促進工程と、この反
応促進工程により生じた不純物気体を上記の密閉空間か
ら排出する排出工程とを経て処理した活性炭を用いたこ
とを特徴とする気体の貯蔵・送出装置。8. A step of contacting a predetermined amount of a gas of a hydrogenated compound or a halogenated compound with activated carbon, adsorbing the gas on activated carbon in a storage environment at a pressure lower than atmospheric pressure, and storing the gas; A step of desorbing at least a part of the adsorbed gas from the activated carbon and sending it to the working environment, wherein the activated carbon is carbonized phenol resin powder, activated particles. Is a granular carbon molded product obtained by bonding
~1500m 2 / g, pore volume of pores having a pore diameter 0.01~10μm is 0.1~1.0cc / g, volume of pores pore diameter 10nm is located in 0.20~0.80cc / g And the ratio of the pore volume of the pore diameter of 0.6 to 0.8 nm to the pore volume of the pore diameter of 10 nm or less is 75 vol% or more, the particle bulk density is 0.4 to 1.1 g / cc, and the packing density is Is 0.30 to 0.70 g / cc, the ash content is 1.0% or less,
Activated carbon having a tensile strength of activated carbon particles of 30 kg / cm 2 or more, wherein the activated carbon is stored and sent out.
Hydride or halogenated compound gas in a closed space
An adsorption step of pre-contacting and adsorbing
A reaction promoting step of reacting the gas with activated carbon
The impurity gas generated by the reaction promotion process
A gas storage / delivery device characterized by using activated carbon that has been processed through a discharge step of discharging from a gas.
置において、活性炭に吸着された上記の気体の少なくと
も一部を離脱させて作業環境下へ送出させる工程時に、
貯蔵環境を加熱することを特徴とする気体の貯蔵・送出
装置。 9. A gas storage and delivery device according to claim 8.
At least the above gas adsorbed on activated carbon
During the process of removing some of them and sending them out to the working environment,
Gas storage and delivery characterized by heating the storage environment
apparatus.
蔵・送出装置において、上記の反応促進工程における密
閉空間内の圧力が大気圧以下になるように密閉空間内に
供給する上記の気体の供給量及び密閉空間内の温度を調
整することを特徴とする気体の貯蔵・送出装置。 10. A gas storage according to claim 8 or 10.
Storage and delivery equipment,
In a closed space so that the pressure in the closed space is less than atmospheric pressure
Adjust the supply amount of the above gas and the temperature in the enclosed space.
A gas storage / delivery device characterized in that it is regulated.
た気体の貯蔵・送出方法において、上記の排出工程にお
ける密閉空間内の圧力が大気圧以下になるように密閉空
間内に供給する上記の気体の供給量及び密閉空間内の温
度を調整することを特徴とする気体の貯蔵・送出方法。 11. The method according to claim 8, wherein
Gas storage and delivery methods,
Closed air so that the pressure in the closed space
The supply amount of the above gas to be supplied into the space and the temperature in the closed space
A gas storage / delivery method characterized by adjusting the degree.
た気体の貯蔵・送出方法において、上記の密閉空間にバ
ッファ空間を設けたことを特徴とする気体の貯蔵・送出
方法。 12. The method according to claim 8, wherein
In the method of storing and delivering gas,
Storage and delivery of gas characterized by having a buffer space
Method.
た気体の貯蔵・送出装置において、上記の水素化化合物
又はハロゲン化化合物の気体が、アルシン、ホスフィ
ン、3フッ化ホウ素から選択される気体であることを特
徴とする気体の貯蔵・送出装置。 13. The method according to claim 8, wherein
Hydrogen storage compound
Or the halogenated compound gas is arsine, phosphine
Is a gas selected from boron trifluoride.
A gas storage and delivery device.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10034460A JP3021412B2 (en) | 1997-02-17 | 1998-02-17 | Gas storage / delivery method and gas storage / delivery device |
PCT/JP1998/003644 WO2000009257A1 (en) | 1998-02-17 | 1998-08-14 | Method and apparatus for storing and feeding gaseous compound |
CNB988087928A CN1136961C (en) | 1998-02-17 | 1998-08-14 | Method and apparatus for storing and feeding gaseous compound |
US09/374,116 US6309446B1 (en) | 1997-02-17 | 1999-08-16 | Activated carbon for adsorptive storage of gaseous compound |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3204497 | 1997-02-17 | ||
JP18955197 | 1997-07-15 | ||
JP9-189551 | 1997-07-15 | ||
JP9-32044 | 1997-07-15 | ||
JP10034460A JP3021412B2 (en) | 1997-02-17 | 1998-02-17 | Gas storage / delivery method and gas storage / delivery device |
PCT/JP1998/003644 WO2000009257A1 (en) | 1998-02-17 | 1998-08-14 | Method and apparatus for storing and feeding gaseous compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1182891A JPH1182891A (en) | 1999-03-26 |
JP3021412B2 true JP3021412B2 (en) | 2000-03-15 |
Family
ID=26373278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10034460A Expired - Lifetime JP3021412B2 (en) | 1997-02-17 | 1998-02-17 | Gas storage / delivery method and gas storage / delivery device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3021412B2 (en) |
CN (1) | CN1136961C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105257980A (en) * | 2015-10-28 | 2016-01-20 | 重庆工商大学 | Technique method for storing methane or natural gas with low pressure |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1064996A4 (en) * | 1998-02-17 | 2006-05-10 | Air Water Inc | Activated carbon for adsorption and storage of gaseous compound |
JP4310851B2 (en) * | 1999-05-28 | 2009-08-12 | パナソニック電工株式会社 | Method for producing activated carbon |
JP2004125200A (en) * | 2002-09-30 | 2004-04-22 | Sanyo Electric Co Ltd | Refrigerant recovering device and refrigerant recovering method using this device |
US6716271B1 (en) * | 2002-10-29 | 2004-04-06 | Advanced Technology Materials, Inc. | Apparatus and method for inhibiting decomposition of germane |
US6991671B2 (en) | 2002-12-09 | 2006-01-31 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US8002880B2 (en) | 2002-12-10 | 2011-08-23 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US6743278B1 (en) * | 2002-12-10 | 2004-06-01 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US7303607B2 (en) * | 2004-06-14 | 2007-12-04 | Air Products And Chemicals, Inc. | Liquid media containing Lewis acidic reactive compounds for storage and delivery of Lewis basic gases |
GB0506278D0 (en) * | 2005-03-29 | 2005-05-04 | British American Tobacco Co | Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials |
KR20120101737A (en) | 2005-05-03 | 2012-09-14 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Fluid storage and dispensing systems, and fluid supply processes comprising same |
EP2792406A1 (en) | 2006-01-30 | 2014-10-22 | Advanced Technology Materials, Inc. | A fluid storage and dispensing apparatus |
US8539781B2 (en) | 2007-06-22 | 2013-09-24 | Advanced Technology Materials, Inc. | Component for solar adsorption refrigeration system and method of making such component |
US8033304B2 (en) * | 2007-07-13 | 2011-10-11 | Donaldson Company, Inc. | Contaminant control filter with fill port |
JP5376592B2 (en) * | 2009-10-15 | 2013-12-25 | 産協企業有限股▲ふん▼公司 | Spherical activated carbon and manufacturing method thereof |
US8679231B2 (en) | 2011-01-19 | 2014-03-25 | Advanced Technology Materials, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
WO2013181295A1 (en) | 2012-05-29 | 2013-12-05 | Advanced Technology Materials, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
CN102809058A (en) * | 2012-07-30 | 2012-12-05 | 徐毅 | Coal-bed methane device for reducing pressure and desorbing |
US20190001299A1 (en) * | 2015-08-22 | 2019-01-03 | Entegris, Inc. | Microcrystalline cellulose pyrolyzate adsorbent and gas supply packages comprising same |
ES2774346T3 (en) * | 2015-12-29 | 2020-07-20 | Hydro 2 Power S R L | Metal hydride device for hydrogen storage and transportation |
KR102613700B1 (en) * | 2017-09-25 | 2023-12-14 | 누맷 테크놀로지스, 인코포레이티드 | Adsorbent-assisted stabilization of highly reactive gases |
US10837603B2 (en) * | 2018-03-06 | 2020-11-17 | Entegris, Inc. | Gas supply vessel |
US11577217B2 (en) * | 2019-12-12 | 2023-02-14 | Praxair Technology, Inc. | Dopant fluid storage and dispensing systems utilizing high performance, structurally modified particulate carbon adsorbents |
-
1998
- 1998-02-17 JP JP10034460A patent/JP3021412B2/en not_active Expired - Lifetime
- 1998-08-14 CN CNB988087928A patent/CN1136961C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105257980A (en) * | 2015-10-28 | 2016-01-20 | 重庆工商大学 | Technique method for storing methane or natural gas with low pressure |
Also Published As
Publication number | Publication date |
---|---|
CN1270542A (en) | 2000-10-18 |
CN1136961C (en) | 2004-02-04 |
JPH1182891A (en) | 1999-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3592636B2 (en) | Activated carbon for adsorption and storage of gaseous compounds | |
JP3021412B2 (en) | Gas storage / delivery method and gas storage / delivery device | |
US6309446B1 (en) | Activated carbon for adsorptive storage of gaseous compound | |
US5704965A (en) | Fluid storage and delivery system utilizing carbon sorbent medium | |
US10195583B2 (en) | Carbon-based compositions with highly efficient volumetric gas sorption | |
EP0854749B1 (en) | Fluid storage and delivery system comprising high work capacity physical sorbent | |
US5071820A (en) | Carbonaceous material with high micropore and low macropore volume and process for producing same | |
EP0264523B1 (en) | Method of separating gaseous mixture | |
Ko et al. | Adsorption and solution of H2 and N2 by Ta and Nb | |
JP2002523707A (en) | Manufacturing method of adsorption type gas storage and dispensing system using adsorbent pretreatment | |
KR100531194B1 (en) | Method for storing a gaseous hydrogenated compound or a gaseous halogenated compound | |
KR100531195B1 (en) | Method and apparatus for storing and feeding gaseous compound | |
JP2012189219A (en) | Fluid storage and delivery system comprising high work capacity physical sorbent | |
KR102613700B1 (en) | Adsorbent-assisted stabilization of highly reactive gases | |
JPH0620546B2 (en) | Molecular sieving carbon and its manufacturing method | |
US4865822A (en) | Process for purifying hydrogen selenide and hydrogen telluride, to remove moisture and oxidant impurities therefrom | |
US20230094492A1 (en) | Adsorbent-type storage and delivery vessels with high purity delivery of gas, and related methods | |
JP2510183B2 (en) | Method for producing molecular sieving carbon | |
JP2709792B2 (en) | High activation and stabilization of hydrogen storage metal | |
JPH042605A (en) | Production of molecular sieve carbon | |
JPH03141111A (en) | Production of molecular sieve carbon | |
JP3001627B2 (en) | Methods, compositions and apparatus for purifying inert gases and removing Lewis acids and oxidant impurities therefrom | |
JPH10324647A (en) | High-density methane hydrate and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |