JP3021319B2 - Stabilizer for beer - Google Patents

Stabilizer for beer

Info

Publication number
JP3021319B2
JP3021319B2 JP7115702A JP11570295A JP3021319B2 JP 3021319 B2 JP3021319 B2 JP 3021319B2 JP 7115702 A JP7115702 A JP 7115702A JP 11570295 A JP11570295 A JP 11570295A JP 3021319 B2 JP3021319 B2 JP 3021319B2
Authority
JP
Japan
Prior art keywords
beer
amorphous silica
silica
sample
stabilizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7115702A
Other languages
Japanese (ja)
Other versions
JPH0866176A (en
Inventor
正範 田中
金一 小野
達二 森本
晃 掃部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Breweries Ltd
Mizusawa Industrial Chemicals Ltd
Sapporo Holdings Ltd Japan
Original Assignee
Sapporo Breweries Ltd
Mizusawa Industrial Chemicals Ltd
Sapporo Holdings Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Ltd, Mizusawa Industrial Chemicals Ltd, Sapporo Holdings Ltd Japan filed Critical Sapporo Breweries Ltd
Priority to JP7115702A priority Critical patent/JP3021319B2/en
Publication of JPH0866176A publication Critical patent/JPH0866176A/en
Application granted granted Critical
Publication of JP3021319B2 publication Critical patent/JP3021319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は特定の非晶質シリカから
成るビール用安定化処理剤に関するもので、より詳細に
は、ビールのpH領域で大きな負のゼータ電位を示す非
晶質シリカから成るビール用安定化処理剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stabilizing agent for beer comprising a specific amorphous silica, and more particularly, to an amorphous silica having a large negative zeta potential in the pH range of beer. And a stabilizing agent for beer.

【0002】[0002]

【従来の技術】ビールは大麦の麦芽およびホップを主原
料として発酵させて回収した発酵製品であり、琥珀色で
輝きのある透明な酒精飲料である。従って、酒精飲料と
しての味、香り、風味もさることながら、外観も商品価
値を決定する大切な要因である。
2. Description of the Related Art Beer is a fermented product obtained by fermenting barley malt and hops as main raw materials, and is an amber-colored, shiny transparent spirit drink. Therefore, the appearance, as well as the taste, aroma, and flavor of an alcoholic beverage, are important factors that determine the commercial value.

【0003】実際、ビールは瓶、缶、樽等に詰められて
長期間保存されたり、飲用に使用するために冷やされた
りすると、ビール中に澱や濁りが発生して混濁現象を起
こす場合がある。このように混濁が発生するビールは耐
久性に乏しいビールとして嫌われており、ビールとして
の商品価値を損ねている。
In fact, when beer is stored in bottles, cans, barrels or the like and stored for a long period of time, or when cooled for use in drinking, beer or turbidity may be generated in the beer, causing turbidity. is there. The beer having such turbidity is hated as a beer having poor durability, and impairs the commercial value of the beer.

【0004】この混濁には、寒冷混濁、永久混濁と凍結
混濁との三つのケースがある。ビール中には、寒冷混濁
は1.4〜8.1mg/l、永久混濁は6.6〜14.
1mg/l混在すると報告されている。ビールの保存期
間や種類によっては、混濁が44〜100mg/lのオ
ーダーで発生することも報告されている。
There are three cases of this turbidity: cold turbidity, permanent turbidity, and frozen turbidity. In beer, cold turbidity is 1.4 to 8.1 mg / l, and permanent turbidity is 6.6 to 14.
It is reported that 1 mg / l is mixed. It has also been reported that cloudiness occurs on the order of 44 to 100 mg / l depending on the storage period and type of beer.

【0005】寒冷混濁は、ビールを0℃付近に冷却した
時に発生し、20℃となると再び溶解する。永久混濁は
酸化混濁ともいわれ再溶解はしない。凍結混濁はビール
が凍結したり、凍結に近い−5℃付近になると発生す
る。これらのビール混濁は、原料の大麦やホップに由来
する蛋白質の一部やポリフェノール等の可溶性成分が不
溶化したり、これらのコロイド成分が会合することによ
って発生するといわれている。本明細書では、ビール中
に溶解もしくはコロイド状に分解しており、ビールを長
期間保存したり冷却したりする時に発生する混濁の原因
因子成分を「混濁前駆体」と呼ぶ。このようにビールの
混濁発生はビールに普遍的に存在する混濁前駆体に由来
しており、この混濁前駆体がビールに残存する限りにお
いて、その時の条件にもよるが混濁の発生は否めない。
[0005] Cold turbidity occurs when beer is cooled to around 0 ° C, and dissolves again at 20 ° C. Permanent turbidity is also called oxidized turbidity and does not redissolve. Freeze turbidity occurs when the beer is frozen or near -5 ° C, which is close to freezing. It is said that such beer turbidity is caused by insolubilization of a part of proteins derived from barley and hops as raw materials, soluble components such as polyphenol, and association of these colloid components. In the present specification, a causative factor component of turbidity that is dissolved or colloidally decomposed in beer and generated when the beer is stored or cooled for a long time is referred to as a “turbidity precursor”. As described above, the turbidity of beer is derived from the turbid precursor that is universally present in beer, and as long as the turbid precursor remains in the beer, turbidity cannot be denied depending on the conditions at that time.

【0006】従って、ビールの混濁防止(安定化処理)
にも各種の方法が試みられ、ビール中に残存している混
濁前駆体を各種の方法技術により分離除去してビールの
変質を防ぎ、耐久性を向上させているのが現状である。
Therefore, prevention of cloudiness of beer (stabilization treatment)
Various methods have been tried, and at present, the turbid precursor remaining in the beer is separated and removed by various method techniques to prevent deterioration of the beer and improve durability.

【0007】混濁前駆体の分離除去の従来技術として
は、例えば、パパイン(パパイヤ果実から回収した植物
性蛋白質分解酵素)、タンニン酸、ポリビニルピロリド
ン、シリカゲル等の混濁防止剤をビールに加えて処理す
る方法が提供されて行われてきた。特にシリカゲルは、
ビールの香り、味、風味、泡等のビール品質への影響が
少ないことから、広く安定化処理剤として使用されてき
た。
[0007] As a conventional technique for separating and removing the turbid precursor, for example, beer is treated by adding a turbidity inhibitor such as papain (a vegetable proteolytic enzyme recovered from papaya fruit), tannic acid, polyvinylpyrrolidone, and silica gel. A method has been provided and done. Especially silica gel,
It has been widely used as a stabilizing agent because it has little effect on beer quality such as beer aroma, taste, flavor and foam.

【0008】ビールの安定化処理用シリカゲル(非晶質
シリカ)としては、従来ヒドロゲルやキセロゲルを使用
することが知られており、例えば特公昭63−6191
4号公報には、酸性のシリカゾルとケイ酸ソーダとを塩
類水溶液の存在下に反応させて得られる水分量が60乃
至90重量%でBET比表面積が300m2 /g以上の
シリカヒドロゲル粒子をビールの安定化処理に用いるこ
とが記載されている。
As a silica gel (amorphous silica) for stabilizing beer, it has been known to use a hydrogel or xerogel, for example, Japanese Patent Publication No. 63-6191.
No. 4 discloses silica hydrogel particles having a BET specific surface area of 300 m 2 / g or more, obtained by reacting an acidic silica sol and sodium silicate in the presence of an aqueous salt solution and having a water content of 60 to 90% by weight. For use in the stabilization process.

【0009】また、特公平3−27483号公報には、
比表面積530〜720m2 /g、細孔容積0.9〜
1.5ml/g、平均細孔径50〜120オングストロ
ームおよび含水量7〜25%で且つ5%水懸濁液とした
場合のpHが6.0〜8.0であるビール安定化処理用
含水ゲルが記載されている。
Also, Japanese Patent Publication No. 3-27483 discloses that
Specific surface area 530-720 m 2 / g, pore volume 0.9-
1.5 ml / g, average pore size of 50 to 120 Å, water content of 7 to 25%, and pH of 6.0 to 8.0 when prepared as a 5% aqueous suspension, a hydrogel for beer stabilization treatment. Is described.

【0010】更に、キセロゲルを用いるものとして、特
公昭63−38188号公報には、100m2 /gから
450m2 /gまでの範囲の表面積、少なくとも0.6
6cc/gの細孔容積、及び100オングストロームよ
りも大きい平均細孔直径があり、且つ赤外線スペクトル
には3760cm-1にピークがあって、単一表面シラノ
ール基の存在を示し、1890cm-1での吸光指数に対
する3760cm-1で吸光指数の比率では、2.2より
も大きい数を示す、焼成したシリカ・キセロゲルとビー
ルを接触させ、且つシリカをビールから分離することか
ら成ることを特徴とする、ビールを処理する方法が記載
されている。
Further, as a device using xerogel, JP-B-63-38188 discloses a surface area in the range of 100 m 2 / g to 450 m 2 / g, at least 0.6 m 2 / g.
It has a pore volume of 6 cc / g, an average pore diameter of greater than 100 Å, and a peak in the infrared spectrum at 3760 cm −1 indicating the presence of single surface silanol groups, at 1890 cm −1 . Contacting the calcined silica xerogel with beer, wherein the ratio of the extinction index at 3760 cm -1 to the extinction index is greater than 2.2, and separating the silica from the beer, A method for processing beer is described.

【0011】[0011]

【発明が解決しようとする課題】上述したシリカヒドロ
ゲルや含水ゲルを用いる方法では、このゲルの製造中、
保存中或いは輸送中にカビ等の微生物が増殖する場合が
屡々生じ、これを防止するためにゲル中に酸を添着する
場合には、この酸がビール中に混入するという不都合が
ある。
In the above-mentioned method using a silica hydrogel or a hydrogel, during the production of the gel,
Microorganisms such as molds often grow during storage or transportation, and when an acid is added to the gel to prevent this, there is a disadvantage that this acid is mixed into beer.

【0012】前述した従来技術の内、後者の提案にみら
れる焼成キセロゲルを用いる方法は、ヒドロゲルや含水
ゲルを用いる場合の不都合を解消するものとして意義の
あるものであるが、本発明者らの研究によると、波数3
760cm-1における赤外吸収ピークは比表面積の著し
く高いA型シリカゲルに特有のものであり、本発明で用
いるB型シリカゲルにはこの赤外吸収ピークが全く現れ
ないことがわかった。
Among the above-mentioned prior arts, the method using a calcined xerogel, which is found in the latter proposal, is significant as a solution to the inconvenience of using a hydrogel or a hydrogel. According to research, wave number 3
The infrared absorption peak at 760 cm -1 is specific to type A silica gel having a remarkably high specific surface area, and it was found that the type B silica gel used in the present invention did not show this infrared absorption peak at all.

【0013】本発明者等は、水性懸濁液pHがビールと
ほぼ同様の弱酸性pH領域にあり且つこの水性懸濁液で
のゼータ電位がマイナスでしかもその絶対値が20mV
以上の非晶質シリカは、ビールの泡保持性を低下させる
ことなしに、混濁前駆体の除去に有効であることを見出
すに至った。
The present inventors have found that the pH of the aqueous suspension is in the weakly acidic pH range, which is almost the same as that of beer, and that the zeta potential of this aqueous suspension is negative and its absolute value is 20 mV.
The above-mentioned amorphous silica has been found to be effective for removing the turbid precursor without lowering the foam retention of beer.

【0014】即ち、本発明の目的は、取扱いが容易であ
り、ビールの泡保持性を優れたレベルに維持しながら、
冷蔵時に生じる混濁(おり)の前駆体を有効に除去でき
る非晶質シリカ系のビール用安定化処理剤を提供するに
ある。
[0014] That is, an object of the present invention is to make it easy to handle and to maintain beer foam retention at an excellent level.
An object of the present invention is to provide an amorphous silica-based beer stabilizing agent capable of effectively removing a cloudy (origin) precursor generated during refrigeration.

【0015】[0015]

【課題を解決するための手段】本発明によれば、下記式 a M 2/m O・SiO2 ・nH2 O …(A) 式中、Mはアルカリ金属及び/またはアルカリ土類金属
を表わし、mは金属Mの価数を表わし、aは0乃至5×
10-3、特に0乃至3×10-3の数であり、nは0乃至
0.2、特に0乃至0.125の数である、で表わされ
る組成を有し、100乃至600m2 /g、特に250
乃至550m 2 /gの比表面積と1.0乃至2.0cc
/g、特に1.0乃至1.6cc/gの細孔容積とを有
し、且つ下記式 RA =I970/I1100 …(1) 式中、I970 は、赤外線吸収スペクトルの波数970c
-1のピークの吸光度であり、I1100は赤外線吸収スペ
クトルの波数1100cm-1のピークの吸光度である、
で定義される吸光度比(RA )が0.02以上、0.2
0未満、特に0.15以下である非晶質シリカから成
り、濃度1000ppm及び温度25℃での水性懸濁液
pHが4乃至6.2、特に5乃至6.0であり且つ該水
性懸濁液でのゼータ電位がマイナスでその絶対値が20
mV以上、特に30mV以上であることを特徴とするビ
ール用安定化処理剤が提供される。
According to the present invention, the following formula a M2 / mO ・ SiOTwo・ NHTwoO (A) wherein M is an alkali metal and / or an alkaline earth metal
And m represents the valence of the metal M, and a represents 0 to 5 ×
10-3, Especially 0 to 3 × 10-3Where n is from 0 to
0.2, especially a number from 0 to 0.125
100 to 600 mTwo/ G, especially 250
~ 550m Two/ G specific surface area and 1.0 to 2.0cc
/ G, especially a pore volume of 1.0 to 1.6 cc / g.
And the following formula RA= I970/ I1100 ... (1) where I970Is the wave number 970c of the infrared absorption spectrum
m-1Is the absorbance of the peak of1100Is the infrared absorption spectrum
Wave number 1100cm-1Is the absorbance of the peak of
Absorbance ratio (RA) Is 0.02 or more, 0.2
It is composed of amorphous silica having a value of less than 0, especially 0.15 or less.
Aqueous suspension at a concentration of 1000 ppm and a temperature of 25 ° C.
pH is between 4 and 6.2, especially between 5 and 6.0 and the water
Zeta potential in a neutral suspension and its absolute value is 20
mV or more, especially 30 mV or more.
And a stabilizing agent for the steel.

【0016】また本発明によれば、上記非晶質シリカの
表面OH基の数が7個/nm2 以下で、好ましくは6個
/nm2 以下で且つ水性分散系においてもその表面がO
H基化しにくく改質されていることを特徴とするビール
用安定化処理剤が提供される。
According to the present invention, the number of OH groups on the surface of the amorphous silica is not more than 7 / nm 2 , preferably not more than 6 / nm 2 , and the surface thereof is O
A stabilizing agent for beer, which is hard to be H-based and is modified.

【0017】更にまた本発明によれば、上記非晶質シリ
カがコールターカウンタ法によるメジアン径が5乃至8
μm、特に5.5乃至7μmで、且つ2.6μm以下の
微細2次粒子の個数分布が30乃至60%であることを
特徴とするビール用安定化処理剤が提供される。
Further, according to the present invention, the above-mentioned amorphous silica has a median diameter of 5 to 8 by a Coulter counter method.
The present invention provides a stabilizing agent for beer, characterized in that the number distribution of fine secondary particles having a particle size of from 5.5 to 7 μm, particularly from 2.6 to μm is from 30 to 60%.

【0018】[0018]

【作用】本発明で用いる非晶質シリカは前記式(A)で
表わされる化学組成を有しており、シリカ1モル当りの
水分量が0.2モル以下、好ましくは0.14モル以
下、特に0.125モル以下と少ないことが一つの特徴
であり、これにより、製造中、保存中或いは輸送中にカ
ビ等の微生物の増殖がなく、取扱いが容易であるという
利点を与える。
The amorphous silica used in the present invention has a chemical composition represented by the above formula (A), and has a water content of 0.2 mol or less, preferably 0.14 mol or less per 1 mol of silica. One of the characteristics is that the amount is as small as 0.125 mol or less, which gives an advantage that microorganisms such as molds do not grow during production, storage, or transportation, and that handling is easy.

【0019】また、この非晶質シリカには、Na,K等
のアルカリ金属成分やCa,Mg等のアルカリ土類金属
成分が含有されていてもよいが、その含有量は、ビール
への溶出やそれによる香味低下を防止するために、Si
2 1モル当り5×10-3モル以下、特に3×10-3
ル以下とすべきである。
The amorphous silica may contain an alkali metal component such as Na and K or an alkaline earth metal component such as Ca and Mg. And to prevent a decrease in flavor due to
O 2 1 mole per 5 × 10 -3 mol or less, should be especially 3 × 10 -3 mol or less.

【0020】本発明に用いる非晶質シリカでは、濃度1
000ppm及び温度25℃での水性懸濁液pHが4乃
至6.2、特に5乃至6.0であり且つ該水性懸濁液で
のゼータ電位がマイナスでその絶対値が20mV以上、
特に30mV以上であることが顕著な特徴である。
The amorphous silica used in the present invention has a concentration of 1
The pH of the aqueous suspension at 000 ppm and a temperature of 25 ° C. is 4 to 6.2, especially 5 to 6.0, and the zeta potential of the aqueous suspension is negative and its absolute value is 20 mV or more;
In particular, it is a remarkable feature that the voltage is 30 mV or more.

【0021】先ず、本発明で用いる非晶質シリカは、実
際にビールの安定化処理に使用するような低い濃度(1
000ppm)の水性懸濁液において、ビールのpH
(3.5〜5.0)に近似した弱酸性のpHを示し、こ
れはこの非晶質シリカからの含有成分の溶出が少なく、
香味保持性に優れていることを意味している。
First, the amorphous silica used in the present invention has a low concentration (1) such as that actually used for stabilizing beer.
PH of beer in aqueous suspension
(3.5-5.0), indicating a weakly acidic pH, which indicates that the contained components are less eluted from the amorphous silica,
It means that it has excellent flavor retention.

【0022】しかも、本発明によれば、この水性懸濁液
における非晶質シリカ微粒子のゼータ電位をマイナスで
しかもその絶対値を上記範囲としたことにより、ビール
の泡持ちを良好な状態に維持しながら寒冷耐久性を顕著
に向上させることができる。後述する表1を参照された
い。即ち、非晶質シリカのゼータ電位と処理後のビール
の寒冷耐久性との間には密接な関係があり、ゼータ電位
がマイナスでしかもその絶対値が高い程、寒冷耐久性が
向上することが明白である。
Further, according to the present invention, the zeta potential of the amorphous silica fine particles in the aqueous suspension is set to a negative value and the absolute value of the zeta potential is set in the above range, so that the beer foam retention is maintained in a good state. Meanwhile, the cold durability can be significantly improved. See Table 1 below. That is, there is a close relationship between the zeta potential of amorphous silica and the cold durability of the beer after the treatment, and the cold durability can be improved as the zeta potential is negative and its absolute value is higher. It is obvious.

【0023】ビールの寒冷混濁(オリ)の形成はビール
中の蛋白質とポリフェノールとの酸化重合によるものと
いわれているが、本発明に用いる非晶質シリカでは、ゼ
ータ電位がマイナスに高められているため、プラス電荷
をもつ蛋白質コロイド粒子を有効に吸着するため、寒冷
混濁の形成が防止されるものと認められる。
It is said that the formation of cold turbidity (ori) in beer is caused by oxidative polymerization of protein and polyphenol in beer, but the amorphous silica used in the present invention has a negatively increased zeta potential. Therefore, it is recognized that the formation of cold turbidity is prevented because the protein colloid particles having a positive charge are effectively adsorbed.

【0024】本発明では規定したゼータ電位の非晶質シ
リカでは、化学組成が上記範囲にあると共に、式(1)
で規定した吸光度比(RA )が0.02以上、0.20
未満、特に0.15以下であることが重要であることが
わかった。尚、上記吸光度比(RA )は、赤外吸収スペ
クトルから図1に示すように、各吸光度I970 及びI
1100を求めることにより、算出できる。
In the present invention, an amorphous silicon having a specified zeta potential is used.
In Rica, the chemical composition is in the above range and the formula (1)
Absorbance ratio (RA) Is 0.02 or more and 0.20
Less than 0.15
all right. The absorbance ratio (RA) Is the infrared absorption spectrum
As shown in FIG. 1, each absorbance I970And I
1100Can be calculated by calculating

【0025】本発明に用いる非晶質シリカの典型的な非
晶質シリカの赤外吸収スペクトルを図2に示す。図2か
ら、この非晶質シリカは波数3760cm-1に全く吸収
を有していなく、波数1100cm-1に大きな吸収及び
波数970cm-1に小さな吸収を有していることがわか
る。波数1100cm-1の特性吸収はSi−Oの伸縮振
動に基づくものであり、一方波数970cm-1の特性吸
収はSi−O−Hの伸縮振動に基づくものと思われる。
FIG. 2 shows an infrared absorption spectrum of a typical amorphous silica used in the present invention. From Figure 2, the amorphous silica not have exactly the absorption at a wave number of 3760cm -1, it is found to have a small absorption in the large absorption and wavenumber 970 cm -1 in wave number 1100 cm -1. The characteristic absorption at the wave number of 1100 cm -1 is based on the stretching vibration of Si-O, while the characteristic absorption at the wave number of 970 cm -1 is considered to be based on the stretching vibration of Si-OH.

【0026】図3は、B型非晶質シリカの焼成温度を変
化させた場合の上記特性吸収の変化を示したものである
が、焼成温度が高くなるにつれて、波数970cm-1
吸収が小さくなっており、800℃の焼成ではついにそ
の吸収が消失している事実が明らかである。
FIG. 3 shows the change in the characteristic absorption when the calcination temperature of the B-type amorphous silica is changed. As the calcination temperature increases, the absorption at the wave number of 970 cm -1 decreases. It is clear that the absorption at 800 ° C. has finally disappeared.

【0027】本発明では、吸光度比(RA )が上記範囲
となるように非晶質シリカを熱処理することにより、ゼ
ータ電位を本発明の範囲とすることができる。
In the present invention, the zeta potential can be adjusted to the range of the present invention by subjecting the amorphous silica to a heat treatment so that the absorbance ratio (R A ) falls within the above range.

【0028】後述する図4は、本発明で用いる非晶質シ
リカを含め各種のビール用安定化処理剤である従来の非
晶質シリカについて、温度25℃、分散濃度1000p
pmで水に懸濁させた時のpH及びゼータ電位の値をそ
れぞれ原点として、これに塩酸を添加させ懸濁液のpH
を酸性側にシフトさせた時のゼータ電位変化を表示した
ものである。
FIG. 4 to be described later shows a conventional amorphous silica which is a stabilizing agent for various beers including the amorphous silica used in the present invention at a temperature of 25.degree.
With the values of the pH and the zeta potential when suspended in water at pm as the origin, hydrochloric acid was added thereto and the pH of the suspension was adjusted.
Is a display of the change in zeta potential when is shifted to the acidic side.

【0029】図中のa(試料No.H−1)は従来のヒ
ドロゲルタイプであり、b(試料No.1),d(試料
No.2),e(試料No.3)は本発明によるキセロ
ゲルタイプであり、c(試料No.H−3)は従来の市
販キセロゲルタイプのものである。図4から特に言える
ことは、本発明による非晶質シリカの原点pHはb=
5.78,d=5.6,e=5.5といずれも6以下、
特に5.7以下であって、従来品のc=6.27に比ら
べると前述したビールのpHにより近似するpHを呈し
ていることである。
In the figure, a (sample No. H-1) is a conventional hydrogel type, and b (sample No. 1), d (sample No. 2), and e (sample No. 3) are according to the present invention. It is a xerogel type, and c (sample No. H-3) is a conventional xerogel type. It can be particularly said from FIG. 4 that the origin pH of the amorphous silica according to the present invention is b =
5.78, d = 5.6, e = 5.5, all of which are 6 or less;
In particular, it is 5.7 or less, and exhibits a pH closer to that of the above-described beer as compared with c = 6.27 of the conventional product.

【0030】更に言えることは、特に本発明によるd,
eのゼータ電位は、原点の値は勿論であるがpHシフト
に対するゼータ電位も、ビールのpH領域を含みpH
3.5迄のシフトに対して常にマイナスでその絶対値が
30mV以上の値でマイナスに安定化して変化する顕著
な特徴を示している。
It can furthermore be said that, in particular, d,
The zeta potential of e is not limited to the value at the origin, but the zeta potential for pH shift also includes the pH range of beer.
It shows a remarkable feature that the shift up to 3.5 is always negative and its absolute value is negatively stabilized and changes at a value of 30 mV or more.

【0031】これらの挙動については、その詳細は不明
であるが従来のキセロゲルタイプのビール用安定化処理
剤に比べ本発明による非晶質シリカ粒子は、細孔分布、
細孔容積、比表面積等に代表される構造的要因の違いに
もよるが、後述するシリカ表面のOH基の個数が従来の
シリカよりも低い濃度(7個/nm2 以下、特に6個/
nm2 以下)であることから、表面はマイナスに帯電し
やすく、しかもシリカ表面のシラノール基が安定化され
て容易にOH基化されにくく改質されているために、図
4に見られる挙動として広範な酸性pH領域にわたって
本発明による非晶質シリカは、電気的にマイナスに帯電
されやすいものと思考される。
Although the details of these behaviors are unknown, the amorphous silica particles according to the present invention have a pore distribution,
The number of OH groups on the silica surface, which will be described later, is lower than that of conventional silica (7 / nm 2 or less, especially 6 / OH) although it depends on structural factors such as pore volume and specific surface area.
nm 2 or less), the surface is likely to be negatively charged, and the silanol groups on the silica surface are stabilized so that they are not easily converted to OH groups. It is believed that the amorphous silica according to the present invention over a wide acidic pH range is liable to be electrically negatively charged.

【0032】ビール安定化処理用非晶質シリカに要求さ
れる他の物性として、比表面積が100乃至600m2
/g、特に250乃至550m2 /gの範囲にあるべき
である。比表面積が上記範囲よりも小さいと、寒冷混濁
前駆体の除去が不十分となり易く、一方上記範囲よりも
大きいと、香味成分等の吸着が生じるため、処理後のビ
ールの香味保持性が低下する傾向がある。
Another physical property required for the amorphous silica for beer stabilization treatment is a specific surface area of 100 to 600 m 2.
/ G, especially from 250 to 550 m 2 / g. When the specific surface area is smaller than the above range, the removal of the cold turbid precursor tends to be insufficient, and when the specific surface area is larger than the above range, adsorption of a flavor component or the like occurs, thereby reducing the flavor retention of the beer after the treatment. Tend.

【0033】また、細孔容積は1.0乃至2.0cc/
g、特に1.0乃至1.6cc/gの範囲にあるべきで
あり、上記範囲よりも低いと、寒冷混濁前駆体の除去が
やはり不十分となる可能性があり、一方上記範囲よりも
多いと処理後のビールの泡持ちが低下する傾向がある。
The pore volume is 1.0 to 2.0 cc /
g, especially in the range of 1.0 to 1.6 cc / g, below which the removal of the cold turbid precursor may still be inadequate, while more than the above range And the beer after treatment tends to have reduced foam retention.

【0034】更に、この非晶質シリカのメジアン径(体
積基準、コールターカウンタ法)は5.0乃至8.0μ
m、特に5.5乃至7.0μmの範囲にあるべきであ
り、粒径が上記範囲よりも小さい場合には、粒子相互の
凝集を生じ、また上記範囲よりも大きい場合には、粒子
の分散が十分でない結果として、何れも混濁前駆体の吸
着捕集性が低下する。
The amorphous silica has a median diameter (volume basis, Coulter counter method) of 5.0 to 8.0 μm.
m, especially in the range of 5.5 to 7.0 μm. If the particle size is smaller than the above range, the particles will agglomerate with each other. Are not sufficient, the adsorbability of the turbid precursor decreases.

【0035】また本発明においては、上記の通りメジア
ン径は比較的に大きいが、その大粒子の周辺にコールタ
ーカウンタ法による2.6μm以下の微細2次粒子が個
数分布で30乃至60%の範囲で集合していることも特
徴である。
In the present invention, as described above, the median diameter is relatively large, but fine secondary particles of 2.6 μm or less according to the Coulter counter method have a number distribution of 30 to 60% around the large particles. Another characteristic is that they are grouped together.

【0036】このことは、実際のビールのオリ下げ処理
は、添加するシリカが少量で且つ処理時間が短ければそ
れだけ好適且つ効果的である。従って本発明において
は、処理時には水性分散系でマイナスに帯電した微細粒
子が同じくマイナスに帯電した大粒子に電気的にはじか
れてすばやく分散しオリ下げの速度を早め効果的に作用
するものと推定される。
This means that the beer lowering process of the actual beer is more suitable and effective as the amount of added silica is smaller and the processing time is shorter. Therefore, in the present invention, it is presumed that at the time of processing, negatively charged fine particles in the aqueous dispersion system are electrically repelled by the similarly negatively charged large particles and are quickly dispersed to accelerate the lowering speed of the orifice and effectively act. Is done.

【0037】[0037]

【発明の好適態様】本発明のビール用安定化処理剤は、
種々の方法で製造されるヒドロもしくはキセロのシリカ
ゲルであって、「食品添加物公定書」D−681に記載
されている二酸化ケイ素(シリカゲル)に合格するシリ
カゲルを原料として、特定の吸光度比(RA )及びゼー
タ電位を有するように熱処理することによって製造され
る。本発明のシリカゲルの原料となるヒドロもしくはキ
セロのシリカゲルの製造法に関し、その一例を示せば下
記の方法が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The stabilizing agent for beer of the present invention comprises:
A hydro- or xero silica gel produced by various methods, which has a specific absorbance ratio (R) starting from silica gel that passes silicon dioxide (silica gel) described in “Food Additive Official Specification” D-681. A ) and heat-treated to have a zeta potential. Regarding a method for producing hydro or xero silica gel as a raw material of the silica gel of the present invention, the following method may be mentioned as an example.

【0038】シリカゲルの一般的製造法としては、原料
となるケイ酸アルカリと鉱酸とを接触混合により中和反
応させてヒドロゲルを生成させ、このヒドロゲルを解砕
し、さらに熟成し、次いで上記の反応によって副生した
塩類を洗浄除去した後、乾燥、熱処理粉砕、分級する方
法がある。
As a general method for producing silica gel, an alkali silicate as a raw material and a mineral acid are subjected to a neutralization reaction by contact mixing to form a hydrogel, the hydrogel is crushed, further aged, and then the above-mentioned aging is performed. After washing and removing salts by-produced by the reaction, there is a method of drying, heat-treating, pulverizing and classifying.

【0039】原料のケイ酸アルカリは、工業製品として
JISに規格されている水ガラスのケイ酸ソーダやケイ
酸カリ、さらには酸性白土等の粘土質原料より回収した
易反応性シリカにアルカリ金属の水酸化物溶液を反応さ
せたケイ酸アルカリ等を使用することができる。
Alkali silicate as a raw material is converted into easily reactive silica recovered from clay raw materials such as sodium silicate or potassium silicate of water glass, which is JIS standardized as an industrial product, and alkali metal to alkali metal. An alkali silicate or the like reacted with a hydroxide solution can be used.

【0040】中和反応に用いる鉱酸は、塩酸や硫酸等が
一般に使用されるが、これらの混酸を使用することも可
能である。水溶液乃至水性分散体である両原料を接触さ
せる中和反応は、両原料のどちらか一方の原料をもう一
方の原料中に攪拌下に添加する方法や、両原料の水性液
を一定条件下に同時に接触させる方法がある。いずれに
しても、シリカゲルの比表面積を本発明の範囲に特定す
るためには、反応混合物のpHを酸性サイドで調製する
ことが好適である。シリカゲルの比表面積や細孔容積等
の物性を目的とする範囲に調整するための反応条件は、
予め行う簡単な予備実験によって容易に決定することが
できる。
As the mineral acid used for the neutralization reaction, hydrochloric acid, sulfuric acid and the like are generally used, but a mixed acid thereof can also be used. The neutralization reaction of contacting both raw materials, which are an aqueous solution or an aqueous dispersion, can be carried out by adding one of the two raw materials to the other raw material with stirring, or by subjecting the aqueous liquid of both raw materials to certain conditions. There is a method of contacting at the same time. In any case, in order to specify the specific surface area of the silica gel within the scope of the present invention, it is preferable to adjust the pH of the reaction mixture on the acidic side. Reaction conditions for adjusting physical properties such as the specific surface area and pore volume of silica gel to the intended range are as follows:
It can be easily determined by a simple preliminary experiment performed in advance.

【0041】一般に、上記の方法で調製したヒドロもし
くはキセロのシリカゲルを100乃至140℃で一定時
間水熱処理することによって、シリカゲルの比表面積や
細孔容積を調整する。水熱処理後のシリカゲルを乾燥
し、加熱処理した後、前記粒度となるように、粉砕、分
級する。粉砕及び分級は乾燥後、加熱処理に先立って行
ってもよい。
In general, the hydrogel or xero silica gel prepared by the above method is subjected to hydrothermal treatment at 100 to 140 ° C. for a certain period of time to adjust the specific surface area and pore volume of the silica gel. The silica gel after the hydrothermal treatment is dried and heat-treated, and then pulverized and classified so as to have the above particle size. Grinding and classification may be performed after drying and prior to heat treatment.

【0042】シリカゲルの加熱処理は、前記式(A)の
組成、前記式(1)の吸光度比(R A )及び前述したゼ
ータ電位を満足するように行うべきである。加熱処理温
度は、シリカの比表面積によっても相違するが、一般に
120乃至1000℃、特に150乃至900℃、最も
好適には200乃至800℃の範囲が適当である。加熱
処理時間は、温度及び焼成方法によっても相違するが、
一般的に数秒乃至数時間の範囲から、上記要求が満足さ
れる時間を選ぶのがよい。加熱処理には、電気炉、ロー
タリキルン、熱風瞬間焼成炉等の固定床、移動床或いは
流動床式の熱処理装置を用いることができる。
The heat treatment of the silica gel is carried out according to the above formula (A).
Composition, absorbance ratio (R A) And the aforementioned z
Data potential should be satisfied. Heat treatment temperature
The degree depends on the specific surface area of silica, but generally
120-1000 ° C, especially 150-900 ° C, most
Preferably, the range of 200 to 800 ° C. is appropriate. heating
The processing time varies depending on the temperature and the firing method,
In general, the above requirements are satisfied within the range of several seconds to several hours.
It's a good idea to choose a time. For the heat treatment, use an electric furnace,
Fixed floor, moving floor, such as tari kiln, hot air flash firing
A fluidized bed type heat treatment apparatus can be used.

【0043】また本発明によれば、シリカ表面を改質す
る別法としては、2次的にナトリウム、カリウム等のア
ルカリ金属及び/又はCa,Mg等のアルカリ土類金属
成分をシリカの表面に沈着させて表面のOH基数を少な
くし、次いで必要に応じて加熱処理を行ってもよい。こ
の場合は前記式(A)におけるaは前述したpH及びビ
ールへの溶出の点から5×10-3以下の数であることが
好ましい。
According to the present invention, as another method for modifying the silica surface, an alkali metal component such as sodium and potassium and / or an alkaline earth metal component such as Ca and Mg are secondarily added to the silica surface. Deposition may be performed to reduce the number of OH groups on the surface, and then heat treatment may be performed if necessary. In this case, a in the formula (A) is preferably a number of 5 × 10 −3 or less from the viewpoint of the above-mentioned pH and elution into beer.

【0044】本発明の非晶質シリカをビールの安定化処
理剤として添加する量割合は、ビールの種類、発酵条件
や製造条件によっても異なるが、ビールに対して50乃
至1000ppmのオーダー範囲の中から適宜選んで添
加し、処理することができる。
The proportion of the amorphous silica of the present invention to be added as a stabilizing agent for beer varies depending on the type of beer, fermentation conditions and production conditions. , And can be appropriately added and processed.

【0045】[0045]

【実施例】本発明による非晶質シリカ系のビール用安定
化処理剤を以下のように調製した。シリカヒドロゲルの調製 原料にJIS製品のケイ酸ソーダ(SiO2 22.3
8%、Na2 O 7.10%、SG 1.294/15
℃)と45%濃度の硫酸溶液(比重1.352/15
℃)をその容積比で4:1に相当する量を選び、両者の
瞬時接触が可能となる装置を用いて、ケイ酸ソーダ、硫
酸溶液を該装置に同時に供給し、30〜35℃で反応さ
せ、反応系のpHが2.0〜2.2になるように調整し
てシリカを生成させ、次いで同じ条件下で2時間熟成を
行い、シリカヒドロゲルを回収した。この熟成させたシ
リカヒドロゲルを2〜5mmの大きさに解砕後、水洗し
水分が68.5%のヒドロゲル(試料SG−1)を得
た。次いでこのヒドロゲルを水に再分散させ、120℃
で4時間水熱処理した後、110℃で乾燥、粉砕、分級
してシリカゲル微粉末(試料No.SG−110)を得
た。
EXAMPLE An amorphous silica-based stabilizing agent for beer according to the present invention was prepared as follows. As a raw material for preparing a silica hydrogel , JIS sodium silicate (SiO 2 22.3)
8%, Na 2 O 7.10% , SG 1.294 / 15
° C) and a 45% strength sulfuric acid solution (specific gravity 1.352 / 15
° C) in a volume ratio of 4: 1, using a device capable of instantaneous contact between the two, simultaneously supplying sodium silicate and sulfuric acid solution to the device and reacting at 30-35 ° C. The reaction was adjusted to adjust the pH of the reaction system to 2.0 to 2.2 to produce silica, and then aged for 2 hours under the same conditions to recover a silica hydrogel. The aged silica hydrogel was crushed to a size of 2 to 5 mm, and washed with water to obtain a hydrogel having a water content of 68.5% (sample SG-1). The hydrogel is then redispersed in water and
, And dried at 110 ° C, pulverized, and classified to obtain a fine silica gel powder (sample No. SG-110).

【0046】(実施例1〜3)上記方法で調製した試料
No.SG−110を200℃、400℃、600℃で
それぞれ1時間熱処理したものをそれぞれ試料No.
1、No.2、No.3とし、以下に記す試験方法で物
性及びビール用処理剤として評価を行った。その結果を
表1に示す。
(Examples 1 to 3) The sample Nos. Sample No. SG-110 was heat-treated at 200 ° C., 400 ° C., and 600 ° C. for 1 hour, respectively.
1, No. 2, No. 3, and evaluated as physical properties and a processing agent for beer by the test methods described below. Table 1 shows the results.

【0047】(実施例4)試料SG−1を水に再分散さ
せ、120℃で2時間水熱処理した後、110℃で乾
燥、粉砕、分級し、さらに400℃で1時間加熱処理し
たものを試料No.4とし、実施例1と同様に諸性状を
評価した。その結果を表1に示す。
Example 4 Sample SG-1 was redispersed in water, subjected to hydrothermal treatment at 120 ° C. for 2 hours, dried, pulverized and classified at 110 ° C., and further heat-treated at 400 ° C. for 1 hour. Sample No. 4 and various properties were evaluated in the same manner as in Example 1. Table 1 shows the results.

【0048】(実施例5〜6)試料SG−1を水に再分
散させ、130℃又は140℃で4時間水熱処理した
後、110℃で乾燥、粉砕、分級し、さらに400℃で
1時間加熱処理したものを試料No.5、No.6と
し、実施例1と同様に諸性状を評価した。その結果を表
1に示す。
(Examples 5 to 6) The sample SG-1 was re-dispersed in water, hydrothermally treated at 130 ° C. or 140 ° C. for 4 hours, dried at 110 ° C., pulverized and classified, and further at 400 ° C. for 1 hour. The sample subjected to the heat treatment was designated as Sample No. 5, no. 6, and various properties were evaluated in the same manner as in Example 1. Table 1 shows the results.

【0049】(比較例1〜2)試料No.SG−110
及び試料No.SG−1を110℃でスプレー乾燥した
ものをそれぞれ試料No.H−1、H−2として、同様
に評価を行った。その結果を表2に示す。
(Comparative Examples 1 and 2) SG-110
And sample no. Sample No. SG-1 was spray-dried at 110 ° C. Evaluation was performed similarly as H-1 and H-2. Table 2 shows the results.

【0050】(比較例3)市販のシリカゲルを試料N
o.H−3とし、同様に評価した。その結果を表2に示
す。
Comparative Example 3 A commercially available silica gel was used for sample N
o. It was set to H-3 and evaluated similarly. Table 2 shows the results.

【0051】(比較例4)実施例4の400℃焼成しな
いものを試料No.H−4とし、同様に評価した。その
結果を表2に示す。
Comparative Example 4 Sample No. 4 which was not fired at 400.degree. It was set to H-4 and evaluated similarly. Table 2 shows the results.

【0052】(比較例5〜6)実施例5及び6の400
℃焼成しないものを試料No.H−5、H−6とし、同
様に評価した。その結果を表2に示す。
(Comparative Examples 5 to 6) 400 of Examples 5 and 6
Samples that were not fired at ℃ H-5 and H-6 were evaluated in the same manner. Table 2 shows the results.

【0053】アルカリ金属及びアルカリ土類金属沈着ビ
ール用安定化処理剤の調製 試料SG−1を用いてNaOH及び/又はCaSO4
用いてSiO2 基準で5×10-3モルになるようにナト
リウム及び/又はカルシウムを沈着させ、110℃で乾
燥したものを試料No.H−7、No.H−8とした。
その結果を表2及び表3に示す。
Alkali metal and alkaline earth metal deposition
Of sodium and / or calcium using NaOH and / or CaSO 4 to a concentration of 5 × 10 −3 mol based on SiO 2 using sample SG-1 at 110 ° C. The sample dried with sample No. H-7, no. H-8.
The results are shown in Tables 2 and 3.

【0054】(実施例7)試料No.H−8を400℃
で1時間焼成したものを試料No.7とし、実施例1と
同様に諸性状を評価した。その結果を表1及び表3に示
す。
(Example 7) H-8 at 400 ° C
Baked for 1 hour. 7, and various properties were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 3.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】測定方法 1.BET法による比表面積 比表面積は自動BET比表面積測定装置( CARLO - ERB
A 社製 SorptomaticSeries 1800 )を用いて、下記に示
す条件で調製した試料を窒素吸着法によるBET法で測
定した。測定法は、次の文献を参照にした。S.Brunaue
r, P.H.Emmettand E.Teller. J.Am.Chem.Soc.,60, 309
(1938).150℃で充分に乾燥した試料0.5〜0.6
gを秤量瓶に採り、さらに150℃で1時間乾燥して重
量を精秤する。この試料を吸着試料管にいれ200℃に
加熱し、吸着試料管内の真空度が10mm-4Hgに到達
するまで脱気し、放冷後約−196℃の液体窒素中に吸
着試料管を入れ、pN2 /po =0.05〜0.30
pN2 :窒素ガス圧、po :測定時の大気圧、の間で4
〜5点窒素ガスの吸着量を0℃、1気圧の吸着量に変換
し、BETの式に代入し、Vm[cc/g](試料面に
単分子層を形成するに必要な窒素ガス吸着量を示す)を
求め、次の式(2)で比表面積を求める。 比表面積 SA=4.35×Vm [m2 /g] …(2)
Measurement method 1. Specific surface area by BET method The specific surface area is measured by an automatic BET specific surface area measuring device (CARLO-ERB)
Using Sorptomatic Series 1800 manufactured by Company A), samples prepared under the following conditions were measured by the BET method using a nitrogen adsorption method. The measuring method referred to the following literature. S.Brunaue
r, PHEmmettand E. Teller. J. Am. Chem. Soc., 60 , 309
(1938) 0.5-0.6 sample dried sufficiently at 150 ° C
g in a weighing bottle, dried at 150 ° C. for 1 hour, and precisely weighed. This sample is placed in an adsorption sample tube, heated to 200 ° C., degassed until the degree of vacuum in the adsorption sample tube reaches 10 mm −4 Hg, allowed to cool, and then placed in liquid nitrogen at about −196 ° C. , PN 2 /po=0.05 to 0.30
pN 2 : nitrogen gas pressure, po: atmospheric pressure at the time of measurement, 4
Convert the amount of nitrogen gas adsorbed to 5 points into an adsorbed amount of 0 ° C. and 1 atm and substitute it into the BET equation to obtain Vm [cc / g] And the specific surface area is determined by the following equation (2). Specific surface area SA = 4.35 × Vm [m 2 / g] (2)

【0059】2.BET法による細孔容積 1項の自動BET比表面積測定装置(CARLO−ER
BA社製 SorptomaticSeries 1800 )を用いて窒素吸着
法により、1項と同様に操作により試料の細孔半径0〜
300オングストロームにおいて飽和圧で吸着される気
体容積[(Vs)(cc)]を求め、(3)式により細
孔容積(Vp)(cc/g)を求めた。 Vp(cc/g)=Vs×0.00155/w …(3) w:サンプル重量(g)
2. Pore volume by BET method 1 automatic BET specific surface area measuring device (CARLO-ER)
Using the Sorptomatic Series 1800 manufactured by BA, the nitrogen adsorption method was used to perform the same operation as in section 1 to obtain a sample with a pore radius of 0 to 0.
The gas volume [(Vs) (cc)] adsorbed at a saturation pressure at 300 angstroms was determined, and the pore volume (Vp) (cc / g) was determined by equation (3). Vp (cc / g) = Vs × 0.00155 / w (3) w: sample weight (g)

【0060】3 かさ密度 JIS K 6220の6.8項に記載の方法で測定し
た。
3 Bulk density Measured according to the method described in 6.8 of JIS K 6220.

【0061】4 水性懸濁液のpH イオン交換水100mlに試料5gを懸濁させ、10分
間攪拌後25℃でpHメーターで測定した。
4 pH of Aqueous Suspension A 5 g sample was suspended in 100 ml of ion-exchanged water, stirred for 10 minutes, and measured at 25 ° C. with a pH meter.

【0062】5 電気伝導度 pH測定用懸濁液を(株)ホリバ社製コンダクテビティ
ーメータモデルDS−12で測定した。
5 Electric Conductivity The pH measurement suspension was measured with a conductivity meter model DS-12 manufactured by Horiba Co., Ltd.

【0063】6 水分測定 試料を電気乾燥器中で110℃で2.0時間乾燥したと
きの試料の重量減を求めて、水分を測定した。
6 Moisture Measurement Water content was measured by determining the weight loss of the sample when dried at 110 ° C. for 2.0 hours in an electric dryer.

【0064】7 メジアン径及び個数分布 イオン交換水100mlに試料0.5g懸濁させ、1分
間超音波処理した後、100μmアパーチャチュウブを
装着しコールター法にて測定した。個数%は上記測定結
果より2.6μm以下のものについて算出した。
7 Median Diameter and Number Distribution A sample of 0.5 g was suspended in 100 ml of ion-exchanged water, subjected to ultrasonic treatment for 1 minute, and a 100 μm aperture tube was attached thereto, followed by measurement by a Coulter method. The number% was calculated for those having a particle size of 2.6 μm or less from the above measurement results.

【0065】8 強熱減量(Ig.Loss)及び表面
OH基数 シリカ粉末をあらかじめ110℃で予備乾燥し吸着水を
除去する。その後、電気炉中で1000℃で恒量になる
まで熱したときの試料の重量減を求めて、強熱減量を測
定した。また表面OH基数は下記式より求めた。
8 Loss on ignition (Ig. Loss) and number of OH groups on the surface The silica powder is preliminarily dried at 110 ° C. to remove adsorbed water. Thereafter, the weight loss of the sample when heated to a constant weight at 1000 ° C. in an electric furnace was determined, and the ignition loss was measured. The number of surface OH groups was determined by the following equation.

【0066】9 ゼータ電位 試料0.2gを200mlのイオン交換水中に懸濁させ
た時の値を原点値とし、次いで、0.5N−HCl溶液
を用いてpH調製する。その懸濁液を30秒間超音波分
散し、ベンケム社製LAZER ZEE METER
MODEL 501でそれぞれのゼータ電位を測定し
た。
9 Zeta potential The value obtained when 0.2 g of a sample is suspended in 200 ml of ion-exchanged water is defined as the origin, and then the pH is adjusted using a 0.5N HCl solution. The suspension was subjected to ultrasonic dispersion for 30 seconds, and a LAZER ZEE METER manufactured by Benchem Co., Ltd.
Each zeta potential was measured with MODEL 501.

【0067】10 IR測定 日本分光(株)社製赤外分光光度計A−302型をもち
い測定した。測定試料はKBr100mgに対し、0.
4mgのシリカ粉末を加え、打錠成形器にて作成した。
10 IR Measurement An IR spectrophotometer A-302 manufactured by JASCO Corporation was used for measurement. The measurement sample was 0.1 mg for 100 mg of KBr.
4 mg of silica powder was added, and the mixture was prepared using a tablet press.

【0068】11 RA の定義 図1に示す方法にて、赤外線吸収スペクトルの波長97
0cm-1のピーク強度(I970 )及び波長1100cm
-1のピーク強度(I1100)の比(I970 /I11 00)を求
めRA とした。
11 Definition of RA In the method shown in FIG.
0 cm -1 peak intensity (I 970 ) and wavelength 1100 cm
The ratio of -1 peak intensity (I 1100) of (I 970 / I 11 00) calculated was R A.

【0069】12 ビールの耐久性 壜(缶)に詰められたビール(サンプル)を、60±1
℃の恒温水中に立位で72時間浸漬してから水冷し、次
いで0℃の氷浴中(Cooling Bath)に24
時間浸漬した後、濁度計のセルに移して0℃で濁度を測
定する。 ◎単位:EBC単位
12 Durability of Beer Beer (sample) packed in a bottle (can) was subjected to 60 ± 1
Immersed in standing water at a constant temperature of 72 ° C. for 72 hours, cooled with water, and then placed in an ice bath at 0 ° C. (Cooling Bath) for 24 hours.
After soaking for an hour, the sample is transferred to a cell of a turbidimeter and the turbidity is measured at 0 ° C. ◎ Unit: EBC unit

【0070】13 泡持ち ASBC(American Society of Brewing Chemists)の
分析方法に記載するシグマ値法に準拠して得られるシグ
マ値を用いて、下記式より泡持ちを求めた。 泡持ち=(対照ビールのシグマ値)−(比較例H−2の
シグマ値)
13 Foam retention Using the sigma value obtained in accordance with the sigma value method described in the analysis method of the American Society of Brewing Chemists (ASBC), the foam retention was determined from the following equation. Foam retention = (Sigma value of control beer) − (Sigma value of Comparative Example H-2)

【0071】シグマ値測定 800ml分液ロートに20℃の温度下で、225〜2
30秒間(t)に対照ビールの泡が壊れて液化した容積
bと残った泡を液化し、その容積cより下記式からシグ
マ値を算出する。 シグマ値=t/{2.302log〔(b+c)/
c〕} *4捨5入し整数で示す
Measurement of sigma value In an 800 ml separating funnel, at a temperature of 20 ° C., 225 to 2
In 30 seconds (t), the volume of the control beer where the foam was broken and liquefied and the remaining foam were liquefied, and the sigma value was calculated from the following formula from the volume c. Sigma value = t / {2.302 log [(b + c) /
c)} * Integer after rounding off

【0072】[0072]

【発明の効果】本発明によれば、ビールのpHに近い弱
酸性pH領域で大きな負のゼータ電位を示す熱処理非晶
質シリカ微粒子をビール用安定化処理剤として使用する
ことにより、ビールの泡持ちを良好なレベルに維持しな
がら、寒冷混濁前駆体を有効に除去することが可能とな
り、ビールの香味保持性も向上させることが可能となっ
た。
According to the present invention, the use of heat-treated amorphous silica fine particles exhibiting a large negative zeta potential in a weakly acidic pH range close to the pH of beer as a stabilizing agent for beer allows the foaming of beer to be improved. While maintaining the durability at a good level, it was possible to effectively remove the cold turbid precursor and improve the flavor retention of beer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は赤外吸収スペクトルから式(1)のRA
値を算出すべき吸収ピークの計測方法を示す。
FIG. 1 is a graph showing the R A of the formula (1) from the infrared absorption spectrum.
The method of measuring the absorption peak whose value is to be calculated will be described.

【図2】図2は本発明による代表的な非晶質シリカの全
領域の赤外吸収スペクトルを示す。
FIG. 2 shows the infrared absorption spectrum of the entire region of a typical amorphous silica according to the present invention.

【図3】図3は非晶質シリカの熱処理温度と1000c
-1附近の赤外吸収スペクトルの変化を示す。
FIG. 3 shows the heat treatment temperature of amorphous silica and 1000c.
7 shows a change in an infrared absorption spectrum near m −1 .

【図4】図4は各種の非晶質シリカ水性懸濁体のpHと
ゼータ電位の関係を示す。
FIG. 4 shows the relationship between pH and zeta potential of various amorphous silica aqueous suspensions.

【図5】図5は本発明の実施例及び比較例で得られた非
晶質シリカの赤外吸収スペクトルを示す。
FIG. 5 shows infrared absorption spectra of amorphous silica obtained in Examples and Comparative Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 達二 東京都渋谷区恵比寿四丁目20番1号 サ ッポロビール株式会社内 (72)発明者 掃部 晃 東京都渋谷区恵比寿四丁目20番1号 サ ッポロビール株式会社内 (56)参考文献 特開 平5−70120(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12H 1/00 - 1/22 C12C 1/00 - 13/10 C01H 33/113 - 33/193 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuji Morimoto 4-20-1, Ebisu, Shibuya-ku, Tokyo Inside Sapporo Beer Co., Ltd. (72) Inventor Akira Sukebe 4-2-1-1, Ebisu, Shibuya-ku, Tokyo Sapporo Beer (56) References JP-A-5-70120 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C12H 1/00-1/22 C12C 1/00-13 / 10 C01H 33/113-33/193

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記式 a M 2/m O・SiO2 ・nH2 O …(A) 式中、Mはアルカリ金属及び/またはアルカリ土類金属
を表わし、mは金属Mの価数を表わし、aは0乃至5×
10-3の数であり、nは0乃至0.2の数である、 で表わされる組成を有し、100乃至600m2 /gの
比表面積と1.0乃至2.0cc/gの細孔容積とを有
し、且つ下記式 RA =I970/I1100 …(1) 式中、I970 は、赤外線吸収スペクトルの波数970c
-1のピークの吸光度であり、I1100は赤外線吸収スペ
クトルの波数1100cm-1のピークの吸光度である、 で定義される吸光度比(RA )が0.02以上、0.2
0未満である非晶質シリカから成り、濃度1000pp
m及び温度25℃での水性懸濁液pHが4乃至6.2で
あり且つ該水性懸濁液のゼータ電位がマイナスでその絶
対値が20mV以上であることを特徴とするビール用安
定化処理剤。
During 1. A formula a M 2 / m O · SiO 2 · nH 2 O ... (A) formula, M represents an alkali metal and / or alkaline earth metal, m represents the valence of the metal M , A is 0 to 5 ×
Is a number of 10 -3 and n is a number of 0 to 0.2. It has a composition represented by the following formula, and has a specific surface area of 100 to 600 m 2 / g and a pore of 1.0 to 2.0 cc / g. And the following formula: RA = I 970 / I 1100 (1) where I 970 is the wave number 970c of the infrared absorption spectrum
m 1 is the absorbance of the peak, and I 1100 is the absorbance of the peak at a wave number of 1100 cm −1 in the infrared absorption spectrum. The absorbance ratio (R A ) defined by
Consisting of amorphous silica less than 0, with a concentration of 1000 pp
wherein the aqueous suspension has a pH of 4 to 6.2 at 25 ° C. and a temperature of 25 ° C., and has a negative zeta potential and an absolute value of 20 mV or more. Agent.
【請求項2】 上記非晶質シリカが赤外吸収スペクトル
の吸収で3760cm-1に吸収ピークを有しないことを特
徴とする請求項1記載のビール用安定化処理剤。
2. The stabilizing agent for beer according to claim 1, wherein the amorphous silica has no absorption peak at 3760 cm -1 in the absorption spectrum of the infrared absorption spectrum.
【請求項3】 上記(A)式において、アルカリ金属が
ナトリウム及び/又はアルカリ土類金属がカルシウムで
あることを特徴とする請求項1記載のビール用安定化処
理剤。
3. The stabilizing agent for beer according to claim 1, wherein in the formula (A), the alkali metal is sodium and / or the alkaline earth metal is calcium.
【請求項4】 上記非晶質シリカの表面OH基の数が7
個/nm2 以下であることを特徴とする請求項1記載の
ビール用安定化処理剤。
4. The amorphous silica having a surface OH group number of 7
2. The stabilizing agent for beer according to claim 1, wherein the number is not more than the number of particles / nm 2 .
【請求項5】 上記非晶質シリカがコールターカウンタ
法によるメジアン径が5乃至8μmで、且つ2.6μm
以下の2次粒子の個数分布が30乃至60%であること
を特徴とする請求項1記載のビール用安定化処理剤。
5. The amorphous silica has a median diameter measured by a Coulter counter method of 5 to 8 μm and 2.6 μm.
The stabilizing agent for beer according to claim 1, wherein the number distribution of the following secondary particles is 30 to 60%.
JP7115702A 1994-05-18 1995-05-15 Stabilizer for beer Expired - Lifetime JP3021319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7115702A JP3021319B2 (en) 1994-05-18 1995-05-15 Stabilizer for beer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10403394 1994-05-18
JP6-104033 1994-05-18
JP7115702A JP3021319B2 (en) 1994-05-18 1995-05-15 Stabilizer for beer

Publications (2)

Publication Number Publication Date
JPH0866176A JPH0866176A (en) 1996-03-12
JP3021319B2 true JP3021319B2 (en) 2000-03-15

Family

ID=26444591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7115702A Expired - Lifetime JP3021319B2 (en) 1994-05-18 1995-05-15 Stabilizer for beer

Country Status (1)

Country Link
JP (1) JP3021319B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131337A (en) * 1999-11-04 2001-05-15 Mizusawa Ind Chem Ltd Antiblocking agent
JP5894027B2 (en) * 2012-07-09 2016-03-23 サントリーホールディングス株式会社 Prediction method for filterability of pre-filtration liquid, an intermediate product of beer-taste beverages
JP5677688B2 (en) * 2013-02-28 2015-02-25 サッポロビール株式会社 Beer-taste beverage and method for producing the same
BR112021004431A2 (en) * 2018-09-10 2021-06-22 Heineken Supply Chain B.V. foam stability

Also Published As

Publication number Publication date
JPH0866176A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
EP0235352B1 (en) Hydrated silica gel for stabilization treatment of beer
EP0683222B1 (en) Stabilizing agent for beer
US6565905B1 (en) Silica gel for stabilization treatment of beer, a method of manufacturing the silica gel and a method of the stabilization treatment of beer
US7538067B2 (en) Composition of, and process for preparing, silica xerogel for beer stabilization
JPH0523739B2 (en)
JPS5966877A (en) Treatment of beer
JP3021319B2 (en) Stabilizer for beer
EP0377301B2 (en) Stable silica suspensions
CA1178222A (en) Composition and method for stabilizing beverages against haze formation
KR20030077574A (en) Process for making and using a low beverage soluble iron content adsorbent and composition made thereby
EP0231897B1 (en) Aged silica
USH89H (en) Apple juice clarification by using silica hydrogels
JP3302029B2 (en) Silica gel for stabilizing beer and method for stabilizing beer
US4847235A (en) Silica product
WO1991019780A1 (en) Protein removal using precipitated silica
KR0169299B1 (en) Improved beer processing and composition
JP3467970B2 (en) Silicon dioxide, method for producing the same, and beer stabilizing agent
JPH04360647A (en) Method for stabilizing coffee extract solution
JPH0597421A (en) Production of silica gel for stabilization treatment of beer
US20100040747A1 (en) Silica microgels for reducing chill haze
JPH01165363A (en) Stabilizing treatment of beer
CA1292973C (en) Aged silica
US20140120211A1 (en) Use of silicate particles in beverage production
JPH0479876A (en) Stabilization treating agent for beer
MXPA04012705A (en) Use of colloidal anionic silica sols as clarifying agents.

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term