JP3016106B2 - Repair method for thermal spraying of kiln - Google Patents

Repair method for thermal spraying of kiln

Info

Publication number
JP3016106B2
JP3016106B2 JP4340668A JP34066892A JP3016106B2 JP 3016106 B2 JP3016106 B2 JP 3016106B2 JP 4340668 A JP4340668 A JP 4340668A JP 34066892 A JP34066892 A JP 34066892A JP 3016106 B2 JP3016106 B2 JP 3016106B2
Authority
JP
Japan
Prior art keywords
gas
powder
nozzle
spraying
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4340668A
Other languages
Japanese (ja)
Other versions
JPH06184612A (en
Inventor
英邦 伊藤
雄司 成田
進 大谷
誠 沼澤
隆雄 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4340668A priority Critical patent/JP3016106B2/en
Publication of JPH06184612A publication Critical patent/JPH06184612A/en
Application granted granted Critical
Publication of JP3016106B2 publication Critical patent/JP3016106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窯炉の溶射補修方法、
例えばコークス炉等の窯炉における内壁面の損傷部分を
溶射で補修する方法に関する。特に、補修材料中の酸化
性粒子とO2とを反応させて耐火性粒子を溶融させるだけ
の熱を発生させ、もって被補修体表面に付着せしめる方
法において、所要の溶射距離内で上記現象を成立せしめ
るため、粉体材料と吐出気体との割合、つまり固気比や
その混合方法を規定することで、作業性を高め補修効果
を向上せしめる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for repairing a thermal spray of a kiln,
For example, the present invention relates to a method for repairing a damaged portion of an inner wall surface of a kiln such as a coke oven by thermal spraying. In particular, in a method in which oxidizing particles in the repair material react with O 2 to generate heat enough to melt the refractory particles, and thereby adhere to the surface of the repair target, the above phenomenon occurs within a required spraying distance. The present invention relates to a method for improving workability and improving a repair effect by defining a ratio between a powder material and a discharge gas, that is, a solid-gas ratio and a method of mixing the ratio in order to achieve the above.

【0002】[0002]

【従来の技術】鉄鋼製造プロセスには耐火物を内張した
種々の加熱炉、反応溶製炉が用いられ、長期に連続運転
している。この設備寿命を延ばすために稼働中にも高温
下で炉の内壁面を補修している。従来、損傷が発見され
た場合には従来耐火性粒子を吹きつけて内壁を修復して
いたが、そのとき付着に要する結合剤として無機バイン
ダーと水とを配合したものを用いていた。
2. Description of the Related Art Various heating furnaces and reaction smelting furnaces lined with refractories are used in a steel manufacturing process, and they are operated continuously for a long period of time. In order to extend the life of the equipment, the furnace inner wall is repaired at high temperatures even during operation. Conventionally, when damage has been found, refractory particles have conventionally been sprayed to repair the inner wall. At that time, a binder containing an inorganic binder and water was used as a binder required for adhesion.

【0003】最近では耐火性粒子を溶射する技術が採用
されるようになった。そのための方法としては、可燃性
ガスを用いた火炎溶射法、プラズマ溶射法および耐火粉
末と混合した金属粉等を酸素気流で搬送させて熱間雰囲
気に噴出して火炎をつくる一種のテルミット反応法
(例: 特公昭49─46364 号公報参照) がある。
Recently, a technique for spraying refractory particles has been adopted. For this purpose, there are flame spraying method using flammable gas, plasma spraying method, and a kind of thermite reaction method in which metal powder mixed with refractory powder is transported in an oxygen stream and ejected into a hot atmosphere to create a flame.
(Example: See Japanese Patent Publication No. 49-46364).

【0004】旧来の湿式法とは異なり、これらの溶射法
は乾式法として分類できるものであって添加水分に起因
した弊害がなく、優れた補修効果を示した。しかし、一
方では湿式法と異なって付属機器構成は火炎の生成やそ
の安定制御の確保の面で複雑化し、補修対象による使い
分けが生じ、おのずと汎用性に欠け、機能分化する傾向
となった。さらに補修効果が高いため、従来は補修不能
視されていた領域にも用途を拡大する必要が生じ、火炎
の生成、その安定的持続性への要求が大きくなり、補修
機自体の一層の機械化と自動化が促進され、これらを満
足するソフトウエアの向上が開発課題となってきた。中
でも壁面と補修ノズル間の距離 (溶射距離) を一定の調
整範囲にとどめて火炎を形成させることが必須となって
いる。
[0004] Unlike conventional wet methods, these thermal spray methods can be classified as dry methods, have no adverse effects due to added water, and have exhibited excellent repairing effects. However, on the other hand, unlike the wet method, the configuration of the attached equipment became complicated in terms of flame generation and ensuring its stable control, and the equipment to be repaired was used differently, naturally lacking versatility, and tended to function differently. Furthermore, because the repair effect is high, it is necessary to expand the application to the area where it was previously considered impossible to repair, the demand for flame generation and its stable sustainability has increased, and the repair machine itself has been further mechanized. Automation has been promoted, and the development of software that satisfies these requirements has become a development issue. In particular, it is essential to keep the distance between the wall and the repair nozzle (spray distance) within a certain adjustment range to form a flame.

【0005】最近の鉄鋼製造プロセス中のコークス炉で
は生産性向上の観点から特定の炉団において生産増を図
る傾斜生産を行うようになった。このため操業負荷の大
きくなった炉団では損傷が進行するため、補修時間の短
縮化が必要となった。また負荷の小さくなった炉団では
逆に生産調整の微調整の観点で負荷変動の頻度自体が多
くなり補修量が増大する傾向を示してきた。特に炉齢の
進行とともに炉の中央部におけるこれら損傷が壁面亀裂
の発生と成長とをもたらし、新たな補修の体系の構築が
必要となってきた。
[0005] In a coke oven during a recent steelmaking process, inclined production has been performed to increase production in a specific furnace group from the viewpoint of improving productivity. For this reason, damage was progressing in the furnace group where the operation load became large, and it was necessary to shorten the repair time. On the other hand, in a furnace with a reduced load, the frequency of load change itself tends to increase from the viewpoint of fine adjustment of production adjustment, and the repair amount tends to increase. In particular, as the furnace age progresses, these damages in the central part of the furnace lead to the generation and growth of wall cracks, and a new repair system has to be constructed.

【0006】一方、すでに開示したように( 特開昭61─
93384 号等) 本発明者等は、上記炉中央部域を補修対象
とした全自動で遠隔操作可能な装置、機器、システムを
開発した。しかし、この装置は円滑な機械制御を果たす
観点で、観察眼、位置認識眼、距離計等の種々のセンサ
ー類を内蔵し、しかも冷却構造とするため、補修ガン自
体よりかなり大規模なアーム部を備える必要がある。特
に炭化室は通称炉高4mのコークス炉の場合で400 mmの
平均炉幅を有し、コークスの押出性を考慮して長手方向
に±30mmのテーパを有している。同時に炉高方向にも±
10mm程度のテーパを有する台形の断面を有している。さ
らに石炭の各装入口も400 mmφと小径であって、炉の老
朽化に伴い、これらの寸法は微妙に変化する。このよう
な状況にあるため、補修アームの有効寸法は300 mm以下
と大幅な制約を受ける。このように炭化室内は狭幅の寸
法構成であるため、溶射距離は極めて短いものとなり、
このような寸法制約下で補修を達成する、即ち、火炎を
形成するには、材料、熱源、ノズルの構造面で全面的な
検討を要するものとなった。
On the other hand, as already disclosed,
No. 93384) The present inventors have developed a fully automatic remote controllable apparatus, device and system for repairing the above-mentioned central part of the furnace. However, this device incorporates various sensors such as an observation eye, a position recognition eye, and a distance meter from the viewpoint of achieving smooth mechanical control, and has a cooling structure. It is necessary to provide. In particular, the coking chamber has an average furnace width of 400 mm in the case of a coke oven having a so-called oven height of 4 m, and has a taper of ± 30 mm in the longitudinal direction in consideration of the extrudability of coke. At the same time,
It has a trapezoidal cross section with a taper of about 10 mm. In addition, each of the coal inlets has a small diameter of 400 mmφ, and these dimensions change slightly as the furnace ages. Under such circumstances, the effective size of the repair arm is significantly limited to 300 mm or less. As described above, since the inside of the carbonization chamber has a narrow configuration, the spraying distance becomes extremely short.
In order to achieve the repair under such dimensional restrictions, that is, to form a flame, it was necessary to thoroughly study materials, heat sources, and the structure of the nozzle.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者等
は、これらの状態を勘案し、相対的な補修量増の状況を
踏まえてテルミット反応法にもとづいた火炎法に着目
し、従来とは全く異なった溶射方法として諸条件の設定
を検討した。
In view of these circumstances, the present inventors have paid attention to the flame method based on the thermite reaction method in view of the situation of the relative increase in the amount of repair. The setting of various conditions was examined as a completely different thermal spraying method.

【0008】ところで、従来のテルミット法による溶射
方法の詳細は特公昭49─46364 号公報あるいは特公平1
─56831 号公報に明らかである。いずれも主材の耐火性
粒子、酸化性粒子および酸素ガスは単純な混合状態でノ
ズルより吐出させているのみで、溶射距離の適正値は10
0 〜200 mmにある。1例を図2に概略で示すが、これに
よれば、純酸素10と粉体+搬送ガス気体12とはランスで
ある混合室14において混合され、その先端に設けた吐出
口16から構成される溶射ノズル18から溶射される。
The details of the conventional thermal spraying method using the thermite method are described in JP-B-49-46364 or JP-B-49-463.
This is clear from the '56831 publication. In each case, the refractory particles, oxidizing particles and oxygen gas of the main material are only discharged from the nozzle in a simple mixed state, and the appropriate value of the spraying distance is 10
Between 0 and 200 mm. An example is schematically shown in FIG. 2. According to this, pure oxygen 10 and powder + carrier gas 12 are mixed in a mixing chamber 14 which is a lance, and are constituted by a discharge port 16 provided at the tip thereof. Is sprayed from the spray nozzle 18.

【0009】このような従来法にあってはハンド操作で
目視による施工には適するが、遠隔操作に対する作業の
安全性への考慮もない。特に 所要の80mm以下の距離設定では着火が不安定で溶射が
維持できなくなる。 粉体搬送ガスの混合如何によっては吐出口での気流中
O2濃度が大きく変動し、溶射作業の前後で逆火が頻発す
る。 一部不活性ガスが混入される場合、溶射の途中で火炎
が失火する度合いが多くなる。 過剰なガスにより、着火、フレームの熱量がガス温度
の上昇に消費され、溶融効率を低下させ、水冷構造への
熱負荷が増大し機器トラブルを生じ易い。従来の溶射材
料の気流輸送の方法では安定した溶射フレームの形成が
困難で充分な補修が達成できない。
[0009] Such a conventional method is suitable for visual construction by hand operation, but does not consider the safety of work for remote operation. In particular, if the distance is set to less than the required 80 mm, ignition is unstable and spraying cannot be maintained. During the airflow at the discharge port depending on the mixing of the powder carrier gas
O 2 concentration fluctuates greatly and flashback occurs frequently before and after thermal spraying work. When a part of the inert gas is mixed, the degree of the flame misfiring during the thermal spraying increases. Due to the excess gas, the amount of heat of the ignition and the flame is consumed to increase the gas temperature, lowering the melting efficiency, increasing the heat load on the water-cooled structure, and easily causing equipment trouble. It is difficult to form a stable thermal spray frame by the conventional method of transporting thermal spray material by airflow, and it is not possible to achieve sufficient repair.

【0010】ここに、本発明の目的は、上述のような従
来技術の問題を解決できる溶射法による窯炉の補修方法
を提供することである。さらに本発明の具体的目的は、
特にコークス炉炉壁を遠隔操作で補修し得るテルミット
反応溶射法であって短距離で安定した火炎形成を確保し
て緻密な溶射補修層を得るとともに、逆火や失火の発生
を大幅に軽減することにより操作性と信頼性を高めるこ
とのできる窯炉の溶射補修方法を提供することである。
Here, an object of the present invention is to provide a method for repairing a kiln by a thermal spraying method, which can solve the problems of the prior art as described above. Further specific objects of the present invention are:
In particular, it is a thermite reaction spraying method that can repair the coke oven wall remotely by securing a stable flame formation over a short distance to obtain a dense sprayed repair layer and greatly reduce the occurrence of flashback and misfire Accordingly, it is an object of the present invention to provide a method for repairing a thermal spray of a kiln, which can improve operability and reliability.

【0011】[0011]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく、種々検討を重ねた。この結果、輸送す
るガス体と粉体との混合比および混合形態 (形状) に一
定の臨界的操作範囲があることを見い出した。
Means for Solving the Problems The present inventors have made various studies in order to achieve such an object. As a result, it has been found that there is a certain critical operation range in the mixing ratio and the mixing form (shape) of the gas body and the powder to be transported.

【0012】ここに、本発明は、純酸素ガス気流と粉体
搬送ガス気流とを別ラインで溶射ノズルに送給し、該ノ
ズル吐出口前に設けた混合室および攪拌室で混合する方
式の溶射法によって行う窯炉の溶射補修方法であって、
前記溶射ノズルに送給される粉体重量と総ガス重量との
比を0.5 〜2.9 に調整し、かつ前記混合室に前記純酸素
ガス気流の流入口が開口し、該混合室の下流側に前記攪
拌室を設け、前記溶射ノズルをこれら2室との間からT
字形に分岐する吐出口から構成することを特徴とする窯
炉の溶射補修方法である。
Here, the present invention provides a system in which a pure oxygen gas stream and a powder carrier gas stream are sent to a spraying nozzle on separate lines and mixed in a mixing chamber and a stirring chamber provided in front of the nozzle discharge port. A method for repairing a thermal spray of a kiln performed by a thermal spray method,
The ratio between the weight of the powder fed to the thermal spray nozzle and the total gas weight is adjusted to 0.5 to 2.9, and the inlet of the pure oxygen gas flow is opened in the mixing chamber, and the downstream side of the mixing chamber is provided. The stirring chamber is provided, and the spraying nozzle is set to T
This is a method for repairing the thermal spraying of a kiln, comprising a discharge port branched in a letter shape.

【0013】本発明の好適態様にあっては、さらにガス
中の酸素濃度を21〜73体積%に調整したガスを粉体搬送
ガスとして用い、純酸素ガス量と粉体搬送ガス量との間
に、体積比で、1:0.3 〜1:0.7 の流量比の範囲で粉
体搬送ガス量の調整を行うことにより、施工量を調整す
ることができる。かくして、本発明によれば被補修体ま
での溶射距離60±15mmに制約された施工を行うことがで
きる。
In a preferred embodiment of the present invention, a gas in which the oxygen concentration in the gas is adjusted to 21 to 73% by volume is used as a powder carrier gas, and a gas between the pure oxygen gas amount and the powder carrier gas amount is used. In addition, by adjusting the amount of the powder carrier gas in the range of the flow ratio of 1: 0.3 to 1: 0.7 by volume ratio, the amount of construction can be adjusted. Thus, according to the present invention, it is possible to perform the work restricted to the spraying distance of 60 ± 15 mm to the repair target.

【0014】[0014]

【作用】図1は本発明において使用する溶射ノズル装置
の構成例を示す概略説明図であり、図中、溶射吐出ノズ
ル装置20は概略T字形の曲管形状をなし、混合室22、ラ
ンス形状の粉体搬送ガス気流導入管24、酸素ガス導入管
26、ノズル吐出口28および攪拌室30から成る。混合室22
と攪拌室30は同一管体で構成し、混合室22の下流側を盲
壁として攪拌室30を設けている。この攪拌室と混合室と
の間 (境界部) に溶射ノズル32をT字形に分岐接続して
いる。
FIG. 1 is a schematic explanatory view showing a configuration example of a spraying nozzle device used in the present invention. In the drawing, a spraying discharge nozzle device 20 has a substantially T-shaped curved pipe shape, a mixing chamber 22, and a lance shape. Powder carrier gas air flow inlet pipe 24, oxygen gas inlet pipe
26, comprising a nozzle discharge port 28 and a stirring chamber 30. Mixing room 22
And the stirring chamber 30 are formed of the same pipe, and the stirring chamber 30 is provided with the downstream side of the mixing chamber 22 as a blind wall. A thermal spray nozzle 32 is branched and connected in a T-shape between the stirring chamber and the mixing chamber (boundary portion).

【0015】酸素ガス導入管26は粉体搬送ガス気流導入
管24とは別ラインで配管され、混合室の側壁部に接続さ
れている。混合室の軸芯と酸素ガス導入管とのなす角
度、すなわち酸素ガス流入角度θは10〜90度に設定され
る。
The oxygen gas introduction pipe 26 is provided on a separate line from the powder carrier gas air flow introduction pipe 24, and is connected to the side wall of the mixing chamber. The angle between the axis of the mixing chamber and the oxygen gas introduction pipe, that is, the oxygen gas inflow angle θ is set to 10 to 90 degrees.

【0016】溶射ノズル32の吐出口径(a) は材料供給量
によって異なるが、350 ±100 g/minの送給範囲では7.
5 mmφが適当する。5.5 mmφ未満ではノズル詰まりが生
じ易く、12mmφを超えると溶射付着物のビード幅が20mm
以上となって対象域亀裂深部の充填が不完全となり易
い。
The discharge diameter (a) of the spray nozzle 32 varies depending on the amount of material supplied. However, in the feed range of 350 ± 100 g / min, 7.
5 mmφ is appropriate. If it is less than 5.5 mmφ, nozzle clogging is liable to occur, and if it exceeds 12 mmφ, the bead width of spray deposits is 20 mm.
As described above, the filling of the target region crack deep portion is likely to be incomplete.

【0017】吐出ノズル長さ (n0) は75mmが適当であっ
た。特に40mm未満ではガス−粉体の混合流体が整流しき
れず、火炎( フレーム) 形成に不都合である。溶射ノズ
ル32は混合室軸芯に対し直角に接続する。接続角度
(θ) は90°±10°以内が望ましい。被補修体である補
修壁に対し、ノズル吐出口28を3次元的制御で駆動する
上で必須であることはもちろんであるが、補修壁に対
し、フレームが著しく斜交すると付着層に偏肉状態が形
成され、補修の仕上がりが劣悪となり、所要の効果は得
られない。
The discharge nozzle length (n 0 ) was suitably 75 mm. In particular, if the diameter is less than 40 mm, the gas-powder mixed fluid cannot be completely rectified, which is inconvenient for flame (flame) formation. The spray nozzle 32 is connected at right angles to the axis of the mixing chamber. Connection angle
(θ) is preferably within 90 ° ± 10 °. Of course, it is indispensable to drive the nozzle discharge port 28 by three-dimensional control with respect to the repair wall which is the repair target. The condition is formed, the repair finish is poor, and the required effect cannot be obtained.

【0018】混合室の直径(R) は、特に限定するもので
はないが、通常はノズルの吐出口径(a) の1〜1.5 倍程
度の大きさを必要とする。これは、R/aが1/1 未満では
均一な混合が得られにくく、フレームの生成に変動をき
たし、他方、R/aが1.5/1 を超えると、混合の均一化に
影響をおよぼすことはないが、酸素ガスの流入位置によ
ってはフレームの生成に変動をきたすためである。
The diameter (R) of the mixing chamber is not particularly limited, but usually needs to be about 1 to 1.5 times the discharge port diameter (a) of the nozzle. This means that if R / a is less than 1/1, it is difficult to obtain a uniform mixture, and the generation of frames will fluctuate. On the other hand, if R / a exceeds 1.5 / 1, it will affect uniform mixing. However, this is because the generation of the flame varies depending on the inflow position of the oxygen gas.

【0019】また、攪拌室の長さ(m) は、ノズルの吐出
口径(a) より長く、混合室の直径(R) より短くするのが
好ましい。これは、攪拌室の長さ(m) がノズルの吐出口
径(a) より短いと、粉体を構成する耐火性粒子 (粗粒)
と金属粉 (微粉) との分離が生じ、溶射に支障をきたす
からである。特に、攪拌室の長さ(m) が5mm未満となる
と、この攪拌室内壁の摩耗が生じトラブルの原因とな
る。他方、攪拌室の長さ(m) を混合室の直径(R) より長
くすると、該攪拌室で材料の滞留が顕著となり、ノズル
詰まりや逆火の原因となる。
The length (m) of the stirring chamber is preferably longer than the discharge port diameter (a) of the nozzle and shorter than the diameter (R) of the mixing chamber. This is because if the length (m) of the stirring chamber is shorter than the nozzle diameter (a), the refractory particles (coarse particles) that make up the powder
This is because metal and metal powder (fine powder) are separated, which hinders thermal spraying. In particular, when the length (m) of the stirring chamber is less than 5 mm, the wall of the stirring chamber is worn and causes a trouble. On the other hand, if the length (m) of the stirring chamber is longer than the diameter (R) of the mixing chamber, the material will be remarkably retained in the stirring chamber, causing nozzle clogging and flashback.

【0020】混合室の長さ(l) は、構造上酸素ガス流入
角度φによって決まる。すなわち、酸素ガス流入角度φ
が10〜90度の範囲では、混合室の長さ(l) は通常90mm以
下とするのが好ましい。その理由は、90mmを超える長さ
は、粉体とガスの混合には影響はないが、図面では省略
している配管、ノズル冷却ジャケット、ノズル駆動部
等、他の内蔵部品との関係で不要であるためである。
The length (l) of the mixing chamber is structurally determined by the oxygen gas inflow angle φ. That is, the oxygen gas inflow angle φ
In the range of 10 to 90 degrees, the length (l) of the mixing chamber is usually preferably 90 mm or less. The reason is that the length exceeding 90 mm does not affect the mixing of powder and gas, but is unnecessary due to other built-in parts such as piping, nozzle cooling jacket, nozzle drive etc. omitted in the drawing This is because

【0021】ここに、本発明によれば、かかるノズル溶
射装置を用いることで窯炉の溶射補修が行われるのであ
るが、その際には、純酸素ガス気流10と粉体搬送ガス気
流12とを別ラインで溶射吐出ノズル装置20に送給し、溶
射ノズル前に設けた混合室22および攪拌室30で混合す
る。このとき、溶射ノズルに送給される粉体重量と総ガ
ス重量との比を1.1 〜2.9 に調整することで被補修体ま
での溶射距離60±15mmに制御された施工を行ことができ
る。
Here, according to the present invention, the spraying repair of the kiln is performed by using such a nozzle spraying apparatus. In this case, a pure oxygen gas stream 10 and a powder carrier gas stream 12 are used. Is supplied to the spraying discharge nozzle device 20 on a separate line, and is mixed in the mixing chamber 22 and the stirring chamber 30 provided before the spraying nozzle. At this time, by adjusting the ratio of the weight of the powder fed to the spray nozzle to the total gas weight to be 1.1 to 2.9, it is possible to perform the construction in which the spray distance to the repair target is controlled to 60 ± 15 mm.

【0022】好ましくは、ガス中の酸素濃度を21〜73体
積%に調整したガスを粉体搬送ガスとして用い、純酸素
ガス量と粉体搬送ガス量との間に、体積比で、1:0.3
〜1:0.7 の流量比の範囲で粉体搬送ガス量の調整を行
うことにより、施工量を調整してもよい。次に、本発明
において溶射条件を上述のように限定した理由をその作
用に関連させてさらに詳述する。
Preferably, a gas in which the oxygen concentration in the gas is adjusted to 21 to 73% by volume is used as a powder carrier gas, and the volume ratio between the pure oxygen gas amount and the powder carrier gas is 1: 1: 0.3
The construction amount may be adjusted by adjusting the amount of the powder carrier gas in the flow rate range of 〜1: 0.7. Next, the reason why the spraying conditions are limited as described above in the present invention will be described in more detail in relation to its operation.

【0023】まず、本発明は、主としてコークス炉の炉
中央部の炉壁での損傷部位を補修対象とするものであっ
て、窯口部の損傷とは異なって線状のビート形成が主作
業である。したがって、施工量は150 〜500 g/min、望
ましくは300 g/minの粉体供給下で自動操作により、補
修運転を行う。このために操作性を高め、もって安全性
を確保する観点から、使用する溶射機は、純酸素気流と
粉体気流と粉体搬送ガス気流とを別個に輸送し吐出前に
集合せしめた方式を取りそれぞれの気流を個別に制御す
る。
First, the present invention is intended mainly for repairing a damaged portion on the furnace wall in the central part of a coke oven. Unlike the damage on the kiln opening, the main work is to form a linear beat. It is. Therefore, the repair operation is performed by an automatic operation under a powder supply of 150 to 500 g / min, preferably 300 g / min. For this reason, from the viewpoint of enhancing operability and securing safety, the spraying machine used uses a method in which the pure oxygen gas stream, the powder gas stream, and the powder carrier gas stream are separately transported and assembled before discharging. Each air flow is individually controlled.

【0024】使用する耐火性粒子は、上述の用途を考え
る場合SiO2純度95%以上の仮焼珪石と酸化性粒子として
AlとSi粉末を混合した既存の材料を用いるのが好まし
い。ただし、材料の発熱速度や溶融速度の良否を勘案し
て、一般には200 μm 〜0.2 μm の粒径内に粒度構成を
限定する。0.2 μm 未満はヒュームロスとなり易く、20
0 μm を越える粒子は溶融が不完全で、付着の歩溜まり
が急激に悪化するからである。
The refractory particles used are composed of calcined silica having an SiO 2 purity of 95% or more and oxidizable particles in consideration of the above-mentioned applications.
It is preferable to use an existing material in which Al and Si powders are mixed. However, in consideration of the heat generation rate and melting rate of the material, the particle size composition is generally limited to a particle size of 200 μm to 0.2 μm. If it is less than 0.2 μm, fume loss easily occurs,
This is because particles exceeding 0 μm are incompletely melted, and the yield of adhesion is rapidly deteriorated.

【0025】本発明において、溶射距離60±15mm以内で
溶射を持続するには、粉体重量と総ガス重量との比 (固
気比) を一般には0.5 〜2.9 、特に1.1 〜1.5 の範囲で
切出量を操作することが望ましい。固気比0.5 〜2.9 の
範囲でも溶射が可能であるが、溶射距離40〜85mmの幅で
変動させる必要があり、自動化の面で好ましくない。と
くに、0.5 未満では流速の低い状態で付着形成されてポ
ーラスな補修層が形成され易く、距離、ガン走行速度両
方の調整が同時に必要となり、実質制御不能となる。固
気比が2.9 を超えるとノズル出口からの溶融粒子の分散
が激しく、失火し易くなって付着域が広がり亀裂への的
確な充填ができない。とくに失火 (溶射中の火炎の消
滅) を皆無にするには1.1 〜1.5 の範囲に固気比を限定
する必要がある。
In the present invention, in order to maintain the spraying within the spraying distance of 60 ± 15 mm, the ratio of the powder weight to the total gas weight (solid-gas ratio) is generally 0.5 to 2.9, particularly 1.1 to 1.5. It is desirable to control the amount of cutting. Thermal spraying is possible even in the solid-gas ratio range of 0.5 to 2.9, but it is necessary to vary the spraying distance in a width of 40 to 85 mm, which is not preferable in terms of automation. In particular, if it is less than 0.5, a porous repair layer is easily formed and adhered at a low flow rate, and it is necessary to adjust both the distance and the gun traveling speed at the same time, so that control becomes virtually impossible. If the solid-gas ratio exceeds 2.9, the molten particles from the nozzle outlet will be strongly dispersed, easily misfiring and widening the adhesion area, making it impossible to fill cracks accurately. In particular, in order to eliminate misfires (extinction of flame during thermal spraying), it is necessary to limit the solid-gas ratio to a range of 1.1 to 1.5.

【0026】本発明の好適態様では粉体搬送ガス気流中
の酸素濃度を21〜73% (体積) の範囲に限定するが、こ
れは所要の着火性と付着性を確保するためである。すな
わち、21%未満では酸素不足により溶射の成立が困難で
あり、他方、73%を超えると着火溶融性は一般に良好と
なるが、所要施工量にたいして粉体の供給を制御するの
で、過剰な酸素ガスはむしろNOx の生成等に消費され、
溶融に寄与せず、かえって逆火の危険性を増長するため
である。
In the preferred embodiment of the present invention, the oxygen concentration in the powder carrier gas stream is limited to the range of 21 to 73% (volume) in order to secure required ignitability and adhesion. That is, if it is less than 21%, it is difficult to achieve thermal spraying due to lack of oxygen. On the other hand, if it exceeds 73%, the ignition meltability is generally good. However, since the supply of powder is controlled for the required construction amount, excessive oxygen The gas is rather consumed for producing NOx, etc.
This is because it does not contribute to melting but rather increases the risk of flashback.

【0027】さらに、酸素ガス量と搬送ガス量とは粉体
搬送系の開度の調整により、1:0.3 〜1:0.7 の流量
比にすることで実質の施工量を調整するのが好ましい。
搬送ガスが0.3 を下まわると、混合室内 (後述) での息
つぎ現象が生じ易くなり、逆火を生じ易い。0.7 を超え
ると混合室内の混合不均一を生じ、失火を生じ易い。
Further, it is preferable to adjust the substantial amount of the oxygen gas and the amount of the carrier gas by adjusting the opening ratio of the powder conveying system so as to have a flow ratio of 1: 0.3 to 1: 0.7.
If the carrier gas falls below 0.3, the breathing phenomenon in the mixing chamber (described later) tends to occur, and flashback tends to occur. If it exceeds 0.7, the mixing in the mixing chamber becomes uneven and misfiring easily occurs.

【0028】一方、逆火の危険性を回避するには、ガス
中の水分を除去することが必須であるため、搬送ガスの
露点を調節する。調節温度としては5 〜14℃が好ましい
が、パージ不活性ガス配管を含め配管元にはミストセパ
レータを付設し、常温下の湿度1%以下で操作できるよ
う、湿分管理する。すなわち、これら配管系は耐熱用水
冷ジャッケトや冷却配管系統の一部あるいは全部が隣接
するためである。
On the other hand, in order to avoid the risk of flashback, it is essential to remove the moisture in the gas, so the dew point of the carrier gas is adjusted. The controlled temperature is preferably 5 to 14 ° C., but a mist separator is provided at the piping including the purged inert gas piping, and the moisture is controlled so that the operation can be performed at a normal temperature of 1% or less. That is, these piping systems are partly or entirely adjacent to the heat-resistant water-cooled jacket or cooling piping system.

【0029】[0029]

【実施例】次に実施例によって本発明の作用、効果をさ
らに具体的に説明する。 (実施例1)図1に示す溶射排出ノズル装置20を用い混合
室22、攪拌室30、ノズル32等の形状を種々変更し、また
表1に示すガス設定条件で950 ℃に予熱した試験炉で溶
射テストを実施した。比較例として図1に示す装置で溶
射補修した場合も示した。結果を同じく表1に示す。
Next, the operation and effects of the present invention will be described more specifically with reference to the following examples. (Example 1) A test furnace preheated to 950 ° C under the gas setting conditions shown in Table 1 by changing the shapes of the mixing chamber 22, the stirring chamber 30, the nozzle 32, etc. using the thermal spray discharge nozzle device 20 shown in FIG. A thermal spray test was performed. As a comparative example, a case where thermal spray repair was performed using the apparatus shown in FIG. 1 is also shown. The results are also shown in Table 1.

【0030】本実施例では、Al粉1%、Si粉12%を金属
粉として含むシリカ質材料 (SiO2:95.5%) を送給し
た。溶射装置20の走行速度を1.0 m/ min として、固気
比1.0〜2.0 の範囲で酸素ガス量を調整し、試験炉内壁
に長さ1.5 mのビード状の施工体を形成させた。なお、
粉体搬送ガス中の酸素濃度は、別に酸素ガス付加を行な
って調整した。溶射ノズルの材質はSUS304であった。ま
た溶射距離は60±15mmとした。
In this embodiment, a siliceous material (SiO 2 : 95.5%) containing 1% of Al powder and 12% of Si powder as metal powder was fed. The running speed of the thermal spraying apparatus 20 was set to 1.0 m / min, and the amount of oxygen gas was adjusted within a range of 1.0 to 2.0 in a solid-gas ratio to form a bead-like construction having a length of 1.5 m on the inner wall of the test furnace. In addition,
The oxygen concentration in the powder carrier gas was adjusted by separately adding oxygen gas. The material of the thermal spray nozzle was SUS304. The spraying distance was 60 ± 15 mm.

【0031】表1の結果より明らかなごとく攪拌室を有
しない従来の溶射吐出ノズル装置では、着火不良のため
試験炉内壁に形成されるビードは厚さ (高さ) は不揃え
でかつ、又ブラッシュの発生で仕上げ面の凹凸も著し
い。これに対して、本発明の方法によれば、着火性、付
着性、溶射状況が良好で、三角形状断面で緻密なビード
が形成され、施工の仕上がり面も良好であった。
As is clear from the results shown in Table 1, in the conventional thermal spray discharge nozzle apparatus having no stirring chamber, the beads (in height) formed on the inner wall of the test furnace are not uniform due to poor ignition, and The unevenness of the finished surface is remarkable due to the occurrence of brushing. On the other hand, according to the method of the present invention, ignitability, adhesion, and thermal spraying conditions were good, a dense bead was formed with a triangular cross section, and the finished surface of the construction was also good.

【0032】なお構造上、混合室、ノズル長部が曲管形
態をなしても攪拌室を有しない溶射ノズルを使用した場
合 (例: 、) 、着火性の安定性が悪く付着率が極度
に低下したため、それだけ施工体の形成が困難であり、
失火、逆火が頻発した。本発明例では7回の施工回数中
これらのトラブルは皆無であった。
When a spraying nozzle having no stirring chamber is used even if the mixing chamber and the nozzle long part have a curved tube shape (for example, and), the stability of ignitability is poor and the adhesion rate is extremely high. Because of the decline, it is difficult to form the construction body,
Misfires and flashbacks occurred frequently. In the example of the present invention, none of these troubles occurred during the seven times of construction.

【0033】(実施例2)表1の例のガス設定、ガス混
合形態の溶射条件で溶射し、粉体搬送ガス量をかえて、
付着状況を把握した。付着指数100 の付着量を得た溶射
条件は材料切り出し量を 300g/ min とし、搬送ガス中
のO2濃度を25%とした酸素付加空気を用いた。したがっ
て搬送ガス量の調整により、実際の材料の吐出量は図3
の横軸の如くなる。さらに搬送ガス中のO2濃度のみを変
えて付着状況を調査した。この結果図3から明らかなよ
うに、搬送ガス流量比が0.3 〜0.7 の範囲では比較付着
歩溜が安定し、送給量の調整が容易であることが判っ
た。O2濃度が所要範囲を下まわると付着率そのものが急
激に劣り、火炎形成が不安定であった。O2濃度をたかめ
ることにより付着量は急激に改善されたが、逆火あるい
はスプラシュの発生により歩留が悪化した。
(Example 2) Thermal spraying was performed under the gas setting and gas-mixing form shown in Table 1, and the amount of powder carrier gas was changed.
The state of adhesion was grasped. The spraying conditions for obtaining the adhesion amount of adhesion index 100 were as follows: the material cut-out amount was 300 g / min, and oxygen-added air having an O 2 concentration of 25% in the carrier gas was used. Therefore, by adjusting the amount of carrier gas, the actual amount of material discharged can be reduced as shown in FIG.
It becomes like the horizontal axis. Further, the adhesion state was investigated by changing only the O 2 concentration in the carrier gas. As a result, as apparent from FIG. 3, it was found that the comparative deposition yield was stable when the flow rate ratio of the carrier gas was in the range of 0.3 to 0.7, and that the feed rate could be easily adjusted. When the O 2 concentration was less than the required range, the adhesion rate itself rapidly deteriorated, and flame formation was unstable. Increasing the O 2 concentration drastically improved the amount deposited, but the yield deteriorated due to flashback or splash.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上説明したごとく、本発明によれば、
溶射ノズルから吐出する粉体とガスとの混合状態を適正
にかつ安定化させることができるので、着火不良やフレ
ームの生成変動を防止することができるのみならず、逆
火等のトラブルも皆無となり、溶射を効率よく安定して
行なうことができるという優れた効果を奏する。したが
って、従来のテルミット反応法による溶射補修装置では
十分に補修することができなかったコークス炉の中央部
における亀裂等の損傷に対しても、的確にかつ効率よく
補修することができ、炉の延命に大きく貢献するもので
ある。
As described above, according to the present invention,
Since the mixing state of powder and gas discharged from the spray nozzle can be properly and stabilized, not only can ignition failure and frame generation fluctuation be prevented, but also trouble such as flashback is eliminated. This provides an excellent effect that the thermal spraying can be performed efficiently and stably. Therefore, repairs such as cracks in the central part of the coke oven, which could not be sufficiently repaired by the conventional thermal spray repair system using the thermite reaction method, can be repaired accurately and efficiently, and the life of the furnace can be extended. It greatly contributes to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法におけるノズル構造を示す概略説明図
である。
FIG. 1 is a schematic explanatory view showing a nozzle structure in the method of the present invention.

【図2】従来法におけるノズル構造を示す概略説明図で
ある。
FIG. 2 is a schematic explanatory view showing a nozzle structure in a conventional method.

【図3】粉体送給条件を変えた時のガス分配比と付着性
との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a gas distribution ratio and adhesion when powder feeding conditions are changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沼澤 誠 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (72)発明者 山崎 隆雄 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 平6−81119(JP,A) 特公 平1−56831(JP,B2) 特表 平4−502937(JP,A) (58)調査した分野(Int.Cl.7,DB名) F27D 1/16 C21B 7/06 303 C23C 4/12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Numazawa 4-5-33 Kitahama, Chuo-ku, Osaka City Inside Sumitomo Metal Industries, Ltd. (72) Takao Yamazaki 4-5-33 Kitahama, Chuo-ku, Osaka Sumitomo Sumitomo (56) References JP-A-6-81119 (JP, A) JP-B1-56831 (JP, B2) JP-A-4-502937 (JP, A) (58) Fields surveyed ( Int.Cl. 7 , DB name) F27D 1/16 C21B 7/06 303 C23C 4/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純酸素ガス気流と粉体搬送ガス気流とを
別ラインで溶射ノズルに送給し、該ノズル吐出口前に設
けた混合室および攪拌室で混合する方式の溶射法によっ
て行う窯炉の溶射補修方法であって、前記溶射ノズルに
送給される粉体重量と総ガス重量との固気比を0.5 〜2.
9 に調整し、かつ前記混合室に前記純酸素ガス気流の流
入口が開口し、該混合室の下流側に前記攪拌室を設け、
前記溶射ノズルをこれら2室との間からT字形に分岐す
る吐出口から構成することを特徴とする窯炉の溶射補修
方法。
1. A kiln for performing a spraying method of a method in which a pure oxygen gas stream and a powder carrier gas stream are sent to a spray nozzle on separate lines and mixed in a mixing chamber and a stirring chamber provided in front of the nozzle discharge port. A method for repairing a thermal spray of a furnace, wherein a solid-gas ratio between a weight of the powder fed to the thermal spray nozzle and a total gas weight is 0.5 to 2.
9, and the inlet of the pure oxygen gas stream is opened in the mixing chamber, and the stirring chamber is provided downstream of the mixing chamber,
A method for repairing a thermal spray of a kiln, wherein the thermal spray nozzle comprises a discharge port branched in a T-shape from between the two chambers.
【請求項2】 ガス中の酸素濃度を21〜73体積%に調整
したガスを粉体搬送ガスとして用い、純酸素ガス量と粉
体搬送ガス量との間に、体積比で、1:0.3〜1:0.7
の流量比の範囲で粉体搬送ガス量の調整を行うことによ
り、施工量を調整することを特徴とした請求項1記載の
窯炉の溶射補修方法。
2. A gas in which the oxygen concentration in the gas is adjusted to 21 to 73% by volume is used as a powder carrier gas, and the volume ratio between the pure oxygen gas amount and the powder carrier gas is 1: 0.3. ~ 1: 0.7
The method according to claim 1, wherein the amount of the powder carrier gas is adjusted within the range of the flow rate ratio to adjust the amount of construction.
JP4340668A 1992-12-21 1992-12-21 Repair method for thermal spraying of kiln Expired - Lifetime JP3016106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4340668A JP3016106B2 (en) 1992-12-21 1992-12-21 Repair method for thermal spraying of kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4340668A JP3016106B2 (en) 1992-12-21 1992-12-21 Repair method for thermal spraying of kiln

Publications (2)

Publication Number Publication Date
JPH06184612A JPH06184612A (en) 1994-07-05
JP3016106B2 true JP3016106B2 (en) 2000-03-06

Family

ID=18339182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340668A Expired - Lifetime JP3016106B2 (en) 1992-12-21 1992-12-21 Repair method for thermal spraying of kiln

Country Status (1)

Country Link
JP (1) JP3016106B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994994B2 (en) * 2012-12-21 2016-09-21 品川リフラクトリーズ株式会社 Thermal spraying apparatus and thermal spraying method
JP6388480B2 (en) * 2014-02-24 2018-09-12 Jfeスチール株式会社 Furnace wall repair method

Also Published As

Publication number Publication date
JPH06184612A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
US5013499A (en) Method of flame spraying refractory material
CN109321699B (en) Method for burning dead coke pile in tuyere area without discharging residual iron during shutdown of blast furnace empty material line
GB2035524A (en) Flame spraying refractory material
JP3016106B2 (en) Repair method for thermal spraying of kiln
US5795363A (en) Reduction of solid defects in glass due to refractory corrosion in a float glass operation
AU732176B2 (en) Lance for heating or ceramic welding
JP2699778B2 (en) Thermal spray repair equipment
GB2103959A (en) Repairing refractory substrates
JP2783085B2 (en) Thermal spraying method for refractory materials
JP3174179B2 (en) Thermal spray material
JP3551604B2 (en) Flame spraying method
JP2007284707A (en) Thermal spraying method
CA2071675C (en) Ceramic welding
JPS61175476A (en) Method of molding refractory body and lance for flame spraying granular heat-generating oxidation material
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JPH09132470A (en) Thermal spraying repairing material
JP3518194B2 (en) Flame spray repair method for refractories and flame spray repair material for refractories
JPH0156831B2 (en)
JP2001131619A (en) Reducing apparatus and method
AP171A (en) Method and apparatus for flame spraying refractory material
JPH09210567A (en) Furnace wall molten injection repairing layer and repairing method
JPH08210783A (en) Flame spraying repairing material and flame spraying repairing method
JPS59167685A (en) Flame spraying repairing method
JPS61217517A (en) Method for repairing inside wall of converter
JPS5942232B2 (en) Frame gunning repair method for refractory lining and spraying repair material supply device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991116