JP3015138B2 - Automatic vehicle track correction device - Google Patents
Automatic vehicle track correction deviceInfo
- Publication number
- JP3015138B2 JP3015138B2 JP3113077A JP11307791A JP3015138B2 JP 3015138 B2 JP3015138 B2 JP 3015138B2 JP 3113077 A JP3113077 A JP 3113077A JP 11307791 A JP11307791 A JP 11307791A JP 3015138 B2 JP3015138 B2 JP 3015138B2
- Authority
- JP
- Japan
- Prior art keywords
- point
- infinity
- amount
- shift amount
- calculates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012937 correction Methods 0.000 title claims description 17
- 238000004364 calculation method Methods 0.000 claims description 51
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000003702 image correction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は,工場等の生産ラインに
おける自動走行車軌道修正装置に関する。工場の生産ラ
イン等で部品や道具を運搬する自動走行車(以後,自走
車と称する)は,予め決められた軌道上を走行するもの
である。そして,従来の自走車は,軌道上に障害物があ
る場合には走行が中止された。しかし,最近では,自走
車にTVカメラを備え,軌道上に障害物を発見すると一
度軌道を離れ,障害物を回避して再びもとの軌道に復帰
して走行を続ける自走車も開発されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic vehicle trajectory correcting apparatus for a production line such as a factory. 2. Description of the Related Art An automatic traveling vehicle (hereinafter, referred to as a self-propelled vehicle) that transports parts and tools on a production line or the like of a factory travels on a predetermined track. The conventional self-propelled vehicle was stopped when there was an obstacle on the track. However, recently, a self-propelled vehicle equipped with a TV camera has also developed a self-propelled vehicle that, once it finds an obstacle on the track, leaves the track once, avoids the obstacle and returns to the original track again to continue running. Have been.
【0002】従来,そのような自走車においては,床に
描かれた軌道線の画像をもとに軌道修正するようにして
いたので,軌道線が描かれていない場合には,自動走行
できなかった。また,超音波等により走行する軌道を求
めて自動走行する方法も開発されているが,軌道の両側
に超音波を反射する壁を必要とする上,確実なものでは
なかった。また,障害物回避を開始してからのモータの
回転数等をカウントしながら元の正しい軌道(以後,単
に軌道と称する)に復帰する方法もあるが,正確に動作
するものではない。Conventionally, in such a self-propelled vehicle, the trajectory is corrected based on the image of the trajectory drawn on the floor. Did not. Also, it has been developed a method of automatically traveling seeking track traveling by ultrasonic or the like, on which require wall that reflects ultrasonic waves on both sides of the track, was not reliable. There is also a method of returning to an original correct trajectory (hereinafter simply referred to as a trajectory) while counting the number of rotations of the motor after the start of obstacle avoidance, but it does not operate accurately.
【0003】本発明は,軌道線が描かれていなくても,
TVカメラにより撮影された画像をもとに,障害物を回
避し,確実に軌道に復帰して走行し続けるようにする自
走車軌道修正装置を提供することを目的とする。[0003] The present invention can be used even if the orbit line is not drawn.
An object of the present invention is to provide a self-propelled vehicle trajectory correction device that avoids an obstacle based on an image captured by a TV camera, and reliably returns to a trajectory and continues running.
【0004】[0004]
【従来の技術】図7により,従来の自走車の障害物の回
避方法について説明する。図7 (a), (b), (c), (d)
において,100は障害物,105は自走車の軌道,1
07,108は壁面である。2. Description of the Related Art A conventional method for avoiding obstacles in a self-propelled vehicle will be described with reference to FIG. Fig. 7 (a), (b), (c), (d)
, 100 is an obstacle, 105 is a trajectory of a self-propelled vehicle, 1
07 and 108 are wall surfaces.
【0005】図 (a)は障害物回避の説明図である。図に
おいて,110は障害物100を回避しようとする自走
車,111は障害物100を回避している自走車110
を表す。正しい軌道105上を走行してきた自走車11
0は,障害物100を発見すると,図における自走車1
11の位置に回避し,軌道105上に復帰して,走行す
る必要がある。FIG. 1A is an explanatory diagram of obstacle avoidance. In the figure, 110 is a self-propelled vehicle trying to avoid the obstacle 100, and 111 is a self-propelled vehicle 110 avoiding the obstacle 100
Represents Self-propelled vehicle 11 that has traveled on the correct track 105
0 finds the obstacle 100, and the self-propelled vehicle 1 in the figure
It is necessary to avoid the position 11 and return to the track 105 to travel.
【0006】このような障害物の回避方法としては,超
音波による方法,自走車にTVカメラを2台搭載し,軌
道線を両眼立体視により軌道線を検出し復帰する方法,
回避動作を開始してからの自走車の駆動するモータの回
転数,障害物回避のための自走車の回転角度等の回避運
動に関連する運動計測を行い,計測量に基づいて軌道に
復帰する等の方法がある。As a method of avoiding such obstacles, a method using ultrasonic waves, a method in which two TV cameras are mounted on a self-propelled vehicle, and a trajectory line is detected and returned by binocular stereovision,
Measures the number of rotations of the motor driven by the self-propelled vehicle since the start of the avoidance operation, and the rotation angle of the self-propelled vehicle to avoid obstacles. There is a method of returning.
【0007】図 (b)は,超音波による復帰方法を示す。
図において,120は自走車,121,122は超音波
の波面を表す。自走車120は,自走車の両側面にソナ
ーを設置しておき,超音波により両側面から壁面10
7,108までの距離を測定する。この距離を軌道上の
走行時と同じになるように,自走車120の走行する位
置を修正し,軌道に復帰する。FIG. 1B shows a method of returning by ultrasonic waves.
In the figure, reference numeral 120 denotes a self-propelled vehicle, and reference numerals 121 and 122 denote wavefronts of ultrasonic waves. The self-propelled vehicle 120 has sonars installed on both sides of the self-propelled vehicle, and the ultrasonic wave causes ultrasonic waves to be applied to the wall 10 from both sides.
Measure the distance to 7,108. The traveling position of the self-propelled vehicle 120 is corrected so that this distance becomes the same as when traveling on the track, and the vehicle returns to the track.
【0008】図 (c)は両眼立体視による方法を示す。図
において,130は自走車,131は自走車に付けた2
台のカメラである。自走車130は,2台のカメラ13
1により,床に描かれている軌道線(軌道105)を検
出し,自走車130と軌道線(軌道105)の距離を測
定し,位置を修正して軌道線(軌道105)上に復帰す
る。FIG. 1C shows a method based on binocular stereovision. In the figure, 130 is a self-propelled vehicle, and 131 is 2 attached to a self-propelled vehicle
One camera. The self-propelled vehicle 130 has two cameras 13
1 detects the track line (track 105) drawn on the floor, measures the distance between the self-propelled vehicle 130 and the track line (track 105), corrects the position, and returns to the track line (track 105). I do.
【0009】図 (d)は,運動計測により,復帰する方法
を示す。図において,140は自走車である。障害物1
00を回避するために自走車が回転した角度θ,回避を
開始してからのモータの回転数等の物理量の計測を行
い,記憶する。例えば図のP点からQ点に移動するまで
のモータの回転数,角度θを計測し,Q点において反対
方向に角度θ回転させて向きを変え,同じモータ回転数
だけ自走車140を移動させることにより軌道105に
復帰させるものである。FIG. 4D shows a method of returning by measuring the movement. In the figure, reference numeral 140 denotes a self-propelled vehicle. Obstacle 1
In order to avoid 00, the physical quantity such as the angle θ at which the self-propelled vehicle has rotated and the number of rotations of the motor since the start of avoidance is measured and stored. For example, the number of rotations and the angle θ of the motor from the point P to the point Q in the figure are measured, and at the point Q, the direction is changed by rotating the angle θ in the opposite direction, and the self-propelled vehicle 140 is moved by the same motor speed By doing so, it returns to the orbit 105.
【0010】[0010]
【発明が解決しようとする課題】図7 (b)に示す超音波
により壁面との距離を測定し,軌道に復帰する方法は,
軌道の両側に,超音波を反射する壁面が必要であり,こ
のような環境は,実際の現場では実現し難いものであ
る。The method of measuring the distance to the wall surface by the ultrasonic wave shown in FIG. 7B and returning to the orbit is as follows.
Walls that reflect ultrasonic waves are required on both sides of the orbit, and such an environment is difficult to realize in an actual site.
【0011】図7 (c)は両眼立体視による方法で,軌道
を確定するための軌道線を床に描いておく必要があると
ともに距離測定に時間がかかり,精度もよくない。図7
(d)の運動計測による方法は,障害物を回避した床面
に,凹凸があったりすると,モータの回転数と移動距離
との対応がとれなくなり,精度の悪いものである。FIG. 7 (c) shows a method based on binocular stereopsis, in which it is necessary to draw a trajectory line for determining the trajectory on the floor, it takes time to measure the distance, and the accuracy is not good. FIG.
In the method based on the motion measurement in (d), if there is unevenness on the floor avoiding the obstacle, the rotation speed of the motor and the moving distance cannot be correlated, resulting in poor accuracy.
【0012】本発明は,自走車の走行面に軌道線が描か
れていなくても,自走車に搭載したTVカメラの画像に
より確実に軌道に復帰できる自走車の軌道修正装置を提
供することを目的とする。The present invention provides a trajectory correcting device for a self-propelled vehicle that can reliably return to the trajectory by using an image of a TV camera mounted on the self-propelled vehicle even if no trajectory line is drawn on the running surface of the self-propelled vehicle. The purpose is to do.
【0013】[0013]
【課題を解決するための手段】本発明は,三次元空間に
おける互いに平行な直線は,二次元の透視画像に変換し
た場合,その延長線が一点に交わる無限遠点を利用する
ことにより,自走車の軌道修正を行うようにした。According to the present invention, straight lines parallel to each other in a three-dimensional space are converted to a two-dimensional perspective image by utilizing an infinite point where an extension of the straight line intersects one point. Corrected the trajectory of running vehicles.
【0014】図8,図9,図10により,課題を解決す
るための手段の説明をする。図8は課題を解決するため
の手段の説明図(1) である。図において,160は自走
車,161は撮像装置,162は自走車の軌道,163
は撮像装置の光軸である。The means for solving the problem will be described with reference to FIGS. 8, 9 and 10. FIG. 8 is an explanatory view (1) of the means for solving the problem. In the figure, 160 is a self-propelled vehicle, 161 is an imaging device, 162 is the track of the self-propelled vehicle, 163
Is the optical axis of the imaging device.
【0015】本発明は,撮像装置161により撮影され
る被写体の平行線の画像に基づいて,無限遠点および自
走車の軌道からのシフト量を算出する。図 (b)は,自走
車が軌道上を正しく走行している状態である。図 (c)
は,自走車の方向は正しいが,軌道からシフトしている
場合を示す図である。According to the present invention, the shift amount from the infinity point and the trajectory of the self-propelled vehicle is calculated based on the image of the parallel line of the subject taken by the image pickup device 161. Figure (b) shows a state in which the self-propelled vehicle is traveling correctly on the track. Figure (c)
FIG. 4 is a diagram showing a case where the direction of the self-propelled vehicle is correct but the vehicle is shifted from the track.
【0016】図 (b), (c)において,170は軌道上に
位置し,正しい向きの自走車,171は軌道,172は
撮像装置(TVカメラ)の光軸,175,176は壁
面,180は正しい向きで軌道からシフトしている自走
車,182はTVカメラの光軸である。In FIGS. 2 (b) and 2 (c), 170 is located on a track, a self-propelled vehicle in the correct direction, 171 is a track, 172 is an optical axis of an image pickup device (TV camera), 175 and 176 are wall surfaces, 180 is a self-propelled vehicle shifted from the orbit in the correct direction, and 182 is the optical axis of the TV camera.
【0017】図9は課題を解決するための手段の説明図
(2)である。図 (a)は,軌道上にある場合の画像である
(図8 (b)の位置における画像)。図において200は
TVカメラを作る画像である。画像の左下隅を座標原点
とし,水平走査方向をX軸,垂直走査方向をY軸とす
る。210は無限遠点であって,被写体における互いに
平行な線(例えば,図における壁面の平行な線W1,W
2,W3,W4等)が交わる点である。211は基準線
であって,無限遠点を通る垂直線である。215,21
6は互いに平行な壁面である(但し,本発明において
は,必ずしも壁は必要としない)。W1,W2は壁面2
15の互いに平行な下端と上端である。W3,W4は壁
面216の互いに平行な下端と上端である。Sは壁面の
間の中央線(但し,本発明においては,軌道を表す中央
線は描かれていなくともよい)。(gx,gy)は無限
遠点の座標,Aは基準線211とX軸との交点,Bはシ
フト量算出点であって,W1とX軸との交点,Cはシフ
ト量算出点であって,W3とX軸との交点である。Δq
はAB間の距離,ΔrはAC間の距離である。FIG. 9 is an explanatory view of means for solving the problem.
(2). Figure (a) is an image when it is on the orbit (image at the position in Figure 8 (b)). In the figure, reference numeral 200 denotes an image for making a TV camera. The lower left corner of the image is the coordinate origin, the horizontal scanning direction is the X axis, and the vertical scanning direction is the Y axis. 210 is a point at infinity, which is a line parallel to each other in the subject (for example, parallel lines W1, W
2, W3, W4, etc.). 211 is a reference line, which is a vertical line passing through the point at infinity. 215, 21
Numerals 6 are parallel wall surfaces (however, the wall is not necessarily required in the present invention). W1 and W2 are wall surfaces 2
15 parallel lower and upper ends. W3 and W4 are a lower end and an upper end of the wall surface 216 that are parallel to each other. S is the center line between the wall surfaces (however, in the present invention, the center line representing the trajectory does not have to be drawn). (Gx, gy) is the coordinates of the point at infinity, A is the intersection between the reference line 211 and the X axis, B is the shift amount calculation point, the intersection between W1 and the X axis, and C is the shift amount calculation point. Is the intersection of W3 and the X axis. Δq
Is the distance between AB and Δr is the distance between AC.
【0018】図 (b)は,自走車の向きは正しいが,軌道
からシフトしている場合の画像である(図8 (c)の位置
における画像)。230は画像,240は無限遠点,2
41は基準線,245,246は互いに平行な壁面であ
る。W1,W2は壁面245の互いに平行な下端と上端
である。W3,W4は壁面246の互いに平行な下端と
上端である。Sは壁面の間の中央線,(gx,gy)は
無限遠点の座標,Aは基準線241とX軸との交点,B
はシフト量算出点であって,W1とX軸との交点,Cは
シフト量算出点であって,W3とX軸との交点である。
Δa1 はAB間の距離,Δa2 はAC間の距離である。
図9 (a)と (b)に示されるように,自走車が正しい方
向を向き,軌道に平行にシフトしている場合には,画像
における無限遠点の座標は変わらない。しかし,無限遠
点を通るW1もしくはW3のような直線がX軸と交わる
点(シフト量算出点)は変動する。FIG. 8B shows an image when the direction of the self-propelled vehicle is correct but the vehicle is shifted from the track (the image at the position shown in FIG. 8C). 230 is an image, 240 is an infinity point, 2
41 is a reference line, and 245 and 246 are parallel wall surfaces. W1 and W2 are a lower end and an upper end of the wall surface 245 parallel to each other. W3 and W4 are a lower end and an upper end of the wall surface 246 which are parallel to each other. S is the center line between the walls, (gx, gy) is the coordinates of the point at infinity, A is the intersection of the reference line 241 with the X axis, B
Is a shift amount calculation point, which is an intersection between W1 and the X axis, and C is a shift amount calculation point, which is an intersection between W3 and the X axis.
Δa 1 is the distance between AB and Δa 2 is the distance between AC.
As shown in FIGS. 9 (a) and 9 (b), the coordinates of the point at infinity in the image do not change when the self-propelled vehicle is oriented in the correct direction and shifted parallel to the trajectory. However, the point at which a straight line such as W1 or W3 passing through the point at infinity intersects the X axis (shift amount calculation point) varies.
【0019】そして,自走車が軌道からシフトした大き
さは,軌道上にあるときのシフト量算出点Bとシフトし
た位置におけるシフト量算出点Bの座標値の差に基づい
て判定することが可能である(点Cについて,比較して
もよい)。即ち,基準線より左側の画面について考える
と,自走車を軌道に復帰させるためには軌道上にある場
合とのシフト量算出点のx座標の差Δs=Δq−Δa1
を算出し,自走車の向きを変えずにシフト量の差Δs=
0になるように自走車を制御するようにすればよい(以
後,Δsをシフト量と称する)。シフト量Δs=0とな
ったとき自走車が軌道に復帰したことになる。The magnitude of the shift of the self-propelled vehicle from the track can be determined based on the difference between the coordinate values of the shift amount calculation point B when the vehicle is on the track and the shift amount calculation point B at the shifted position. It is possible (the point C may be compared). That is, considering the screen on the left side of the reference line, in order to return the self-propelled vehicle to the trajectory, the difference Δs = Δq−Δa1 between the x-coordinate of the shift amount calculation point and that on the trajectory
Is calculated and the difference Δs =
The self-propelled vehicle may be controlled so as to be 0 (hereinafter, Δs is referred to as a shift amount). When the shift amount Δs = 0, the self-propelled vehicle has returned to the track.
【0020】図10の課題を解決するための手段の説明
図(3) により,自走車が正しい向きから回転した場合の
無限遠点の移動について説明する。図 (a)は自走車が回
転した状態を示す。図において,175,176は壁
面,171は軌道である。190は正しい向きから回転
した自走車,192は自走車190の光軸である。Referring to FIG. 10 which is an explanatory view (3) of the means for solving the problem, the movement of the infinity point when the self-propelled vehicle rotates from the correct direction will be described. Figure (a) shows a state in which the self-propelled vehicle has rotated. In the figure, 175 and 176 are wall surfaces, and 171 is a track. Reference numeral 190 denotes a self-propelled vehicle rotated from a correct direction, and reference numeral 192 denotes an optical axis of the self-propelled vehicle 190.
【0021】図 (b)は正しい向きから回転した自走車に
おけるTVカメラの画像を示す。図において,250は
画像,251は無限遠点,252は基準線,253,2
54は互いに平行な壁面である。W1,W2は壁面25
3の互いに平行な下端と上端である。W3,W4は壁面
254の互いに平行な下端と上端である。Sは壁面の間
の中央線,255は自走車の正しい向きにおける無限遠
点(図8 (b)もしくは (c)における無限遠点)である。
tは回転前の無限遠点と回転後の無限遠点のx方向の差
である。FIG. 2B shows an image of a TV camera of a self-propelled vehicle rotated from a correct direction. In the figure, 250 is an image, 251 is an infinity point, 252 is a reference line, 253, 2
54 are parallel wall surfaces. W1 and W2 are wall surfaces 25
3 are a lower end and an upper end parallel to each other. W3 and W4 are a lower end and an upper end of the wall surface 254 that are parallel to each other. S is a center line between the wall surfaces, and 255 is an infinity point in the correct direction of the vehicle (infinity point in FIG. 8B or 8C).
t is the difference in the x direction between the point at infinity before rotation and the point at infinity after rotation.
【0022】TVカメラのレンズの焦点距離をF,回転
角をθ,正しい向きの無限遠点と回転したときの無限遠
点とのx方向の差をtとすると,θ=tan-1(t/
F)の関係がある。従って,自走車を正しい向きに戻す
には,無限遠点の変動量tを算出し,上記関係式により
θを求め,角度θだけ自走車を回転させればよい。Assuming that the focal length of the lens of the TV camera is F, the rotation angle is θ, and the difference in the x direction between the infinity point in the correct direction and the infinity point when rotated is t, θ = tan −1 (t /
F). Therefore, in order to return the self-propelled vehicle to the correct direction, the amount of change t at the point at infinity is calculated, θ is obtained by the above relational expression, and the self-propelled vehicle may be rotated by the angle θ.
【0023】本発明は,以上の原理に基づいて,自走車
が障害物を回避した後の軌道復帰を,画像上における無
限遠点の変動量とシフト量に基づいて行うようにした。
図1により,本発明の原理を説明する。図において,1
は画像入力部であって,自走車に備えたTVカメラの作
る画像を入力し,二値画像に変換するものである。2は
回転量算出部であって,被写体の稜線から無限遠点の座
標を算出し,障害物の回避前と回避後の無限遠点の座標
に基づいて無限遠点の変動量を算出するものである。3
はシフト量算出部であって,自走車が軌道上にある場合
と軌道からシフトしている場合とのシフト量算出点の座
標に基づいてのシフト量を算出するものである。4は走
行軌道修正部であって,回転量算出部2の算出した無限
遠点の変動量およびシフト量算出部3の算出したシフト
量に基づいて自走車の軌道を修正するものである。According to the present invention, based on the above principle, the return to the trajectory after the self-propelled vehicle avoids the obstacle is performed based on the fluctuation amount and the shift amount of the point at infinity on the image.
The principle of the present invention will be described with reference to FIG. In the figure, 1
Denotes an image input unit for inputting an image created by a TV camera provided in a self-propelled vehicle and converting the image into a binary image. Reference numeral 2 denotes a rotation amount calculation unit that calculates coordinates of an infinity point from a ridgeline of a subject and calculates a variation amount of the infinity point based on coordinates of the infinity point before and after avoiding an obstacle. It is. 3
A shift amount calculation unit calculates a shift amount based on the coordinates of the shift amount calculation point when the self-propelled vehicle is on the track and when the self-propelled vehicle is shifted from the track. Numeral 4 denotes a traveling trajectory correction unit which corrects the trajectory of the self-propelled vehicle based on the variation amount of the infinity point calculated by the rotation amount calculation unit 2 and the shift amount calculated by the shift amount calculation unit 3.
【0024】無限遠点判定部10は,被写体における平
行直線の抽出と交点を求めて無限遠点を判定し,その座
標を求めるものである。無限遠点比較部11は障害物の
回避前と後との無限遠点の座標を比較し,無限遠点の変
動量を算出するものである。12はシフト量算出点判定
部であって,無限遠点を通る直線からシフト量算出点を
求めるものである。13は障害物の回避前と回避後にお
けるシフト量算出点の座標を比較し,シフト量を算出す
るものである。The infinity point judging unit 10 judges an infinity point by extracting a parallel straight line of the object and finding an intersection, and then finds its coordinates. The infinity point comparison unit 11 compares the coordinates of the infinity point before and after avoiding the obstacle and calculates the amount of change of the infinity point. Reference numeral 12 denotes a shift amount calculation point determination unit that determines a shift amount calculation point from a straight line passing through the point at infinity. Numeral 13 compares the coordinates of the shift amount calculation points before and after avoiding the obstacle and calculates the shift amount.
【0025】[0025]
【作用】図1の本発明の原理説明図における構成の動作
を説明する。必要に応じて図9,図10を参照する。画
像入力部1は,自走車に取りつけたTVカメラ(焦点距
離は既知)により作成された障害物回避前と障害物回避
後(以後,それぞれ回避前,回避後と略称する)の画像
を入力し,二値画像に変換する。無限遠点判定部10
は,二値画像において画素追跡法等により被写体におけ
る稜線を求め,直線の折れ線近似等により,稜線を折れ
線にし,折れ点の座標,折れ線の関数等を算出する。そ
して,直線の交点を求め,交点の最大累積点を求め無限
遠点とする。無限遠点比較部11は,回避前と回避後の
無限遠点のx座標を比較し,無限遠点の変動量tを算出
する。そして,レンズの焦点距離Fとにより自走車を回
転すべき角度としθ=tan-1(t/F)を算出する。The operation of the configuration shown in FIG. 1 for explaining the principle of the present invention will be described. Reference is made to FIGS. 9 and 10 as necessary. The image input unit 1 inputs images before and after obstacle avoidance (hereinafter, before and after avoidance, respectively) created by a TV camera (having a known focal length) attached to the self-propelled vehicle. And convert it to a binary image. Infinity point judgment unit 10
Calculates a ridge line of a subject in a binary image by a pixel tracking method or the like, converts the ridge line into a broken line by approximation of a straight line, and calculates coordinates of a broken point, a function of a broken line, and the like. Then, the intersection of the straight lines is determined, and the maximum cumulative point of the intersection is determined as the point at infinity. The infinity point comparison unit 11 compares the x-coordinates of the infinity point before and after the avoidance and calculates the amount of variation t of the infinity point. Then, θ = tan −1 (t / F) is calculated as an angle at which the self-propelled vehicle should be rotated based on the focal length F of the lens.
【0026】シフト量算出点判定部12は無限遠点判定
部10の求めた無限遠点と直線から,無限遠点を通る直
線を探し,x軸との交点を求め,シフト量算出点とす
る。複数あるときは,無限遠点のx座標に一番近いもの
をシフト量算出点とする(基準線を境にして画像の右側
と左側に1つずつ求めてもよい)。The shift amount calculation point judging section 12 searches for a straight line passing through the infinity point from the infinity point and the straight line obtained by the infinity point judging section 10, finds an intersection with the x axis, and sets it as a shift amount calculation point. . If there are a plurality of points, the point closest to the x coordinate of the point at infinity is set as the shift amount calculation point (one point may be obtained on the right and left sides of the image with the reference line as a boundary).
【0027】シフト量算出点比較部13は,回避前と回
避後のシフト量算出点のx座標に基づいてA点からの距
離(Δq,Δa1,図9参照)を求め,シフト量(Δs
=Δa1−Δq)を算出する。走行軌道修正部4は,無
限遠点の変動量tに基づいて自走車の走行角度を修正す
る。t=0になるまで,修正を繰り返す。そして,走行
角度が修正されると,次にシフト量Δsに基づいて,自
走車の走行位置を修正する。Δs=0になるまで修正を
繰り返し行い,自走車を軌道に復帰させる。The shift amount calculation point comparison unit 13 calculates the distance (Δq, Δa1, see FIG. 9) from the point A based on the x coordinate of the shift amount calculation point before and after the avoidance, and calculates the shift amount (Δs
= Δa1−Δq). The traveling trajectory correction unit 4 corrects the traveling angle of the self-propelled vehicle based on the variation t of the point at infinity. The correction is repeated until t = 0. When the traveling angle is corrected, the traveling position of the self-propelled vehicle is corrected based on the shift amount Δs. The correction is repeated until Δs = 0, and the self-propelled vehicle is returned to the track.
【0028】以上の説明において,軌道の両側に壁面が
ある場合により説明したが,壁面は特別に軌道に対して
設置する必要はなく,無限遠点を求めるための稜線は建
物の壁と天井,障害物の稜線の等,自走車を使用する現
場にあるものであれば何でもよい。In the above description, the case where there are walls on both sides of the track has been described. However, the wall does not need to be specially installed on the track, and the ridgeline for finding the point at infinity is the wall and ceiling of the building, Anything at the site where the self-propelled vehicle is used, such as a ridgeline of an obstacle, may be used.
【0029】また,正しい軌道を示す中央線は,床面に
描かれている必要はないが,もし,描かれている場合に
は,その軌道線により無限遠点は簡単に求まり,シフト
量の上記値も中央線に基づいて簡単に求められ,本発明
の実施が容易になる。撮像装置は,自動走行車前部だけ
でなく,後部に搭載し,自走車後方のシーンにより無限
遠点を求めるようにしてもよい。The center line indicating the correct trajectory does not need to be drawn on the floor, but if it is drawn, the point at infinity can be easily obtained from the trajectory line and the shift amount can be calculated. The above values are also easily obtained based on the center line, which facilitates the implementation of the present invention. The imaging device may be mounted not only on the front part of the self-propelled vehicle but also on the rear part, and the infinity point may be obtained from the scene behind the self-propelled vehicle.
【0030】[0030]
【実施例】図2は本発明の実施例構成である。必要に応
じて図9,図10を参照する。図において,30は画像
入力部であって,自走車に取りつけられたTVカメラに
おいて撮影された画像をA/D変換するものである。例
えば,画像入力部30は,512画素×512画素×8
ビットの256諧調のデジタル画像として内部メモリに
記憶し,画像から濃淡の起伏の激しい部分(エッジ)を
抽出し,予め定められた閾値よりも大きい画素値は1,
小さい画素値は0の値を与えることにより二値化する。
さらに,画像入力部30は,画像において物体の稜線を
抽出し,無限遠点判定部に二値化画像を転送するもので
ある。FIG. 2 shows an embodiment of the present invention. Reference is made to FIGS. 9 and 10 as necessary. In the figure, reference numeral 30 denotes an image input unit which performs A / D conversion of an image photographed by a TV camera mounted on a self-propelled vehicle. For example, the image input unit 30 has 512 pixels × 512 pixels × 8
The image is stored in the internal memory as a 256-bit digital image, and a portion (edge) having sharp undulations is extracted from the image, and a pixel value larger than a predetermined threshold value is 1,
Small pixel values are binarized by giving a value of zero.
Further, the image input unit 30 extracts a ridge line of the object in the image, and transfers the binarized image to the infinity point determination unit.
【0031】31は回転量算出部,32はシフト量算出
部である。33は無限遠点判定部であって,画像入力部
30において作成された二値化画像を画像処理すること
により無限遠点の位置(座標(x,y))を求めるもの
である。無限遠点を求めるアルゴリズムについては後述
する(図4,図5参照)。Reference numeral 31 denotes a rotation amount calculation unit, and 32 denotes a shift amount calculation unit. Reference numeral 33 denotes an infinity point determination unit which obtains the position (coordinates (x, y)) of the infinity point by performing image processing on the binarized image created by the image input unit 30. The algorithm for finding the point at infinity will be described later (see FIGS. 4 and 5).
【0032】無限遠点比較部34は,無限遠点判定部3
3の算出した回避後の無限遠点の座標(x,y)と回避
前の無限遠点の座標(gx,gy)を比較する。この
際,y座標については相違がないものとして比較の対象
から外す。gxとxとが等しい場合は,自走車に回転が
ないものとして,処理をシフト量算出部32に移す。等
しくない場合には,TVカメラのレンズの焦点距離Fと
無限遠点の変動量(x−gx)により自走車の回転調整
角θ=tan-1((x−gx)/F)を求め,走行軌道
修正部38に送る。The infinity point comparison unit 34 includes an infinity point determination unit 3
The coordinates (x, y) of the infinity point after avoidance calculated in 3 are compared with the coordinates (gx, gy) of the infinity point before avoidance. At this time, the y coordinate is regarded as having no difference and is excluded from comparison. If gx is equal to x, it is determined that the self-propelled vehicle does not rotate, and the processing is shifted to the shift amount calculation unit 32. If not equal, obtains the amount of change of the focal length F and point at infinity of the TV camera lens (x-gx) a self-propelled vehicle of rotational adjustment angle θ = tan -1 ((x- gx) / F) , To the traveling trajectory correction unit 38.
【0033】シフト量算出点判定部36は自走車が正し
く進行方向を向いている場合に,シフト量算出点を求め
る。シフト量算出点は無限遠点を通る直線がx軸と交わ
る点B,Cとして求め,線分ABの長さをΔa1,線分
ACの長さをΔa2として求める。The shift amount calculation point determination unit 36 determines a shift amount calculation point when the self-propelled vehicle is correctly oriented in the traveling direction. The shift amount calculation points are determined as points B and C where a straight line passing through the point at infinity intersects the x-axis, and the length of the line segment AB is determined as Δa1, and the length of the line segment AC is determined as Δa2.
【0034】シフト量算出点37は,回避前と回避後の
シフト量算出点BとC点を求め,シフト量Δs=Δa1
−ΔqおよびΔs=Δa2−Δrを算出する。38は走
行軌道修正部である。走行軌道修正部38は,無限遠点
比較部34から送られてくる回転調整角θに基づいて,
自走車のステアリングの調整をする。θが正の場合は時
計回り,負の場合は反時計回りとする。そして,自走車
が正しい向きに向いてからシフト量算出点37から送ら
れてくるシフト量の差に基づいて,自走車を平行移動す
る。The shift amount calculation point 37 determines the shift amount calculation points B and C before and after the avoidance, and calculates the shift amount Δs = Δa1
−Δq and Δs = Δa2−Δr are calculated. Reference numeral 38 denotes a traveling trajectory correction unit. The traveling trajectory correction unit 38 calculates the rotation trajectory θ from the infinity point comparison unit 34 based on the rotation adjustment angle θ.
Adjust the steering of the self-propelled vehicle. If θ is positive, clockwise; if negative, counterclockwise. Then, the self-propelled vehicle moves in parallel based on the difference in the shift amount sent from the shift amount calculation point 37 after the self-propelled vehicle faces the correct direction.
【0035】35は,無限遠点判定部33が回避前に算
出した無限遠点(gx,gy)とシフト量算出点判定部
36が求めたシフト量算出点に基づくデータ(Δq,Δ
r)である。図3は,実施例構成のフローである。35 is data (Δq, Δg) based on the infinity point (gx, gy) calculated by the infinity point judgment unit 33 before avoidance and the shift amount calculation point obtained by the shift amount calculation point judgment unit 36.
r). FIG. 3 is a flowchart of the configuration of the embodiment.
【0036】図のステップに従って説明する。 S1 障害物回避動作が開始され,画像入力がされる。 S2 走行を開始したときの画像もしくは障害物回避直
前の画像により,無限遠点の初期値を求める。A description will be given according to the steps in the figure. S1 An obstacle avoidance operation is started, and an image is input. S2: The initial value of the point at infinity is obtained from the image at the start of traveling or the image immediately before avoiding the obstacle.
【0037】S3 走行を開始したときの画像もしくは
回避直前の画像により,シフト量の初期値を求める。 S4 無限遠点判定部は無限遠点を算出する。 S5 無限遠点比較部は無限遠点判定部の算出した無限
遠点と無限遠点の初期値を比較する。一致しなければ,
自走車の回転角度を算出し,自走車の走行する向きを調
整する。さらに,画像入力をし,S4〜S6の処理を繰
り返す。S3: The initial value of the shift amount is obtained from the image at the time of starting running or the image immediately before avoidance. S4 The infinity point determination unit calculates the infinity point. S5: The infinity point comparison unit compares the infinity point calculated by the infinity point determination unit with the initial value of the infinity point. If they do not match,
The rotation angle of the self-propelled vehicle is calculated, and the traveling direction of the self-propelled vehicle is adjusted. Further, an image is input, and the processing of S4 to S6 is repeated.
【0038】無限遠点判定部の算出した無限遠点と無限
遠点の初期値が一致すればS7に進む。 S7 画像を入力し,シフト量算出点判定部はシフト量
算出点を求める。 S8 シフト量算出点比較部は回避前と回避後のシフト
量算出点とA点(図9参照)からの距離差を取る(Δs
=Δa1−Δq,Δs=Δa2−Δrの演算)。If the infinity point calculated by the infinity point determination unit matches the initial value of the infinity point, the process proceeds to S7. S7 The image is input, and the shift amount calculation point determination unit obtains the shift amount calculation point. S8: The shift amount calculation point comparison unit calculates the distance difference between the shift amount calculation point before and after the avoidance and the point A (see FIG. 9) (Δs
= Δa1-Δq, Δs = Δa2-Δr).
【0039】シフト量の差が0でなければ,データを走
行軌道修正部に送り自走車を平行移動する。さらに,画
像を入力しS7からS9の処理を繰り返す。シフト量が
一致し,シフト量初期値との差が0になれば,自走車が
正しい軌道上に復帰したことになるので,処理を終了す
る。If the difference between the shift amounts is not 0, the data is sent to the traveling trajectory correction unit, and the self-propelled vehicle is translated. Further, an image is input and the processing from S7 to S9 is repeated. If the shift amounts match and the difference from the shift amount initial value becomes 0, the self-propelled vehicle has returned to the correct track, and the process is terminated.
【0040】図4は,無限遠点判定部における無限遠点
算出方法のアルゴリズムである。図は,無限遠点を求め
るアルゴリズムの実施例として、画素追跡法による例を
示すものである。無限遠点判定部は,画素追跡部41,
折れ線近似部42,描画部43,最大累積点探索部44
により構成される。FIG. 4 is an algorithm of an infinity point calculation method in the infinity point determination unit. The figure shows an example using a pixel tracking method as an embodiment of an algorithm for obtaining an infinite point. The infinity point determination unit includes a pixel tracking unit 41,
Broken line approximation unit 42, drawing unit 43, maximum accumulated point search unit 44
It consists of.
【0041】まず,画素追跡部41は,二値画像を左上
隅から横方向に走査し,値1の画素を探す。図における
Aは画素追跡部41における8近傍探索の例を示す。図
Aにおいて51は横方向の走査の結果見つかった値1の
画素である。そして,見つけた値1の画素51を起点と
して8近傍を探索し,8近傍の画素のうち値1の画素5
2を探す。この時,すでに発見した点は画像から消去
し,発見した点の座標値はメモリに記憶する。8近傍に
値1の画素値を持つ点がなくなるまでこの探索を繰り返
す。引続き走査を行い,画像の右下隅に至るまで同じ処
理を繰り返す。次に,折れ線近似部42は,画素追跡部
41の画素追跡の結果得られた曲線一つずつに対して折
れ線近似する。この折れ線近似については後述する(図
5参照)。この折れ線近似の結果折れ点の座標,折れ線
の関数値が求まる。描画部43は折れ線近似部42の算
出した折れ点の座標と関数値を用いて,直線としてフレ
ームメモリに書き込む。そして,直線の各座標の点は画
素値1とし,1つの直線が他の直線と同じ画素を共有す
る画素については1加算する(共有直線毎に1つずつ加
算する)。First, the pixel tracking unit 41 scans the binary image in the horizontal direction from the upper left corner, and searches for a pixel having a value of 1. A in the figure shows an example of 8-neighbor search in the pixel tracking unit 41. In FIG. A, reference numeral 51 denotes a pixel having a value of 1 found as a result of the horizontal scanning. Then, starting from the found pixel 51 having the value 1 as a starting point, a search is made for 8 neighborhoods, and among the 8 neighboring pixels, the pixel 5 having the value 1 is searched.
Look for 2. At this time, the already found points are deleted from the image, and the coordinate values of the found points are stored in the memory. This search is repeated until there is no point having a pixel value of 1 near 8. Scanning is continued and the same process is repeated until the lower right corner of the image is reached. Next, the polygonal line approximation unit 42 performs a polygonal line approximation for each of the curves obtained as a result of the pixel tracking by the pixel tracking unit 41. The polygonal line approximation will be described later (see FIG. 5). As a result of the polygonal line approximation, the coordinates of the polygonal point and the function value of the polygonal line are obtained. The drawing unit 43 writes a straight line into the frame memory using the coordinates of the broken point calculated by the broken line approximating unit 42 and the function value. Then, a point at each coordinate of the straight line has a pixel value of 1, and 1 is added to a pixel in which one straight line shares the same pixel as another straight line (one is added for each shared straight line).
【0042】最大累積点探索部44は,直線を描画した
フレームメモリを走査し,最大の画素値(直線を共有す
る画素の値(累積度))を持つ座標点を求める。そし
て,求めた点を無限遠点45とする。無限遠点は無限遠
点比較部およびシフト量調整部に送られる。The maximum cumulative point searching section 44 scans the frame memory on which the straight line is drawn, and obtains a coordinate point having the maximum pixel value (the value of the pixel sharing the straight line (cumulative degree)). The obtained point is set as an infinity point 45. The infinity point is sent to the infinity point comparison unit and the shift amount adjustment unit.
【0043】図5は折れ線近似部における折れ線近似の
実施例を示す。図 (a)追跡した曲線kの端点a,bとす
る。図 (b)端点aと端点bを結ぶ線分abから最も離れ
た曲線k上の点cを求める。そして点cから線分abに
下ろした垂線と線分abとの交点をPとしたとき,点c
と点Pの間の距離Dを求める。FIG. 5 shows an embodiment of the broken line approximation in the broken line approximation section. Figure (a) Let the end points a and b of the traced curve k. (B) A point c on the curve k farthest from the line segment ab connecting the end points a and b is obtained. Then, assuming that the intersection point of the perpendicular drawn from the point c to the line segment ab and the line segment ab is P, the point c
The distance D between the point and the point P is obtained.
【0044】図 (c)点cと端点aを結ぶ線分acと端点
aと点cを結ぶ曲線k1に対しても同様の処理を行い,
線分acからの距離が最大の点c’を曲線k1上に求め
る。そして,点c’と線分acとの距離D1を求める。
同様に,点cと端点bを結ぶ線分bcと点cと端点bを
結ぶ曲線k2とについて,曲線k2上に点c”を求め,
点c”と線分bcとの距離D2を求める。(C) Similar processing is performed on a line segment ac connecting the point c and the end point a and a curve k1 connecting the end point a and the point c.
A point c ′ having the maximum distance from the line segment ac is obtained on the curve k1. Then, a distance D1 between the point c 'and the line segment ac is obtained.
Similarly, for a line segment bc connecting the point c and the end point b and a curve k2 connecting the point c and the end point b, a point c ″ is obtained on the curve k2,
The distance D2 between the point c "and the line segment bc is obtained.
【0045】以上の処理を繰り返し,曲線上に求めた点
と線分までの距離D1,D2が予め定めた値以下になっ
たらその曲線についての折れ線近似を終了する。図6は
シフト量算出点判定部の実施例を示す。画像の左下端を
座標軸の原点とし水平方向をX軸,垂直方向をY軸とす
る。The above processing is repeated, and when the distances D1 and D2 between the point obtained on the curve and the line segment become equal to or less than a predetermined value, the polygonal line approximation for the curve is terminated. FIG. 6 shows an embodiment of the shift amount calculation point determination unit. The lower left end of the image is the origin of the coordinate axes, the horizontal direction is the X axis, and the vertical direction is the Y axis.
【0046】各図共通に70は画像,71は基準線,7
2は無限遠点である。Aは基準線とX軸の交点,B,C
はシフト量算出点である。図 (a)は画像における無限遠
点と基準線の関係を示す。シフト量を算出するために,
本発明では,基準線を中心にして画像を左半分と右半分
に分け,それぞれメモリに格納する。70 is an image, 71 is a reference line, 7
2 is a point at infinity. A is the intersection of the reference line and the X axis, B and C
Is a shift amount calculation point. Figure (a) shows the relationship between the point at infinity and the reference line in the image. To calculate the shift amount,
In the present invention, an image is divided into a left half and a right half with respect to a reference line, and each is stored in a memory.
【0047】図 (b)は左半分の画像であり,図 (c)は右
半分の画像である。図 (d)は左半分の画像におけるシフ
ト量算出を示し,図 (e)は右半分の画像におけるシフト
量算出を示す。無限遠点の位置と各曲線の折れ線近似デ
ータ(折れ線の端点の座標および直線の傾き,y切片)
を入力する。そして,折れ線の端点の座標により,折れ
線が画像の右と左のいずれに含まれるかを調べる。同時
に,直線が無限遠点を通るかも調べる。そして,無限遠
点を通らない直線は捨て,無限遠点を通る直線のみ端点
の含まれる領域に書き込む。この書き込みは直線上の点
の画素値1として行う。直線の書き込みが終わった後,
右側の画像では,X軸に隣接する画素(即ち,Y軸が1
の画素)を無限遠点を起点に右方向に走査し,最初に発
見した非零の画素C(値1の画素)をシフト量算出点と
し,A点からの画素数をΔa2とする。同様に,左側の
画像では,X軸に隣接する画素を無限遠点のX座標を起
点に左方向に走査し,最初に発見した非零の画素B(値
1の画素)をシフト量算出点とし,A点からの画素数を
Δa1とする。FIG. 8B shows the left half image, and FIG. 8C shows the right half image. (D) shows the shift amount calculation for the left half image, and (e) shows the shift amount calculation for the right half image. Position of infinity point and broken line approximation data of each curve (coordinates of end points of broken line, inclination of straight line, y intercept)
Enter Then, it is determined whether the polygonal line is included on the right or left side of the image based on the coordinates of the end point of the polygonal line. At the same time, check whether the straight line passes through the point at infinity. Then, a straight line that does not pass through the point at infinity is discarded, and only a straight line that passes through the point at infinity is written in an area including the end point. This writing is performed as a pixel value 1 of a point on a straight line. After writing the straight line,
In the image on the right, pixels adjacent to the X axis (that is, 1
) Is scanned rightward from the point at infinity, the first non-zero pixel C (pixel having a value of 1) is set as a shift amount calculation point, and the number of pixels from point A is set as Δa2. Similarly, in the left image, pixels adjacent to the X axis are scanned leftward starting from the X coordinate of the point at infinity, and the first non-zero pixel B (pixel having a value of 1) found is shifted to the shift amount calculation point. And the number of pixels from point A is Δa1.
【0048】シフト量算出点比較部はシフト量算出点判
定部の算出したシフト量を障害物回避前のシフト量の初
期値ΔqとΔrとの差を取る。即ち,左側の画像におい
てはシフト量Δs1=Δa1−Δq,右側の画像におい
てはシフト量Δs2=Δa2−Δrを算出し,走行軌道
修正部に転送する。The shift amount calculation point comparing section calculates the difference between the shift amount calculated by the shift amount calculation point determination section and the initial value Δq and Δr of the shift amount before obstacle avoidance. That is, the shift amount Δs1 = Δa1−Δq is calculated for the left image, and the shift amount Δs2 = Δa2−Δr is calculated for the right image, and is transferred to the traveling trajectory correction unit.
【0049】走行軌道修正部では,Δa1−Δqの値が
正ならば,正しい軌道より右に寄っており,負ならば左
に寄っていると判断し,自走車をシフトする。上記の説
明において,シフト量の算出は画像右半分と左半分の両
方の画像において算出したが,片方だけても良い。If the value of Δa1−Δq is positive, the traveling trajectory correction unit determines that the vehicle is deviating to the right from the correct trajectory, and if negative, it is deviating to the left, and shifts the self-propelled vehicle. In the above description, the shift amount is calculated for both the right half and the left half of the image, but only one of them may be calculated.
【0050】[0050]
【発明の効果】本発明によれば,障害物を回避した後の
正しい軌道への復帰のために,軌道を示す線を床面に描
いておく必要がなく,撮像装置の写す周囲のシーンに基
づいて自走車を誘導するので,確実に軌道に復帰するこ
とができる。また,超音波で誘導する場合に必要となる
軌道の両側の壁面も必要でなく,モータ回転数等を,記
憶して誘導する場合と比較して,床面に凹凸等のある悪
い状態の床面であっても正確に動作する。According to the present invention, in order to return to a correct trajectory after avoiding an obstacle, it is not necessary to draw a line indicating the trajectory on the floor surface. Since the self-propelled vehicle is guided based on this, it is possible to reliably return to the track. Also, there is no need for the walls on both sides of the trajectory, which is necessary when guiding with ultrasonic waves. Works correctly even on surfaces.
【0051】そのため,本発明によれば,自走車の誘導
に特別の環境を必要とせずに正確に自走車を誘導できる
ので,工場等の製造現場における利用性が飛躍的に向上
する。Therefore, according to the present invention, since the self-propelled vehicle can be accurately guided without requiring a special environment for guiding the self-propelled vehicle, the usability at a manufacturing site such as a factory is greatly improved.
【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】本発明の実施例構成を示す図である。FIG. 2 is a diagram showing a configuration of an embodiment of the present invention.
【図3】本発明の実施例フローを示す図である。FIG. 3 is a diagram showing a flow of an embodiment of the present invention.
【図4】本発明の無限遠点判定部のアルゴリズムを示す
図である。FIG. 4 is a diagram illustrating an algorithm of an infinity point determination unit according to the present invention.
【図5】本発明における折れ線近似の実施例を示す図で
ある。FIG. 5 is a diagram showing an example of broken line approximation in the present invention.
【図6】本発明のシフト量算出点判定部の実施例を示す
図である。FIG. 6 is a diagram illustrating an embodiment of a shift amount calculation point determination unit according to the present invention.
【図7】従来の自走車の障害物回避方法を示す図であ
る。FIG. 7 is a diagram showing a conventional obstacle avoidance method for a self-propelled vehicle.
【図8】課題を解決するための手段の説明(1) を示す図
である。FIG. 8 is a diagram showing a description (1) of means for solving the problem.
【図9】課題を解決するための手段の説明(2)を示す図
である。FIG. 9 is a diagram showing a description (2) of a means for solving the problem.
【図10】課題を解決するための手段の説明(3) を示す
図である。FIG. 10 is a diagram showing a description (3) of a means for solving the problem.
1 :画像入力部 2 :回転量算出部 3 :シフト量算出部 4 :走行軌道修正部 10:無限遠点判定部 11:無限遠点比較部 12:シフト量算出点判定部 13:シフト量算出点比較部 1: Image input unit 2: Rotation amount calculation unit 3: Shift amount calculation unit 4: Traveling trajectory correction unit 10: Infinity point judgment unit 11: Infinity point comparison unit 12: Shift amount calculation point judgment unit 13: Shift amount calculation Point comparison section
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−139706(JP,A) 特開 平3−90917(JP,A) 特開 昭64−26913(JP,A) 特開 昭63−79005(JP,A) 特開 昭63−314615(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05D 1/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-139706 (JP, A) JP-A-3-90917 (JP, A) JP-A-64-26913 (JP, A) JP-A-63-63 79005 (JP, A) JP-A-63-314615 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05D 1/02
Claims (3)
いて走行軌道を修正する自動走行車軌道修正装置におい
て, 撮像画像において被写体の平行線が交わる無限遠点の位
置を算出するとともに,異なる時刻での無限遠点の変動
量を算出し,その変動量に基づいて進行方向に対する自
動走行車の回転量を算出する回転量算出部(2)と, 自動走行車が正しい方向に進行している場合において,
画像における無限遠点を通る直線位置の異なる時刻での
変動量を表すシフト量を算出し,シフト量に基づいて軌
道に対する相対位置を算出するシフト量算出部(3) と, 回転量算出部(2)が算出した無限遠点の変動量により自
動走行車を回転させるとともに,シフト量算出部(3) が
算出したシフト量に基づいて自動走行車の走行位置を修
正する走行軌道修正部(4)とを備え, 自動走行車が軌道を離れる前後での無限遠点の変動量と
シフト量を算出し,無限遠点の変動量に基づいて自動走
行車の走行角度を修正し,シフト量に基づいて走行位置
を修正することを特徴とする自動走行車軌道修正装置。1. An automatic traveling vehicle trajectory correction device including an imaging device for correcting a traveling trajectory based on a captured image during traveling, calculates an infinity point where a parallel line of a subject intersects in the captured image, and calculates a different position. A rotation amount calculator (2) that calculates the amount of change at the point at infinity at the time and calculates the amount of rotation of the autonomous vehicle in the traveling direction based on the amount of change, and the autonomous vehicle moves in the correct direction. If you have
A shift amount calculating unit (3) that calculates a shift amount representing a variation amount of a straight line position passing through an infinite point in the image at different times, and calculates a relative position with respect to the trajectory based on the shift amount; The traveling trajectory correction unit (4) rotates the autonomous vehicle based on the amount of change at the infinity point calculated by (2) and corrects the traveling position of the autonomous vehicle based on the shift amount calculated by the shift amount calculation unit (3). ), And calculates the amount of shift at infinity and the amount of shift before and after the autonomous vehicle leaves the track, corrects the running angle of the autonomous vehicle based on the amount of change at infinity, and calculates the shift amount. An automatic traveling vehicle trajectory correction device that corrects a traveling position based on the traveling position.
おいて,無限遠点の変動量およびシフト量を算出するこ
とを特徴とする自動走行車軌道修正装置。2. The automatic vehicle trajectory correction device according to claim 1, wherein the amount of change and the amount of shift at the infinity point are calculated before and after obstacle avoidance.
出部は,無限遠点を通る直線が画像の下端と交わる点の
座標に基づいてシフト量を算出することを特徴とする自
動走行車軌道修正装置。3. An apparatus according to claim 1 or 2, the shift amount calculating unit, the automatic vehicle track straight line passing through the point at infinity is and calculates the shift amount based on the coordinates of the intersection point with the lower end of the image Correction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3113077A JP3015138B2 (en) | 1991-05-17 | 1991-05-17 | Automatic vehicle track correction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3113077A JP3015138B2 (en) | 1991-05-17 | 1991-05-17 | Automatic vehicle track correction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0675626A JPH0675626A (en) | 1994-03-18 |
JP3015138B2 true JP3015138B2 (en) | 2000-03-06 |
Family
ID=14602898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3113077A Expired - Fee Related JP3015138B2 (en) | 1991-05-17 | 1991-05-17 | Automatic vehicle track correction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3015138B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8028653B2 (en) | 2007-12-06 | 2011-10-04 | Hitachi Global Storage Technologies Netherlands, B.V. | System, method and apparatus for filament and support used in plasma-enhanced chemical vapor deposition for reducing carbon voids on media disks in disk drives |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101121518B1 (en) * | 2009-10-09 | 2012-02-28 | 고려대학교 산학협력단 | A simultaneous localization and map building method of mobile robot using vanishing point |
JP6426219B2 (en) * | 2017-02-17 | 2018-11-21 | フィールド開発株式会社 | Grass machine |
-
1991
- 1991-05-17 JP JP3113077A patent/JP3015138B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8028653B2 (en) | 2007-12-06 | 2011-10-04 | Hitachi Global Storage Technologies Netherlands, B.V. | System, method and apparatus for filament and support used in plasma-enhanced chemical vapor deposition for reducing carbon voids on media disks in disk drives |
Also Published As
Publication number | Publication date |
---|---|
JPH0675626A (en) | 1994-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7132933B2 (en) | Obstacle detection device and method therefor | |
JP3539788B2 (en) | Image matching method | |
JP2501010B2 (en) | Mobile robot guidance device | |
US7382934B2 (en) | System and method for detecting obstacle | |
JP3349121B2 (en) | Stereo camera mounting structure | |
Fruh et al. | Fast 3D model generation in urban environments | |
EP1087336A2 (en) | Apparatus and method for stereoscopic image processing | |
WO2015024407A1 (en) | Power robot based binocular vision navigation system and method based on | |
JP3765862B2 (en) | Vehicle environment recognition device | |
JP3384278B2 (en) | Distance measuring device | |
JP3440956B2 (en) | Roadway detection device for vehicles | |
JP3015138B2 (en) | Automatic vehicle track correction device | |
JP2001076128A (en) | Device and method for detecting obstacle | |
JP3447461B2 (en) | Moving obstacle detecting apparatus and method | |
JP2003042760A (en) | Instrument, method, and system for measurement | |
JP3525712B2 (en) | Three-dimensional image capturing method and three-dimensional image capturing device | |
JP2809348B2 (en) | 3D position measuring device | |
JP2000131064A (en) | Height measurement method | |
KR102708461B1 (en) | Method of generating a panoramic image of the inner surface of a pipe | |
JPH11232466A (en) | Road shape reognition device | |
US20230421739A1 (en) | Robust Stereo Camera Image Processing Method and System | |
JPH0425758B2 (en) | ||
JP2001273488A (en) | Obstacle detector | |
JPH06195446A (en) | Method for searching correspondent point | |
CN118644993A (en) | Space parking space recognition method and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |