JP3014960B2 - How to remove technetium in wastewater - Google Patents

How to remove technetium in wastewater

Info

Publication number
JP3014960B2
JP3014960B2 JP8095003A JP9500396A JP3014960B2 JP 3014960 B2 JP3014960 B2 JP 3014960B2 JP 8095003 A JP8095003 A JP 8095003A JP 9500396 A JP9500396 A JP 9500396A JP 3014960 B2 JP3014960 B2 JP 3014960B2
Authority
JP
Japan
Prior art keywords
waste liquid
tco
exchange resin
anion exchange
technetium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8095003A
Other languages
Japanese (ja)
Other versions
JPH09281291A (en
Inventor
和也 薄井
雅裕 福井
隆之 雨夜
昭 長谷川
和則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP8095003A priority Critical patent/JP3014960B2/en
Publication of JPH09281291A publication Critical patent/JPH09281291A/en
Application granted granted Critical
Publication of JP3014960B2 publication Critical patent/JP3014960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核燃料取扱施設の
プロセスから排出される、塩類が高濃度で溶存する廃液
中のテクネチウムTcを選択的に除去し、放射性物質の
廃液を安全に処理するための方法に関する。
[0001] The present invention relates to a method for selectively removing technetium Tc in a waste liquid containing salts dissolved at a high concentration, which is discharged from a process of a nuclear fuel handling facility, and safely treating the waste liquid of radioactive substances. About the method.

【0002】[0002]

【従来の技術】原子炉で使用したウラン燃料を処理する
過程で、核分裂生成物のひとつである99Tcを含有する
廃液が生じる。99Tcは半減期2×105年の安定な核
種であって、最終的には固化処理−処分する必要があ
る。
2. Description of the Related Art In the process of treating uranium fuel used in a nuclear reactor, a waste liquid containing 99 Tc, one of fission products, is generated. 99 Tc is a stable nuclide with a half-life of 2 × 10 5 years, and ultimately needs to be solidified and disposed of.

【0003】Tcを廃液から分離する実用的な方法とし
て、TcO4 -の形態にした溶液に鉄粉を加えて還元し、
TcO2として沈澱させ、沈澱物を濾過分離してそのま
ま加熱溶融し、Feマトリクス中にTcO2が分散した
形のインゴットとすることが提案された(NUCLEA
R TECHNOLOGY,19 Jan.1995, p.161
-2)。ここで処理の対象とする廃液は、Tc濃度2.7
×10-6mol/1(170Bq/ml)の1.5M硝酸溶液で
ある。この方法では、沈澱を濾過分離した後の廃液が依
然としてTcの溶解度に相当する分(0.6Bq/ml)の
放射能をもち、茨城県における排水時基準(ISSN
0912−036X)2×10-2Bq/mlを満たすには不
十分である。
[0003] The Tc as a practical method of separating the waste liquid, TcO 4 - and reduced by adding iron powder to the solution in the form,
It has been proposed to precipitate as TcO 2 , separate the precipitate by filtration, heat and melt the precipitate as it is to form an ingot in which TcO 2 is dispersed in an Fe matrix (NUCLEA).
R TECHNOLOGY, 19 Jan. 1995, p.161
-2). Here, the waste liquid to be treated has a Tc concentration of 2.7.
It is a 1.5 M nitric acid solution of × 10 -6 mol / 1 (170 Bq / ml). In this method, the waste liquid obtained by separating the precipitate by filtration still has radioactivity equivalent to the solubility of Tc (0.6 Bq / ml), and the wastewater standard (ISSN) in Ibaraki Prefecture is used.
0912-036X) 2 × 10 −2 Bq / ml, which is insufficient.

【0004】本発明で処理の対象とする廃液は、Tc濃
度が2×10-8mol/1(1.4Bq/ml)程度で、溶存す
る塩類の濃度が10%以上、しばしば20%にも達する
高濃度であり、これを処理して上記の排出基準に合格さ
せることは容易でない。
The waste liquid to be treated in the present invention has a Tc concentration of about 2 × 10 −8 mol / 1 (1.4 Bq / ml) and a concentration of dissolved salts of 10% or more, often as much as 20%. It is a high concentration that is reached and it is not easy to process it to pass the above emission standards.

【0005】Tcの分析的手法による分離技術として
は、沈澱法、蒸留法、溶媒抽出法およびクロマトグラフ
法が知られている(日本分析化学会編「分析化学便覧」
(改訂三版)丸善p.93)が、とくに溶存する塩類の
濃度が10〜20%と高い場合には、いずれも単純な設
備で工業的に実施することは不可能である。
[0005] Precipitation, distillation, solvent extraction, and chromatographic methods are known as techniques for separating Tc by an analytical method ("Analytical Chemistry Handbook", edited by the Japan Society for Analytical Chemistry).
(Revised third edition) Maruzen p.93), especially when the concentration of dissolved salts is as high as 10 to 20%, it is impossible to carry out industrially with simple equipment.

【0006】結局、使用済核燃料の処理により発生する
廃液からTcを分離する手段としては、活性炭による吸
着(特願昭63−37625号)、および吸着したTc
のチオシアン酸イオンまたはヨウ素イオンによる溶出
(特開平2−54732号)、あるいは無機イオン交換
体とのイオン交換(特開平5−346493号)が知ら
れている程度であった。これらの方法は、廃液に溶存す
る塩の濃度が高くなると、吸着効率が低くなって実用的
でなくなる。
As a means for separating Tc from the waste liquid generated by the processing of spent nuclear fuel, adsorption with activated carbon (Japanese Patent Application No. 63-37625) and adsorption of Tc
Elution with thiocyanate ion or iodine ion (JP-A-2-54632) or ion exchange with an inorganic ion exchanger (JP-A-5-346493) was known. These methods become impractical when the concentration of the salt dissolved in the waste liquid increases, the adsorption efficiency decreases.

【0007】上記特開平5−346493号には、Tc
のアニオン交換樹脂「アンバーライトIRA−400」
によるイオン交換を試みたが、不成績に終わったこと
(比較例9)が記載されている。しかし本発明者らは、
アニオン交換樹脂Tcの選択的分離の可能性を諦めず研
究した結果、特定のアニオン交換樹脂がTcO4 -イオン
を効果的に交換吸着することを見出した。
The above-mentioned Japanese Patent Application Laid-Open No. 5-346493 discloses that Tc
Anion Exchange Resin “Amberlite IRA-400”
, But failed (Comparative Example 9). However, the present inventors
As a result of research without giving up the possibility of selective separation of the anion exchange resin Tc, it was found that a specific anion exchange resin effectively exchange-adsorbs TcO 4 - ions.

【0008】[0008]

【発明が解決しようとする課題】従って本発明の目的
は、この新しい知見を活用して、核燃料取扱施設のプロ
セスから排出されるTc含有廃液、とくに高濃度の塩が
溶存する廃液からTcを選択的に分離除去する方法を提
供し、放射性廃棄物の処理を安全かつ経済的に実施でき
るようにすることにある。
Accordingly, an object of the present invention is to utilize this new knowledge to select Tc from a Tc-containing waste liquid discharged from a process of a nuclear fuel handling facility, particularly a waste liquid in which a high concentration of salt is dissolved. It is an object of the present invention to provide a method for separation and removal of radioactive wastes so that the treatment of radioactive waste can be carried out safely and economically.

【0009】[0009]

【課題を解決するための手段】本発明の廃液中のテクネ
チウムを除去する方法は、核燃料取扱施設のプロセスか
ら排出され、塩類が高濃度で溶存する廃液からテクネチ
ウム(Tc)を選択的に除去する方法であって、廃液中
のTc(TcO4 -)を、トリメチルベンジルアンモニウ
ム塩を交換基とする水分含有率43〜48%の強塩基性
アニオン交換樹脂の粒径0.3mm以下の粒子(たとえば
ダウエックス社製「ダウエックス1×8」)に廃液を接
触させ、TcO4 -をイオン交換により吸着除去すること
を特徴とする。
According to the present invention, there is provided a method for removing technetium in a waste liquid, wherein technetium (Tc) is selectively removed from a waste liquid discharged from a process of a nuclear fuel handling facility and having a high concentration of dissolved salts. In the method, Tc (TcO 4 ) in the waste liquid is converted into particles having a particle size of 0.3 mm or less of a strongly basic anion exchange resin having a water content of 43 to 48% using trimethylbenzyl ammonium salt as an exchange group (for example, The waste liquid is brought into contact with Dowex “Dowex 1 × 8”), and TcO 4 is adsorbed and removed by ion exchange.

【0010】廃液中に溶存する塩類は、通常、主成分が
Na塩であって、その合計量が10重量%以上のもので
あり、多くの場合20重量%に達するが、本発明によれ
ば、そのような高濃度の塩が溶けた廃液も支障なく処理
できる。
The salts dissolved in the waste liquid are usually composed mainly of Na salts, the total amount of which is 10% by weight or more, and often reaches 20% by weight. Also, the waste liquid in which such a high concentration of salt is dissolved can be treated without any trouble.

【0011】水分含有率43〜48%の強塩基性アニオ
ン交換樹脂の代表例は、ジビニルベンゼン含有率をもっ
てあらわされる架橋度が約8%であるものである。
A typical example of a strongly basic anion exchange resin having a water content of 43 to 48% is a resin having a divinylbenzene content and a degree of crosslinking of about 8%.

【0012】本発明の実施に当たって、廃液と上記特定
のアニオン交換樹脂とを接触させる手法としては、廃液
中に樹脂粒子を投入して撹拌し、イオン交換後に濾過分
離することも可能であるが、実用上は固定床式で接触さ
せるのが有利である。すなわち、強塩基アニオン交換樹
脂の粒子をカラムに充填し、このカラムに廃液を流通さ
せる。このとき、液の流通は、空塔速度が10hr-1以下
の比較的低い速度で行なうことが好ましい。一般に、3
〜5hr-1程度が適切である。
In the practice of the present invention, as a method of bringing the waste liquid into contact with the above-mentioned specific anion exchange resin, it is also possible to put resin particles into the waste liquid and stir them, and to separate by filtration after ion exchange. In practice, it is advantageous to use a fixed bed type for contact. That is, particles of a strong base anion exchange resin are packed in a column, and the waste liquid is passed through the column. At this time, the circulation of the liquid is preferably performed at a relatively low speed with a superficial velocity of 10 hr -1 or less. In general, 3
About 5 hr -1 is appropriate.

【0013】Tcの最終的な処理のためには、上記の接
触に続いて、TcO4 -を吸着したアニオン交換樹脂に強
酸を作用させ、溶離したTcO4 -を還元してTcO2
形態で沈澱させ分離し、固化処理する工程を行なう。
For the final treatment of Tc, following the above-mentioned contact, a strong acid is applied to the anion exchange resin on which TcO 4 - is adsorbed, and the eluted TcO 4 - is reduced to form TcO 2 in the form of TcO 2 . A step of precipitation, separation and solidification is performed.

【0014】[0014]

【発明の実施の形態】後記する実施例および比較例のデ
ータが示すように、高濃度で塩が溶存する廃液中のTc
(TcO4 -の形態)は、特定の水分含有率ないし架橋度
をもち、交換基がトリメチルベンジルアンモニウム基で
ある強塩基性アニオン交換樹脂の、粒径0.3mm以下の
細粒と接触させた場合に限り、選択的な吸着が行なわれ
る。このような限られたイオン交換樹脂を使用した場合
に限って選択的な吸着が実現する理由は、発明者らにも
十分明らかでないが、水分含有率ないし架橋度によって
定められるイオン交換樹脂分子内のミクロなネットワー
ク構造と、樹脂粒径が影響を与えると思われるイオン交
換樹脂粒子のマクロな(主として粒子表面の)構造が特
定のものであるとき、TcO4 -の吸着に好適な条件がつ
くり出されるのであろうと推測している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in the data of Examples and Comparative Examples described later, Tc in waste liquid in which salt is dissolved at a high concentration is shown.
(Form of TcO 4 ) is a finely basic anion exchange resin having a specific water content or a degree of crosslinking and having an exchange group of a trimethylbenzylammonium group and having a particle size of 0.3 mm or less. Only in such cases, selective adsorption takes place. The reason why selective adsorption is realized only when such a limited ion exchange resin is used is not sufficiently clear to the inventors, but the molecular weight of the ion exchange resin determined by the water content or the degree of crosslinking is not clear. and network structures micro, macro (mainly grain surface) of the ion exchange resin particles appears to the particle size of the resin affects the time structure is of particular, TcO 4 - make the conditions suitable for adsorption of I guess it will be issued.

【0015】[実施例]可燃性の放射性廃棄物の焼却処
分により生じる廃ガスをカセイソーダ水溶液でスクラビ
ング処理して、TcをTcO4 -として含む下記の廃液を
得、これをイオン交換の対象とした。
[0015] [Example] and the waste gas resulting from the incineration of combustible radioactive waste scrubbed with caustic soda solution, the Tc TcO 4 - give the waste below containing as, which was subjected to ion-exchange .

【0016】 種々のアニオン交換樹脂を各1mlずつガラス製のカラム
に充填し、所定の空塔速度で液を通過させて通過液をフ
ラクションコレクターに集め、その中のTc濃度を放射
線強度によって測定した。下式で定義される液のTc濃
度比(%) (通過後Tc濃度)/(通過前Tc濃度)×100 を縦軸にとり、通過液量を横軸にとって、破過曲線を描
いた。
[0016] Various anion exchange resins were packed in a glass column by 1 ml each, the liquid was passed at a predetermined superficial velocity, the passed liquid was collected in a fraction collector, and the Tc concentration therein was measured by radiation intensity. The Tc concentration ratio (%) of the liquid defined by the following formula (%) (Tc concentration after passing) / (Tc concentration before passing) × 100 is plotted on the vertical axis, and the breakthrough curve is drawn with the amount of the passing liquid on the horizontal axis.

【0017】[実施例]強塩基性アニオン交換樹脂「ダ
ウエックス1−X8」(交換基トリメチルベンジルアン
モニウムφ−CH2+(+はプラスイオンの意)(CH
33Cl-、架橋度8、水分含有率43〜48%)の粒
度0.3mm以下のものを使用し、空塔速度それぞれ3.
0,14.5または37hr-1で液を通過させた。
Example: Strongly basic anion exchange resin "Dowex 1-X8" (exchange group trimethylbenzyl ammonium φ-CH 2 N + (+ means plus ion)) (CH
3) 3 Cl -, degree of crosslinking 8, using the following particle size 0.3mm moisture content 43-48%), respectively superficial velocity 3.
The liquid was passed at 0 , 14.5 or 37 hr -1 .

【0018】図1に示す破過曲線を得た。この曲線から
比較的遅い空塔速度で接触させるときは、容積比で35
0〜400またはそれ以上の廃液を処理して、Tcをほ
ぼ完全に吸着分離できることがわかる。
The breakthrough curve shown in FIG. 1 was obtained. From this curve, when contacting at a relatively low superficial velocity, the volume ratio is 35%.
It can be seen that Tc can be almost completely separated by adsorption by treating 0 to 400 or more waste liquids.

【0019】[比較例1]強塩基性アニオン交換樹脂
「ダウエックス1−X2」(交換基は上記と同じ、架橋
度2、水分含有率約75%)の粒度0.15〜0.30mm
のものを使用し、空塔速度14.8で接触させた。
COMPARATIVE EXAMPLE 1 A strongly basic anion exchange resin "Dowex 1-X2" (exchange group is the same as above, degree of crosslinking 2, water content about 75%), particle size 0.15 to 0.30 mm
And contacted at a superficial velocity of 14.8.

【0020】図2に示す破過曲線を得た。この曲線は、
通液開始の直後から破過が起ったことを示している。同
種のイオン交換樹脂でも、架橋度または水分含有率で規
定される分子構造に差があると、所望のTcの吸着除去
が実現しない。
The breakthrough curve shown in FIG. 2 was obtained. This curve is
This indicates that breakthrough occurred immediately after the start of the liquid passage. Even with the same type of ion exchange resin, if there is a difference in the molecular structure defined by the degree of crosslinking or the water content, the desired adsorption and removal of Tc cannot be realized.

【0021】[比較例2]強塩基性アニオン交換樹脂
「ダウエックスSBR」(交換基は上記と同じ、架橋度
8、水分含有率約43〜48%)の粒度0.3〜0.7mm
のものを使用し、空塔速度14.7で接触させた。
COMPARATIVE EXAMPLE 2 A strongly basic anion exchange resin "Dowex SBR" (exchange group is the same as above, degree of cross-linking 8, water content about 43-48%), particle size 0.3-0.7 mm
And contacted at a superficial velocity of 14.7.

【0022】破過曲線は図3に示すとおりである。この
場合も通液開始後まもなく破過が生じていて、実施例と
同じアニオン交換樹脂でも粒度が異なると効果がないこ
とがわかる。
The breakthrough curve is as shown in FIG. Also in this case, breakthrough occurred shortly after the start of the passage of the liquid, and it can be seen that the same anion exchange resin as in the example had no effect when the particle size was different.

【0023】[比較例3]強塩基性アニオン交換樹脂
「DIAION SA−20A」(交換基スチレン系、
架橋度8相当、水分含有率約39〜44%)の粒度0.
35〜0.55mmのものを使用し、空塔速度11.6で接
触させた。
Comparative Example 3 Strongly basic anion exchange resin "DIAION SA-20A" (exchange group styrene,
(Equivalent to a degree of crosslinking of 8 and water content of about 39 to 44%).
35 to 0.55 mm was used and contact was made at a superficial velocity of 11.6.

【0024】図4に示す破過曲線を得、これから、同等
の架橋度ないし水分含有率および粒度をもつイオン交換
樹脂でも、交換基が異なるものは有用でないことがわか
る。
The breakthrough curve shown in FIG. 4 shows that it is not useful that ion exchange resins having the same degree of crosslinking or moisture content and particle size but different exchange groups are different.

【0025】[0025]

【発明の効果】本発明の方法によれば、高い濃度で塩が
溶存する廃液に含まれているTcを、少量のイオン交換
樹脂で選択的に吸着除去することができる。使用する強
塩基性アニオン交換樹脂は、イオン交換樹脂の中では比
較的高価なものであるが、設備は常用の簡単なもので足
りるから、全体としてはあまり費用をかけず、核燃料取
扱施設のプロセスから出る99Tc含有廃液を処理するこ
とができる。
According to the method of the present invention, Tc contained in a waste liquid in which a salt is dissolved at a high concentration can be selectively adsorbed and removed with a small amount of ion exchange resin. The strong basic anion exchange resin used is relatively expensive among ion exchange resins, but the equipment is sufficient for ordinary and simple equipment. 99 Tc-containing waste liquid coming out of the system can be treated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例のデータであって、核燃料取
扱施設のプロセスから排出され、塩類が高濃度で溶存す
るTc含有廃液を、特定のイオン交換樹脂のカラム中を
通過させたときの破過曲線である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is data of an embodiment of the present invention, showing a case where a Tc-containing waste liquid discharged from a process of a nuclear fuel handling facility and containing salts at a high concentration is passed through a column of a specific ion exchange resin. It is a breakthrough curve.

【図2】 本発明の比較例1のデータであって、実施例
と水分含有率ないし架橋度が異なるイオン交換樹脂を用
いた場合の破過曲線である。
FIG. 2 is data of Comparative Example 1 of the present invention, which is a breakthrough curve in a case where an ion exchange resin having a different water content or a different degree of crosslinking from the Example is used.

【図3】 本発明の比較例2のデータであって、実施例
と粒径が異なるイオン交換樹脂を用いた場合の破過曲線
である。
FIG. 3 is data of Comparative Example 2 of the present invention, which is a breakthrough curve when an ion exchange resin having a different particle diameter from that of the Example is used.

【図4】 本発明の比較例3のデータであって、実施例
と交換基および粒径が異なるイオン交換樹脂を用いた場
合の破過曲線である。
FIG. 4 is data of Comparative Example 3 of the present invention, which is a breakthrough curve when an ion exchange resin having a different exchange group and a different particle diameter from that of the Example is used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 雅裕 茨城県那珂郡東海村大字村松4番地33 動力炉・核燃料開発事業団 東海事業所 内 (72)発明者 雨夜 隆之 茨城県東茨城郡大洗町成田町2205 日揮 株式会社大洗原子力技術開発センター内 (72)発明者 長谷川 昭 茨城県東茨城郡大洗町成田町2205 日揮 株式会社大洗原子力技術開発センター内 (72)発明者 鈴木 和則 茨城県東茨城郡大洗町成田町2205 日揮 株式会社大洗原子力技術開発センター内 審査官 村田 尚英 (58)調査した分野(Int.Cl.7,DB名) G21F 9/06 G21F 9/12 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahiro Fukui 4-33 Muramatsu, Oji, Tokai-mura, Naka-gun, Ibaraki Prefecture Within the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (72) Inventor Takayuki Ameya Oaraicho, Higashiibaraki-gun, Ibaraki Prefecture 2205 Naritacho JGC Oarai Nuclear Technology Development Center Co., Ltd. (72) Inventor Akira Hasegawa 2205 Oaraicho Naritacho, Higashiibaraki-gun, Ibaraki Prefecture JGC Co., Ltd. Oarai Nuclear Technology Development Center (72) Inventor Kazunori Suzuki Higashiibaraki-gun, Ibaraki Prefecture 2205 Oarai-cho Narita-cho JGC Investigator, Oarai Nuclear Technology Development Center Co., Ltd. Naohide Murata (58) Field of investigation (Int. Cl. 7 , DB name) G21F 9/06 G21F 9/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 核燃料取扱施設のプロセスから排出さ
れ、塩類が高濃度で溶存する廃液からテクネチウム(T
c)を選択的に除去する方法であって、廃液中のTc
(TcO4 -)を、トリメチルベンジルアンモニウム塩を
交換基とする水分含有率43〜48%の強塩基性アニオ
ン交換樹脂の粒径0.3mm以下の粒子に廃液を接触さ
せ、TcO4 -をイオン交換により吸着除去することを特
徴とする廃液中のテクネチウムを除去する方法。
The effluent discharged from the process of a nuclear fuel handling facility and containing a high concentration of salts dissolves technetium (T
c) for selectively removing Tc in waste liquid,
(TcO 4 ) is brought into contact with a waste liquid with particles of a strongly basic anion exchange resin having a water content of 43 to 48% and having a water content of 43 to 48% and having a trimethylbenzylammonium salt as an exchange group, and the TcO 4 is ionized. A method for removing technetium in a waste liquid, wherein the technetium is removed by adsorption.
【請求項2】 塩類の主成分がNa塩であって、合計量
が10重量%以上の濃度である廃液を対象とする請求項
1の方法。
2. The method according to claim 1, wherein the main component of the salts is a Na salt, and the total amount of the waste liquid is 10% by weight or more.
【請求項3】 強塩基性アニオン交換樹脂として、ジビ
ニルベンゼン含有率をもってあらわされる架橋度が約8
%であるものを使用する請求項1の方法。
3. A strongly basic anion exchange resin having a degree of crosslinking represented by divinylbenzene content of about 8
2. The method of claim 1 wherein the percentage is used.
【請求項4】 強塩基性アニオン交換樹脂の粒子をカラ
ムに充填し、このカラムに廃液を空塔速度10hr-1以下
の速度で流通させてイオン交換を行なう請求項1の方
法。
4. The method according to claim 1, wherein particles of the strongly basic anion exchange resin are packed in a column, and the waste liquid is passed through the column at a superficial velocity of 10 hr -1 or less to carry out ion exchange.
【請求項5】 TcO4 -を吸着したアニオン交換樹脂に
強酸を作用させ、溶離したTcO4 -を還元してTcO2
の形態で沈澱させ分離し、固化処理する工程を付加した
請求項1の方法。
5. A strong acid is applied to the anion exchange resin to which TcO 4 - is adsorbed, and the eluted TcO 4 - is reduced to form TcO 2
2. The method according to claim 1, further comprising the steps of precipitating in the form of, separating and solidifying.
JP8095003A 1996-04-17 1996-04-17 How to remove technetium in wastewater Expired - Fee Related JP3014960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8095003A JP3014960B2 (en) 1996-04-17 1996-04-17 How to remove technetium in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8095003A JP3014960B2 (en) 1996-04-17 1996-04-17 How to remove technetium in wastewater

Publications (2)

Publication Number Publication Date
JPH09281291A JPH09281291A (en) 1997-10-31
JP3014960B2 true JP3014960B2 (en) 2000-02-28

Family

ID=14125724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095003A Expired - Fee Related JP3014960B2 (en) 1996-04-17 1996-04-17 How to remove technetium in wastewater

Country Status (1)

Country Link
JP (1) JP3014960B2 (en)

Also Published As

Publication number Publication date
JPH09281291A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US5322644A (en) Process for decontamination of radioactive materials
JP3241475B2 (en) Method of separating certain elements from aqueous solution resulting from spent nuclear fuel reprocessing
US20060153760A1 (en) Process for radioisotope recovery and system for implementing same
JP3009828B2 (en) High volume solidification method for high level radioactive liquid waste
JPS60636B2 (en) Treatment method for radioactive waste liquid
CN1175318A (en) Process for decontaminating radioactive materials
US5217585A (en) Transition metal decontamination process
JPH0125818B2 (en)
JPS6136198B2 (en)
US4197195A (en) Method for minimizing the organic waste in aqueous product streams produced in liquid-liquid extraction processes
US4683124A (en) Actinide recovery process
JP3014960B2 (en) How to remove technetium in wastewater
US3340200A (en) Removal and disposal of radioactive contaminants in mixed ion exchange resins with alkali metal halide
JPH0527094A (en) Processing for solid radioactive waste
JPH0319520B2 (en)
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
Pathak et al. Studies on sorption of plutonium from carbonate medium on polyacrylhydroxamic acid resin
US4394269A (en) Method for cleaning solution used in nuclear fuel reprocessing
JPS61195400A (en) Method of treating waste liquor containing radioactive nuclide
JP3049320B1 (en) Plutonium separation and recovery method
US4654146A (en) Ion exchanger to separate heavy alkali metal ions
JPS62176913A (en) Process for separation and recovery of cesium from treating liquid containing sodium salt
JPS62161097A (en) Method of processing waste liquor containing radioactive nuclear specy
JPS581400B2 (en) AEON CO., LTD.
JPS62191094A (en) Treatment of waste water containing uranium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees