JP3011036B2 - Measurement method of birefringence of optical disk substrate - Google Patents

Measurement method of birefringence of optical disk substrate

Info

Publication number
JP3011036B2
JP3011036B2 JP6310708A JP31070894A JP3011036B2 JP 3011036 B2 JP3011036 B2 JP 3011036B2 JP 6310708 A JP6310708 A JP 6310708A JP 31070894 A JP31070894 A JP 31070894A JP 3011036 B2 JP3011036 B2 JP 3011036B2
Authority
JP
Japan
Prior art keywords
substrate
birefringence
phase difference
incident
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6310708A
Other languages
Japanese (ja)
Other versions
JPH07229828A (en
Inventor
通和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6310708A priority Critical patent/JP3011036B2/en
Publication of JPH07229828A publication Critical patent/JPH07229828A/en
Application granted granted Critical
Publication of JP3011036B2 publication Critical patent/JP3011036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ディスク基板の複屈折
の測定法、とくにインラインでの面内及び垂直方向の複
屈折測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring birefringence of an optical disk substrate, and more particularly to a method of measuring in-plane and vertical birefringence in an in-line optical disk.

【0002】[0002]

【従来の技術】記録可能な光ディスクとして穴あけ型記
録媒体が登場して以来、10年以上の年月が経過した。
この間、記録消去が可能な光磁気記録媒体、1ビームオ
ーバーライトが可能な相変化記録媒体なども実用化され
ている。
2. Description of the Related Art More than 10 years have passed since the emergence of a perforated recording medium as a recordable optical disk.
Meanwhile, magneto-optical recording media capable of recording and erasing, phase change recording media capable of overwriting by one beam, and the like have also been put to practical use.

【0003】極く初期を除き、記録再生用光源として
は、半導体レーザーが用いられており、使用レーザー波
長は、初期は830nm前後、最近では780nm前後
が主流である。集束光ビームのスポット径は、波長が短
ければ小さくすることができるため、短波長化が望まれ
ているが、現在、信頼性のある実用的な半導体レーザー
の波長は780nmまでである。このような光記録媒体
は、コスト、量産性の観点から透明な樹脂基板上に記録
層、保護層等を形成してなる。
[0003] Except for the very beginning, a semiconductor laser is used as a recording / reproducing light source, and the wavelength of the laser used is initially around 830 nm, and recently around 780 nm. Since the spot diameter of the focused light beam can be reduced if the wavelength is short, it is desired to shorten the wavelength. At present, however, the wavelength of a reliable and practical semiconductor laser is up to 780 nm. Such an optical recording medium is obtained by forming a recording layer, a protective layer, and the like on a transparent resin substrate from the viewpoint of cost and mass productivity.

【0004】基板としては、現在主として、ポリカーボ
ネート樹脂等が用いられている。樹脂基板、特にポリカ
ーボネート樹脂基板では、基板の光学的異方性、すなわ
ち複屈折が問題となる。とくに光磁気記録媒体では、
0.5度程度の小さなKerr回転角を検出するため、
複屈折の影響が大きい。
At present, a polycarbonate resin or the like is mainly used as a substrate. In the case of a resin substrate, particularly a polycarbonate resin substrate, the optical anisotropy of the substrate, that is, birefringence, becomes a problem. Especially in magneto-optical recording media,
In order to detect a small Kerr rotation angle of about 0.5 degree,
The influence of birefringence is great.

【0005】しかしながら、、樹脂の分子量等の最適
化、成形技術の改良により、面内複屈折は20×10-6
未満に抑えられ、実用上問題ないレベルとなっている。
一方、垂直複屈折は特にポリカーボネート樹脂基板で大
きく、500×10-6にも達するが、作動光学ヘッドの
開発により、やはり実用上問題ないレベルまでその影響
は低減されている。しかしながら、光ディスクは一層の
高密度化が求められており、680nm前後の半導体レ
ーザーが実用化され、近い将来に安価で高出力なものが
提供される見通しが出てきた。
However, by optimizing the molecular weight of the resin and improving the molding technique, the in-plane birefringence becomes 20 × 10 −6.
, Which is no problem in practical use.
On the other hand, the vertical birefringence is particularly large in the case of a polycarbonate resin substrate and reaches as high as 500 × 10 −6 , but the influence has been reduced to a level that does not cause any practical problems due to the development of the working optical head. However, there is a demand for higher density optical discs, and semiconductor lasers having a wavelength of about 680 nm have been put into practical use, and it is expected that cheap and high-output optical discs will be provided in the near future.

【0006】また、800〜1000m前後の高出力半
導体レーザーと非線形素子を組み合わせて500nm程
度の波長を得る技術も進歩し、レーザーと非線形光学素
子を組み合わせたヘッドも小型化されつつある。さらに
は、波長500nm程度の半導体レーザーも実験室レベ
ルでは開発に成功したという報告が相次でいる。このよ
うに、短波長化半導体レーザーを用いた高密度光ディス
クは、まず波長680nm前後を始めとして、近い将来
に量産化される状況が整ってきている。この際、780
nm程度ではいったんは解決されたと思われた樹脂基板
の光学的異方性の問題が再び深刻な問題になることが懸
念される。
Further, the technology for obtaining a wavelength of about 500 nm by combining a high-power semiconductor laser of about 800 to 1000 m with a nonlinear element has been advanced, and the head combining a laser and a nonlinear optical element has been reduced in size. Furthermore, there have been reports that semiconductor lasers having a wavelength of about 500 nm have been successfully developed at the laboratory level. As described above, high-density optical discs using a semiconductor laser with a shorter wavelength are being mass-produced in the near future, beginning with a wavelength of about 680 nm. At this time, 780
At about nm, there is a concern that the problem of optical anisotropy of the resin substrate once considered to be solved will become a serious problem again.

【0007】すなわち、樹脂基板の光学異方性(複屈
折)にかかわる問題点としては、以下の2点があげられ
る(I.Prikryl,Applied Optics,31(1992),p1853、戸田
他、光メモリシンポジウム予稿集(1986)、p1
9、吉沢他、光メモリシンポジウム予稿集(198
6)、p33)。 1)基板を光ビームが通過する際に生じる位相差。光磁
気媒体のように光の偏向とその方位の回転を利用して情
報の記録再生を行う媒体では、特定方向の直線偏向の回
転とともに、楕円化が生じ、これがキャリアレベルの低
下、作動ヘッドにおけるコモンモードノイズの増加をも
たらす。
That is, the following two problems are associated with the optical anisotropy (birefringence) of the resin substrate (I. Prikryl, Applied Optics, 31 (1992), p1853, Toda et al., Optical Memory Symposium). Proceedings (1986), p1
9. Yoshizawa et al., Proceedings of Optical Memory Symposium (198
6), p33). 1) A phase difference generated when a light beam passes through a substrate. In a medium such as a magneto-optical medium that records and reproduces information by utilizing the deflection of light and the rotation of its azimuth, the rotation of linear deflection in a specific direction causes an ovalization, which lowers the carrier level and reduces the working head. This leads to an increase in common mode noise.

【0008】位相差は、光線の入射方向によって決まる
基板の複屈折を△n、基板厚をd、波長をλとすると、
The phase difference is determined by Δn, the substrate thickness d, and the wavelength λ, which are determined by the incident direction of the light beam.

【0009】[0009]

【数1】△n・d/λ で決まるから、記録再生に用いる波長が短くなれば、実
質的に位相差は増加する。従って、短波長化、特に70
0nm未満で使用する光磁気媒体では基板の複屈折によ
る位相差の問題が深刻になる。
Since it is determined by か ら n · d / λ, the phase difference substantially increases as the wavelength used for recording / reproducing becomes shorter. Therefore, a shorter wavelength, especially 70
In a magneto-optical medium used below 0 nm, the problem of phase difference due to birefringence of the substrate becomes serious.

【0010】2)複屈折による非点収差の問題。集束光
ビームで基板に対して垂直ではなく斜めに光線が基板に
入射する際、屈折が生じるが、光学的異方性を有する基
板では、入射光線の方位によって屈折率が異なる(吉
沢、光学、15(1986)、p414)。このため、
本来、基板の記録層側の面で直径1μm程度の面内に集
束すべきビームに非点収差が生じる。
2) The problem of astigmatism due to birefringence. Refraction occurs when a focused light beam is incident on the substrate obliquely rather than perpendicular to the substrate, but in a substrate having optical anisotropy, the refractive index differs depending on the direction of the incident light (Yoshizawa, Optics, 15 (1986), p414). For this reason,
Originally, astigmatism occurs in a beam to be focused on a surface having a diameter of about 1 μm on the surface of the substrate on the recording layer side.

【0011】非点収差が生じた場合、焦点面をどこで合
わせるかという光学ヘッドの機差により、記録再生特性
にばらつきが生じる。また、ビームがトラック横断方向
に長軸をもつ楕円ビームとなった場合、隣接トラックか
らのクロストークが問題となる。短波長光源を用いた高
密度光ディスクでは、トラックピッチも狭くなるから、
クロストークの問題はより一層厳しくなる。
When astigmatism occurs, the recording / reproducing characteristics vary due to differences in the optical head where the focal plane is adjusted. Further, when the beam is an elliptical beam having a major axis in the cross-track direction, crosstalk from an adjacent track becomes a problem. In a high-density optical disk using a short-wavelength light source, the track pitch becomes narrower.
The problem of crosstalk becomes even more severe.

【0012】この問題を解決するには、根本的に垂直方
向の複屈折を低減するしかないが、通常使われるポリカ
ーボネート基板では、500×10-6程度であり、小さ
くとも300×10-6程度の複屈折が存在するため、直
線偏向ビームを用いる限り、非点収差を無くすことはほ
とんど不可能である。以上述べたような問題点に鑑み、
基板の複屈折を製造工程において制御することが重要と
なるが、その為には、まず正確かつ迅速に基板の複屈折
を測定し製造条件に反映させることが必要となる。
The only solution to this problem is to reduce the birefringence in the vertical direction. However, in the case of a commonly used polycarbonate substrate, it is about 500 × 10 −6 , and at least about 300 × 10 −6. It is almost impossible to eliminate astigmatism as long as a linearly polarized beam is used. In view of the problems mentioned above,
It is important to control the birefringence of the substrate in the manufacturing process. For this purpose, it is necessary to first and accurately measure the birefringence of the substrate and reflect it in the manufacturing conditions.

【0013】従来、光ディスクの透明樹脂基板の面内及
び垂直方向の複屈折測定法については、斜め入射光によ
る位相差測定法が用いられている。図2及び3は従来の
斜め入射測定法における、ディスクに対する入射光ビー
ムの位置関係を模式的に示したものであり、Aは測定用
平行ビーム光の発光部、Bは受光部である。
Conventionally, as a method for measuring birefringence in a plane and in a vertical direction of a transparent resin substrate of an optical disk, a phase difference measurement method using obliquely incident light has been used. 2 and 3 schematically show the positional relationship of the incident light beam with respect to the disk in the conventional oblique incidence measurement method, wherein A is a light emitting portion of the measuring parallel light beam, and B is a light receiving portion.

【0014】図2は透過法、図3は反射法での測定であ
る。基板内の1点Oにおける屈折率楕円体の各軸の大き
さ、すなわち複屈折を決定するためには、通常の透過法
では、入射光ビームの入射角θと入射面の方位角φを何
点か変化させて、基板通過により透過光に生じた位相差
を測定するが、少なくともθを2点変化させることが必
要であった(吉沢、光学、15(1986)、p414
−421、戸田他、光メモリシンポジウム予稿集、p1
9)。
FIG. 2 shows the measurement by the transmission method, and FIG. 3 shows the measurement by the reflection method. In order to determine the size of each axis of the refractive index ellipsoid at one point O in the substrate, that is, the birefringence, in an ordinary transmission method, what is the incident angle θ of the incident light beam and the azimuth φ of the incident surface? The phase difference caused in the transmitted light by passing through the substrate is measured by changing the point, but it was necessary to change at least θ by two points (Yoshizawa, Optics, 15 (1986), p414).
-421, Toda et al., Proceedings of Optical Memory Symposium, p1
9).

【0015】透過法では、測定光ビームを基板に垂直に
入射させて位相差を測定することにより、面内複屈折を
直接求めることができる。基板に垂直な方向の複屈折
は、基板真横から光ビームを入射させることはできない
から、斜め入射光ビームを用いて垂直複屈折と面内複屈
折の両方の影響をうけた位相差を測定し、面内複屈折の
寄与を上記垂直入射によって求めた面内複屈折値を用い
て補正することで求める。
In the transmission method, the in-plane birefringence can be directly obtained by measuring the phase difference by vertically irradiating the measurement light beam to the substrate. Since birefringence in the direction perpendicular to the substrate does not allow the light beam to be incident from the side of the substrate, use a diagonally incident light beam to measure the phase difference affected by both vertical and in-plane birefringence. , By correcting the contribution of in-plane birefringence using the in-plane birefringence value obtained by the above-mentioned normal incidence.

【0016】しかしながら、この場合、基板を傾けて入
射角を変える必要がありインライン測定に適用するには
煩雑である。一方、樹脂の複屈折は樹脂に加わる応力に
より変化することが知られているが、基板に加わる応力
は基板成形後の光ディスク製造プロセスによっても変化
する。
However, in this case, it is necessary to change the angle of incidence by tilting the substrate, which is complicated to apply to in-line measurement. On the other hand, it is known that the birefringence of the resin changes due to the stress applied to the resin, but the stress applied to the substrate also changes depending on the optical disk manufacturing process after molding the substrate.

【0017】例えば、記録層や記録層の保護に用いられ
る誘電体層、基板の保護に用いられるハードコート層等
の内部応力により変化し得る。従って、複屈折はこれら
の成膜工程等においても2次的ではあるが変化し得るの
で、光ディスク製造の最終工程で再度、測定することが
望ましい。一般に光ディスクの記録層は反射性であるか
ら、基板の記録層とは反対側の面から測定光ビームを入
射させ、反射法により測定する必要がある。
For example, it can be changed by internal stress of a recording layer, a dielectric layer used for protecting the recording layer, a hard coat layer used for protecting the substrate, and the like. Therefore, the birefringence can be changed in these film forming processes, though it is secondary, but it is desirable to measure it again in the final process of manufacturing an optical disc. Generally, since the recording layer of an optical disc is reflective, it is necessary to make a measurement light beam incident from the surface of the substrate opposite to the recording layer and measure the reflection by a reflection method.

【0018】その1方法として、エリプソメーターを用
いて、反射光の位相差を測定する方法が提案されている
(A.Skumanich, Proceedings of Magneto-Optical Reco
rding International Symposium '92, pp237-240)。一
般に反射法の測定においては、基板面への垂直入射・反
射光の測定は、発光部と受光部を同一線上に置くことが
できないため不可能である。
As one of the methods, a method of measuring a phase difference of reflected light using an ellipsometer has been proposed (A. Skumanich, Proceedings of Magneto-Optical Reco.
rding International Symposium '92, pp237-240). In general, in the measurement by the reflection method, it is impossible to measure the vertically incident and reflected light on the substrate surface because the light emitting unit and the light receiving unit cannot be placed on the same line.

【0019】従って面内複屈折を直接測定することは不
可能で、数点の角度から斜め入射させカーブフィッティ
ングにより、面内及び垂直複屈折を求めている。この方
法は原理的には何ら問題ないが、入射角度を変えるに
は、発光部と受光部の角度を両方とも設定し直す必要が
あるため、一般に装置が複雑になり、また測定時間も長
くなるため製造プロセスでのインライン測定には適さな
い。
Therefore, it is impossible to directly measure the in-plane birefringence, and the in-plane and vertical birefringence are determined by curve fitting with oblique incidence from several angles. Although this method has no problem in principle, changing the incident angle requires resetting both the angle of the light-emitting unit and the light-receiving unit, which generally complicates the apparatus and increases the measurement time. Therefore, it is not suitable for in-line measurement in the manufacturing process.

【0020】さらにこの方法では、主軸の方向と入射ビ
ームを含む入射面の方向とを一致させなければ、正しい
複屈折値は得られない。さらに、上記透過法・反射法い
ずれにおいても、基板に垂直な方向から傾いた光学的主
軸を有する場合には、入射角度、入射面のいずれも変化
させ複数点で測定しなければ正確な測定値は得られな
い。
Furthermore, in this method, a correct birefringence value cannot be obtained unless the direction of the main axis and the direction of the incident surface including the incident beam are made to coincide. Furthermore, in both the transmission method and the reflection method, when the optical principal axis is inclined from a direction perpendicular to the substrate, accurate measurement values are obtained unless both the incident angle and the incident surface are changed and measured at a plurality of points. Cannot be obtained.

【0021】また、煩雑で到底インラインでの測定に、
さらには抜き取り検査にさえ、適用できるものではな
い。
In addition, for complicated and in-line measurement,
Furthermore, it cannot be applied even to sampling inspection.

【0022】[0022]

【発明が解決しようとする課題】上述のとおり、正確で
迅速で簡便に光ディスク基板の面内および垂直複屈折を
測定でき、かつインラインでも適用できるような方法が
望まれる。
As described above, there is a need for a method that can accurately, quickly and easily measure the in-plane and vertical birefringence of an optical disk substrate and can be applied in-line.

【0023】本発明は、透明樹脂基板上に少なくとも記
録層を設けてなる光ディスクの基板に、記録層と反対側
の面から平行光ビームを基板に対し斜め方向から入射さ
せ、その透過光または反射光に生じた位相差を測定して
基板の複屈折を測定する方法であって、ある1点の測定
点に対して、基板面に対する入射光の入射角θを一定と
したまま、入射光ビームを含む入射面の方向を少なくと
も直交する2方向にとってそれぞれ位相差を測定し、得
られた各位相差から該1点の複屈折を測定することを特
徴とする光ディスク基板の複屈折の測定法である。
According to the present invention, a parallel light beam is obliquely incident on a substrate of an optical disk having at least a recording layer provided on a transparent resin substrate from a surface opposite to the recording layer and transmitted or reflected by the parallel light beam. A method of measuring the birefringence of a substrate by measuring a phase difference generated in light, and measuring a certain point.
With respect to a point, while keeping the incident angle θ of the incident light with respect to the substrate surface constant, the phase difference is measured for at least two directions perpendicular to the direction of the incident surface including the incident light beam.
The birefringence of the optical disc substrate is measured by measuring the birefringence of the one point from each of the obtained phase differences .

【0024】本発明のより簡単な実施方法として、基板
の面内複屈折の主軸方向が分かっており、その方向がほ
ぼ安定しておれば、上記直交する2方向を、基板の面内
における光学軸の方向とすることで面内及び垂直複屈折
に関する必要かつ十分な情報を得ることができる。
As a simpler method of implementing the present invention, the principal axis direction of the in-plane birefringence of the substrate is known, and if the direction is almost stable, the above two orthogonal directions can be changed to the optical direction in the plane of the substrate. By setting the direction of the axis, necessary and sufficient information on in-plane and vertical birefringence can be obtained.

【0025】さらに、本発明の方法により、基板面内各
位置における面内及び垂直複屈折の分布を自動で測定す
るための手段として、上記直交する2方向に水平移動可
能な直線移動機構と、直線移動機構上に設置され、該直
線軸上の各点を中心として回転可能でその上に水平にデ
ィスクを設置する回転ステージと、被測定ディスク面に
斜めに光ビームを入射させて位相差を測定する発光部及
び受光部から構成された複屈折測定装置を使用して測定
する上記光ディスク基板の複屈折の測定法を提案するも
のである。
Further, as means for automatically measuring the distribution of in-plane and vertical birefringence at each position in the substrate plane by the method of the present invention, a linear movement mechanism capable of horizontally moving in the two orthogonal directions, A rotary stage, which is installed on a linear movement mechanism and is rotatable about each point on the linear axis and horizontally installs a disk thereon, and makes a light beam obliquely incident on the surface of the disk to be measured to reduce the phase difference. Measurement using a birefringence measuring device composed of a light emitting part and a light receiving part to be measured
The present invention proposes a method for measuring the birefringence of the optical disk substrate described above .

【0026】以下、本発明をさらに詳細に説明する。本
発明においては、入射角θは適度に傾けた斜め入射1点
で十分であり、例えば30から70度程度とするのが望
ましい。30度未満では垂直複屈折の寄与が少なく、7
0度より大では面内複屈折による寄与が小さいため、両
方の位相差を同時に求めようとすると誤差が大きくなる
ので好ましくない。
Hereinafter, the present invention will be described in more detail. In the present invention, one angle of incidence, which is appropriately inclined, is sufficient for the incident angle θ, and it is desirable that the angle of incidence is, for example, about 30 to 70 degrees. Below 30 degrees, the contribution of vertical birefringence is small,
If the angle is larger than 0 degree, the contribution due to the in-plane birefringence is small, and it is not preferable to simultaneously obtain both phase differences because an error increases.

【0027】本発明では、入射角を固定したまま、基板
のみを水平面内で移動させることで、入射面の方位角φ
を変化させる。ディスクの位置を相対的にずらすだけ
で、発光部、受光部及びディスクの傾きを変化させる必
要がないため、測定治具、手順の簡便化が可能であり、
従って安価にもなる。また、測定時間も短縮できる。
In the present invention, only the substrate is moved in the horizontal plane while the incident angle is fixed, so that the azimuth angle φ of the incident surface is
To change. Since it is not necessary to change the inclination of the light emitting unit, the light receiving unit and the disk only by relatively shifting the position of the disk, the measuring jig and the procedure can be simplified,
Therefore, it becomes cheap. In addition, the measurement time can be shortened.

【0028】本発明では、上記のように入射面の方位角
φを少なくとも4点変化させて、位相差を測定し、理論
的に求めた位相差のφ依存性カーブとフィッティングを
行うことにより、面内及び垂直複屈折を求める。さらに
は、光学的な主軸の方向を求めることも可能である。図
4に主軸の方位を(x’,y’,z’)軸方向にとり、
基板表面に垂直な方向をz軸,基板面内をx,y軸にと
った場合の位置関係を示す。
In the present invention, the phase difference is measured by changing the azimuth angle φ of the incident surface by at least four points as described above, and fitting is performed with the theoretically determined phase dependency φ dependence curve. Determine in-plane and vertical birefringence. Furthermore, it is also possible to determine the direction of the optical main axis. FIG. 4 shows the orientation of the main axis in the (x ′, y ′, z ′) axis direction.
The positional relationship when the direction perpendicular to the substrate surface is taken on the z axis and the in-plane of the substrate is taken on the x and y axes is shown.

【0029】座標軸(x,y,z)に対する、主軸の方
位(x’,y’,z’)のオイラー角を(α、β、γ)
とし、(x’,y’,z’)各軸に対応する屈折率をそ
れぞれ(nx,ny,nz)とする。ここで、αは主軸
z’軸とz軸のなす角度、βはz軸とz’軸がなす面P
1(斜線部)とy軸がなす角、γは面P1とy’oz’
面のなす角である。
The Euler angles of the azimuth (x ', y', z ') of the main axis with respect to the coordinate axes (x, y, z) are (α, β, γ)
And the refractive indices corresponding to the (x ', y', z ') axes are respectively (nx, ny, nz). Here, α is the angle between the principal axes z ′ and z, and β is the plane P between the z and z ′.
1 (hatched portion) and the angle formed by the y axis, γ is the plane P1 and y'oz '
This is the angle between the faces.

【0030】(α、β、γ)、(nx、ny、nz)及び
入射角度θ、基板内で許される2つの伝搬方向に対する
屈折率n’、n”及び屈折角θ’、θ”入射面の方位角
φ、基板の厚みdのときの透過法による位相差Rは次式
で与えられるような関係式で表される。
(Α, β, γ), (nx, ny, nz) and the angle of incidence θ, the refractive indices n ′, n ″ and the angles of refraction θ ′, θ ″ for the two propagation directions allowed in the substrate And the phase difference R by the transmission method when the azimuth angle φ of the substrate is d and the thickness d of the substrate are represented by a relational expression given by the following expression.

【0031】[0031]

【数2】R=d・(n’cosθ’−n”cosθ”) ただし、sinθ=n’sinθ’=n”sinθ” 位相差の複数のφ及びθ依存性の理論値と複数の測定の
測定点における実測値を用いてカーブフィッティングを
行い、屈折率楕円体を決定する6個のパラメーター
(α、β、γ)、(nx、ny、nz)を求めることにな
る。
R = d · (n′cosθ′−n “cosθ”) where sinθ = n′sinθ ′ = n ”sinθ” The theoretical values of the plurality of φ and θ dependencies of the phase difference and the values of the plurality of measurements Curve fitting is performed using the measured values at the measurement points, and six parameters (α, β, γ) and (nx, ny, nz) for determining the refractive index ellipsoid are obtained.

【0032】しかしながら、実用上広く用いられている
射出成形による樹脂基板では、その対称性から、基板面
内の主軸はほぼ半径、円周方向にあり、これがnx、ny
に対応する。さらに、基板面にほぼ垂直方向に主軸があ
りこれがnzに対応する。従って、上記屈折率楕円体を
定義するための6つのパラメーターのうち、γは0と見
なしてよい。
However, in a resin substrate formed by injection molding, which is widely used in practical use, the principal axis in the substrate surface is substantially in the radial and circumferential directions due to its symmetry, which is nx and ny.
Corresponding to Further, there is a main axis substantially perpendicular to the substrate surface, and this corresponds to nz. Therefore, among the six parameters for defining the refractive index ellipsoid, γ may be regarded as 0.

【0033】また、複屈折δL=nx−nz、δV=ny−
nzはnzそのものに比較して数桁小さい値となるので、
位相差は実際上δL、δVで決まる。nzを各屈折率のお
おむね平均値にあるとしても問題ない。例えば、光ディ
スク基板としてよく使われるポリカーボネート樹脂で
は、nzを1.58とおいてδLとδVを求めればよい。
すなわち、実際上未知のパラメータは4個である。
Also, birefringence δL = nx−nz, δV = ny−
Since nz is several orders of magnitude smaller than nz itself,
The phase difference is actually determined by ΔL and ΔV. There is no problem even if nz is approximately the average value of each refractive index. For example, in a polycarbonate resin often used as an optical disk substrate, δL and δV may be obtained with nz set to 1.58.
That is, there are actually four unknown parameters.

【0034】斜め入射時の位相差の方位角φ依存性が、
4個のパラメーター(δL、δV、α、β)によってどの
ように変化するかを、解析したのが図5から図8であ
る。図5は位相差の垂直複屈折依存性、図6は位相差の
複屈折(δL、δV)依存性、図7は位相差の主軸方位
(α、β)依存性、図8は位相差の主軸方位(α、β)
依存性を示す図である。
The azimuth angle φ dependence of the phase difference at oblique incidence is
FIG. 5 to FIG. 8 show how changes are made depending on the four parameters (δL, δV, α, β). 5 shows the dependency of the phase difference on the vertical birefringence, FIG. 6 shows the dependency of the phase difference on the birefringence (δL, δV), FIG. 7 shows the dependency of the phase difference on the principal axis directions (α, β), and FIG. Main axis direction (α, β)
It is a figure which shows dependency.

【0035】入射角は各分図aが30度、分図bが60
度であり、nz=1.58とし、面内複屈折δLについて
は、0〜20×10-6、垂直複屈折δVについては0〜
600×10-6、αは0〜10度、βは0〜360度の
範囲について示したが、位相差のφ依存性には、面内主
軸方向に関して対称性が見られる。従ってφについて少
なくとも直交する4点において位相差を測定すれば、φ
依存性カーブの特徴を抽出でき、θを変化させなくて
も、精度のよいカーブフィッティングを行えることが分
かる。
The incident angle was 30 degrees for each plot a and 60 for the plot b.
Nz = 1.58, in-plane birefringence δL is 0 to 20 × 10 −6 , and vertical birefringence δV is 0 to 20 × 10 −6 .
Although 600 × 10 −6 , α are in the range of 0 to 10 degrees, and β are in the range of 0 to 360 degrees, the φ dependence of the phase difference shows symmetry in the in-plane principal axis direction. Therefore, if the phase difference is measured at least at four points orthogonal to φ, φ
It can be seen that the characteristics of the dependency curve can be extracted and accurate curve fitting can be performed without changing θ.

【0036】本発明において、位相差の測定そのもの
は、通常の方法、すなわち入射光として直線偏向または
円偏向ビームを用い、基板通過にともなって生じた位相
差による楕円偏向化を検出する。
In the present invention, the measurement of the phase difference itself is performed by a normal method, that is, by using a linearly or circularly polarized beam as incident light and detecting elliptical deflection due to the phase difference caused by passing through the substrate.

【0037】楕円の主軸間の位相差は回転検光子法、位
相差板を用いる方法等公知の手法を適用すればよい(”
結晶光学”、応用物理学会光学懇談会編)。反射法にお
いては光路長が2倍になること、記録層面での反射によ
り約180度の位相差が加わることを除き、全く同様に
測定できる。本発明においては入射角θは固定でありな
がら透過法/反射法の如何によらず、屈折率楕円体をそ
の主軸方向も含めて簡単に決定できるという利点があ
る。
The phase difference between the main axes of the ellipse may be determined by a known method such as a rotation analyzer method or a method using a phase difference plate ("").
"Crystal Optics", edited by The Society of Applied Physics, Optical Scientific Society). In the reflection method, the measurement can be performed in exactly the same manner except that the optical path length is doubled and a phase difference of about 180 degrees is added due to reflection on the recording layer surface. In the present invention, there is an advantage that the index ellipsoid including the principal axis direction can be easily determined irrespective of the transmission method / reflection method while the incident angle θ is fixed.

【0038】さらに、主軸の方向(α、β)がほぼ確定
している場合には、本法はより簡素化できる。すなわ
ち、通常の射出成形による光ディスク基板では、樹脂の
流れの対称性からnx、ny軸はそれぞれ半径方向、円周
方向を向いており、そのずれは高々5度である。また、
nz軸は基板に垂直で高々1〜2度のずれしか生じな
い。
Further, when the directions (α, β) of the main axes are almost fixed, the present method can be further simplified. That is, in the optical disk substrate formed by ordinary injection molding, the nx and ny axes are directed in the radial direction and the circumferential direction, respectively, due to the symmetry of the resin flow, and the deviation is at most 5 degrees. Also,
The nz axis is perpendicular to the substrate and has a shift of at most 1-2 degrees.

【0039】この場合、正確な主軸からのずれの影響は
極めて小さく無視できる。そして、入射方位を半径方向
(φ=0または180度の一方だけ)と円周方向(φ=
90または270度の一方だけ)の2方向、2点だけと
して位相差を測定すればよい。位相差RとδL、δVの関
係は下式(1)で表される。尚、以下ではδL=nx−n
y、δV=n0−nz、n0=(nx+ny)/2と定義し
た。δVをこのように定義するか、δV=ny−nz又はδ
V=nx−nzとするかは任意性があるが、通常nx≒ny
であるから大差ない。
In this case, the influence of an accurate deviation from the main spindle is extremely small and can be ignored. Then, the incident azimuth is changed in the radial direction (only one of φ = 0 or 180 degrees) and the circumferential direction (φ =
The phase difference may be measured in only two points in two directions (only one of 90 or 270 degrees). The relationship between the phase difference R and δL, δV is represented by the following equation (1). In the following [delta] L = n x -n
y, and δV = n 0 -n z, n 0 = the (n x + n y) / 2 is defined. or the .DELTA.V is thus defined, δV = n y -n z or δ
V = n x -n or a z may have any properties, but generally n x ≒ n y
There is no big difference.

【0040】[0040]

【数3】 Rr=d×{√(ny 2−sin2θ)+nx/nz×√(nz 2−sin2θ)}・・(1) d:基板厚さEquation 3] R r = d × {√ ( n y 2 -sin 2 θ) + n x / n z × √ (n z 2 -sin 2 θ)} ·· (1) d: thickness of the substrate

【0041】[0041]

【数4】 Rφ=d×{√(nx 2−sin2θ)+ny/nz×√(nz 2−sin2θ)}・・(2) d:基板厚さEquation 4] Rφ = d × {√ (n x 2 -sin 2 θ) + n y / n z × √ (n z 2 -sin 2 θ)} ·· (2) d: thickness of the substrate

【0042】さらに、δL/nx、δV/nx<<1である
ことから、上式(1)及び(2)を、δL/nx及びδV
/nxについて展開すると
Further, since δL / nx and δV / nx << 1, the above equations (1) and (2) are replaced by δL / nx and δV
Expanding on / nx

【0043】[0043]

【数5】 Rr=d×{-(n0 2-sin2θ)δL/2-sin2θ・δV}/{n0√(n0 2-sin2θ)} ・・・(3)R r = d × {− (n 0 2 −sin 2 θ) δL / 2−sin 2 θ · δV} / {n 0 √ (n 0 2 −sin 2 θ)} (3) )

【0044】[0044]

【数6】 Rφ=d×{+(n0 2-sin2θ)δL/2−sin2θ・δV}/{n0√(n0 2−sin2θ)} ・・・(4)Rφ = d × {+ (n 0 2 −sin 2 θ) δL / 2−sin 2 θ · δV} / {n 0 √ (n 0 2 −sin 2 θ)} (4)

【0045】したがって、式(3)、式(4)の辺々を
加減することにより
Therefore, by adjusting each of the equations (3) and (4),

【0046】[0046]

【数7】 δV={(Rr+Rφ)n0√(n0 2−sin2θ)}/(2dsin2θ) ・・・(5)Equation 7] δV = {(R r + Rφ ) n 0 √ (n 0 2 -sin 2 θ)} / (2dsin 2 θ) ··· (5)

【0047】[0047]

【数8】 δL={(Rφ-Rr)n0√(n0 2−sin2θ)}/{d×(2n0 2−sin2θ)} ・・・(6)ΔL = {(Rφ−R r ) n 0 √ (n 0 2 −sin 2 θ)} / {d × (2n 0 2 −sin 2 θ)} (6)

【0048】を得る。すなわち、特定の入射角θにおい
てRrとRφの2つの値を測定することで式(5)、式
(6)より簡単にδLとδVが求まる。本発明の方法によ
れば、測定は2点で済み、かつ、簡単な計算で面内及び
垂直複屈折の両方の値が求まる。測定時間を大幅に短縮
できるため、工程中のインライン測定が可能になる。
Is obtained. That is, by measuring two values of Rr and Rφ at a specific incident angle θ, δL and δV can be easily obtained from equations (5) and (6). According to the method of the present invention, only two points need to be measured, and both in-plane and vertical birefringence values can be obtained by a simple calculation. Since the measurement time can be greatly reduced, in-line measurement during the process becomes possible.

【0049】本法を用いれば、δL、δVのディスク面内
分布を容易に求めることができる。すなわち、従来法で
は、入射角度を各点において変化させて位相差の入射角
依存性を求める必要があったが、本法では、入射角は固
定で、ディスクを水平面内で移動させればよいだけであ
る。
Using this method, the distribution of ΔL and ΔV in the disk plane can be easily obtained. That is, in the conventional method, it was necessary to change the incident angle at each point to determine the incident angle dependency of the phase difference, but in the present method, the incident angle is fixed and the disk may be moved in a horizontal plane. Only.

【0050】図1に反射法による本発明の面内分布測定
装置の概念図を示す。図1ではディスク1をのせたステ
ージ2が直交する2方向に移動な直線移動機構3、4上
に回転可能に設けられ、該直線移動機構3、4上の各点
を中心として回転可能な機構5を有している。
FIG. 1 shows a conceptual diagram of the in-plane distribution measuring apparatus of the present invention by the reflection method. In FIG. 1, a stage 2 on which a disk 1 is placed is rotatably provided on linear moving mechanisms 3 and 4 which can move in two orthogonal directions, and a mechanism capable of rotating about each point on the linear moving mechanisms 3 and 4. Five.

【0051】位相差そのものの測定は、通常のエリプソ
メーターを用いれば良い。発光部A、受光部Bの角度は
可変である必要はない。通常の射出成形ディスクでは、
円周方向の屈折率分布は小さいので半径方向分布だけ測
定すれば、工程管理としては十分である。この2方向の
移動は図1のような機構がなくても、広い水平ステージ
の上で手動でディスクをずらせるだけでもかまわない。
The measurement of the phase difference itself may be performed by using an ordinary ellipsometer. The angles of the light emitting unit A and the light receiving unit B do not need to be variable. With a normal injection molded disc,
Since the refractive index distribution in the circumferential direction is small, measuring only the radial distribution is sufficient for process control. The movement in these two directions may be achieved by manually shifting the disk on a wide horizontal stage without the mechanism shown in FIG.

【0052】[0052]

【実施例】以下、本発明を実施例を用いてさらに詳細に
説明する。 実施例1 市販の5.25インチサイズの光磁気ディスクをカート
リッジから取り出し、半径方向と円周方向の2方向(φ
=0、180度と90、270度)の4点で入射角60
度にて反射法にて位相差測定を行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. Example 1 A commercially available magneto-optical disk having a size of 5.25 inches was taken out of a cartridge, and was taken out of a cartridge in two directions (φ and φ).
= 0, 180 degrees and 90, 270 degrees) at an incident angle of 60
The phase difference was measured by the reflection method in degrees.

【0053】基板の材質はポリカーボネートである。半
径方向分布のみの測定を行った。前述の式(5)、式
(6)に基づき、面内複屈折δL及び垂直複屈折δVを求
めた。この場合、θ=60度、nx=1.58、d=
1.2mmとおいて、
The material of the substrate is polycarbonate. Only the radial distribution was measured. The in-plane birefringence δL and the vertical birefringence δV were determined based on the above formulas (5) and (6). In this case, θ = 60 degrees, nx = 1.58, d =
1.2mm

【0054】[0054]

【数9】δV=1.160×103×(Rr+Rφ) δL=4.101×102×(Rφ−Rr) となり、係数をかけるだけでδL、δVが求まり、カーブ
フィッティングは不要である。位相差の測定は市販のエ
リプソメータ(ガートナー社製、波長633nm)を用
いた。
## EQU9 ## δV = 1.160 × 10 3 × (Rr + Rφ) δL = 4.101 × 10 2 × (Rφ−Rr), and δL and δV can be obtained simply by multiplying the coefficients, so that curve fitting is unnecessary. The phase difference was measured using a commercially available ellipsometer (Gartner, wavelength 633 nm).

【0055】1回の測定は20秒程度で、特定の半径に
おける測定時間は1分以内である。複屈折の計算結果を
表1に示す。半径方向の2点、90、180度で位相差
の測定値に優位差はなく、また、円周方向の2点、9
0、270度でやはり位相差に差はない。したがって、
主軸は半径、円周、及び基板に垂直方向を向いていると
して良い。すなわち(α、β、γ)=(0、0、0)で
ある。
One measurement is about 20 seconds, and the measurement time at a specific radius is within 1 minute. Table 1 shows the calculation results of the birefringence. There is no significant difference in the measured value of the phase difference at two points in the radial direction, 90 and 180 degrees, and two points in the circumferential direction, 9 and 180 degrees.
There is no difference in phase difference between 0 and 270 degrees. Therefore,
The main axis may be oriented at a radius, circumference, and perpendicular to the substrate. That is, (α, β, γ) = (0, 0, 0).

【0056】この場合φ=0、90度の2点のみの測定
でよく、さらに簡単にできる。 実施例2及び3 成形後の透明基板(ポリカーボネート)を透過法により
測定した。入射角θ=30度で固定、方位角φを0、9
0、180、270度の4点とした。
In this case, it is sufficient to measure only two points of φ = 0 and 90 degrees, which can be further simplified. Examples 2 and 3 The molded transparent substrate (polycarbonate) was measured by a transmission method. Incident angle θ = 30 degrees fixed, azimuth φ 0, 9
Four points of 0, 180, and 270 degrees were set.

【0057】位相差測定値を表2に示す。実施例2では
半径方向の2点、円周方向の2点でそれぞれ位相差の測
定値に差はなく、主軸は傾いていない。一方、実施例3
ではこの対称性が失われ、主軸が傾いているのが分か
る。主軸方位、複屈折値を求めた結果をやはり表2に示
す。
Table 2 shows the measured values of the phase difference. In the second embodiment, there is no difference between the measured values of the phase difference at two points in the radial direction and two points in the circumferential direction, and the main axis is not inclined. On the other hand, Example 3
Then the symmetry is lost and the main axis is tilted. Table 2 also shows the results of determining the principal axis direction and the birefringence value.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【発明の効果】本発明によれば、正確で迅速で簡便に光
ディスク基板の面内および垂直複屈折を測定でき、かつ
インラインでの適用もできる。
According to the present invention, the in-plane and vertical birefringence of an optical disk substrate can be accurately, quickly and easily measured, and the method can be applied in-line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 反射法による本発明の面内分布測定装置の概
念図
FIG. 1 is a conceptual diagram of an in-plane distribution measuring apparatus of the present invention using a reflection method.

【図2】 従来の斜め入射測定法における、ディスクに
対する入射光ビームの位置関係を模式的に示した図
FIG. 2 is a diagram schematically showing a positional relationship of an incident light beam with respect to a disk in a conventional oblique incidence measurement method.

【図3】 従来の斜め入射測定法における、ディスクに
対する入射光ビームの位置関係を模式的に示した図
FIG. 3 is a diagram schematically showing a positional relationship of an incident light beam with respect to a disk in a conventional oblique incidence measurement method.

【図4】 主軸の方位を(x’,y’,z’)軸方向に
とり、基板表面に垂直な方向をz軸,基板面内をx,y
軸にとった場合の位置関係を示す図
FIG. 4 shows the orientation of the main axis in the (x ′, y ′, z ′) axis direction, the direction perpendicular to the substrate surface as the z axis, and the x, y in the substrate surface.
Diagram showing the positional relationship when taken on the axis

【図5】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の垂直複屈折依存性の
FIG. 5 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Of the dependence of the phase difference on the vertical birefringence, showing how it varies with the number of parameters (δL, δV, α, β)

【図6】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の複屈折(δL、δV)
依存性の図
FIG. 6 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Phase difference birefringence (δL, δV), showing how it varies with the number of parameters (δL, δV, α, β)
Dependency diagram

【図7】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の主軸方位(α、β)
依存性の図
FIG. 7 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Main axis direction (α, β) of phase difference, showing how it changes according to the number of parameters (δL, δV, α, β)
Dependency diagram

【図8】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の主軸方位(α、β)
依存性の図
FIG. 8 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Main axis direction (α, β) of phase difference, showing how it changes according to the number of parameters (δL, δV, α, β)
Dependency diagram

【符号の説明】[Explanation of symbols]

1 ディスク 2 ステージ 3 直線移動機構 4 直線移動機構 5 回転機構 A 測定用平行ビーム光の発光部 B 受光部 DESCRIPTION OF SYMBOLS 1 Disc 2 Stage 3 Linear movement mechanism 4 Linear movement mechanism 5 Rotation mechanism A Light emitting part of parallel beam light for measurement B Light receiving part

フロントページの続き (56)参考文献 特開 昭63−241452(JP,A) 特開 昭63−262530(JP,A) 特開 昭63−186130(JP,A) 特開 平3−205536(JP,A) 特開 平3−221842(JP,A) 特開 平3−218440(JP,A) 特開 平5−34274(JP,A) 特開 昭62−203046(JP,A) 実開 平3−74348(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 G01N 21/84 - 21/90 G11B 7/26 Continuation of the front page (56) References JP-A-63-241452 (JP, A) JP-A-63-262530 (JP, A) JP-A-63-186130 (JP, A) JP-A-3-205536 (JP) JP-A-3-221842 (JP, A) JP-A-3-218440 (JP, A) JP-A-5-34274 (JP, A) JP-A-62-203046 (JP, A) 3-74348 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/00-21/61 G01N 21/84-21/90 G11B 7/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明樹脂基板上に少なくとも記録層を設
けてなる光ディスクの基板に、記録層と反対側の面から
平行光ビームを基板に対し斜め方向から入射させ、その
透過光または反射光に生じた位相差を測定して基板の複
屈折を測定する方法であって、ある1点の測定点に対し
て、基板面に対する入射光の入射角θを一定としたま
ま、入射光ビームを含む入射面の方向を少なくとも直交
する2方向にとってそれぞれ位相差を測定し、得られた
各位相差から該1点の複屈折を測定することを特徴とす
る光ディスク基板の複屈折の測定法。
A parallel light beam is incident on a substrate of an optical disk having at least a recording layer provided on a transparent resin substrate from a surface opposite to the recording layer in an oblique direction with respect to the substrate. A method for measuring the birefringence of a substrate by measuring a generated phase difference, wherein a certain measurement point is measured.
With the incident angle θ of the incident light with respect to the substrate surface kept constant, the phase difference was measured for at least two directions orthogonal to the direction of the incident surface including the incident light beam .
A method for measuring the birefringence of an optical disc substrate, wherein the birefringence of the one point is measured from each phase difference .
【請求項2】 上記直交する2方向が基板の面内主軸の
方向と一致することを特徴とする請求項1に記載の測定
法。
2. The method according to claim 1, wherein the two orthogonal directions coincide with a direction of an in-plane principal axis of the substrate.
【請求項3】 直交する2方向に水平移動可能な直線移
動機構と、直線移動機構上に設置され、該直線軸上の各
点を中心として回転可能でその上に水平にディスクを設
置する回転ステージと、被測定ディスク面に斜めに光ビ
ームを入射させて位相差を測定する発光部及び受光部か
ら構成された複屈折測定装置を使用して測定する第1項
記載の測定法
3. A linear moving mechanism capable of horizontally moving in two orthogonal directions, and a rotation installed on the linear moving mechanism, rotatable about each point on the linear axis and horizontally mounting a disk thereon. Item 1. Measurement using a birefringence measuring device composed of a stage, a light emitting unit and a light receiving unit for measuring a phase difference by irradiating a light beam obliquely to the disk surface to be measured.
The described measurement method .
JP6310708A 1993-12-20 1994-12-14 Measurement method of birefringence of optical disk substrate Expired - Fee Related JP3011036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6310708A JP3011036B2 (en) 1993-12-20 1994-12-14 Measurement method of birefringence of optical disk substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-319754 1993-12-20
JP31975493 1993-12-20
JP6310708A JP3011036B2 (en) 1993-12-20 1994-12-14 Measurement method of birefringence of optical disk substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27162299A Division JP3760185B2 (en) 1993-12-20 1999-09-27 Measuring method of birefringence of optical disk substrate

Publications (2)

Publication Number Publication Date
JPH07229828A JPH07229828A (en) 1995-08-29
JP3011036B2 true JP3011036B2 (en) 2000-02-21

Family

ID=26566426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6310708A Expired - Fee Related JP3011036B2 (en) 1993-12-20 1994-12-14 Measurement method of birefringence of optical disk substrate

Country Status (1)

Country Link
JP (1) JP3011036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528668B2 (en) 1997-06-30 2003-03-04 Toray Industries, Inc. Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of ω-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof
US7272091B2 (en) 2002-11-12 2007-09-18 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956146A (en) * 1997-01-29 1999-09-21 Victor Company Of Japan, Ltd. Birefringence measuring apparatus for optical disc substrate
JP2001228034A (en) 2000-02-14 2001-08-24 Fuji Electric Co Ltd Measurement method for internal stress condition of disk board
EP2635896A1 (en) 2010-11-03 2013-09-11 Reametrix Inc. Method and device for fluorescent measurement of samples
JP6482459B2 (en) 2012-05-02 2019-03-13 チャールズ リバー ラボラトリーズ, インコーポレイテッド Method for detecting viable cells in a cell sample
WO2013166338A2 (en) 2012-05-02 2013-11-07 Charles River Laboratories, Inc. Cell capture system and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528668B2 (en) 1997-06-30 2003-03-04 Toray Industries, Inc. Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of ω-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof
US7272091B2 (en) 2002-11-12 2007-09-18 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus
US7542401B2 (en) 2002-11-12 2009-06-02 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus

Also Published As

Publication number Publication date
JPH07229828A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US4801798A (en) Method and apparatus for measuring optical retardation in transparent materials
JP3011036B2 (en) Measurement method of birefringence of optical disk substrate
US4792227A (en) Apparatus for measuring the refractive index of a substrate for an optical recording medium and method of measuring the same
US6940801B1 (en) Optical recording medium, optical recording and reproducing method and apparatus
US7542401B2 (en) Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
JP3760185B2 (en) Measuring method of birefringence of optical disk substrate
US6704250B1 (en) Near-field magneto-optical head having a magnetic sensor
JP2003247934A (en) Birefringence measurement method and birefringence measurement device
US5028774A (en) Method and apparatus for detecting and measuring the refractive index of an optical disc substrate
US4788678A (en) Optical information recording media substrate
KR20010041003A (en) Method and apparatus to determine fly height of a recording head
JP2519213B2 (en) Method for manufacturing magneto-optical disc plate
JPS61149846A (en) Method and device for measuring birefringence of plate type member
JPH0557660B2 (en)
USRE37719E1 (en) Optical data recording system and method of production of recording medium
US6208595B1 (en) Magneto-optical recording medium
JPH06295470A (en) Optical disk
JP2650839B2 (en) Optical information recording medium
Kono et al. Depth distribution of birefringence in magneto‐optical recording disk substrates
JP3116986B2 (en) Optical information recording medium and recording / reproducing method thereof
JP2604381B2 (en) Magneto-optical recording device
JPH0765432A (en) Method for evaluating magneto-optical disk
JP3320089B2 (en) Direct verification method for magneto-optical media
JPH06176417A (en) Magneto-optical recording medium for adjustment and adjustment method for magneto-optical recording device of magnetic field modulation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees