JP3010832B2 - Method and apparatus for controlling vapor pressure of compound semiconductor - Google Patents
Method and apparatus for controlling vapor pressure of compound semiconductorInfo
- Publication number
- JP3010832B2 JP3010832B2 JP3255408A JP25540891A JP3010832B2 JP 3010832 B2 JP3010832 B2 JP 3010832B2 JP 3255408 A JP3255408 A JP 3255408A JP 25540891 A JP25540891 A JP 25540891A JP 3010832 B2 JP3010832 B2 JP 3010832B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- pressure
- compound semiconductor
- quartz container
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、GaAs,InP,G
aP及びCdTe等の化合物半導体の合成,結晶成長又
は熱処理等において、蒸気圧を制御する方法及びこの方
法に使用する装置に関する。The present invention relates to GaAs, InP, G
The present invention relates to a method for controlling a vapor pressure in the synthesis, crystal growth or heat treatment of a compound semiconductor such as aP and CdTe, and an apparatus used for the method.
【0002】[0002]
【従来の技術】この種の化合物半導体は、その成分元素
であるAs,P及びTe等の蒸気圧が高いため、製造工
程での合成,結晶成長又は熱処理等においてかかる成分
元素の蒸気圧制御を行う必要がある。そして、従来より
そのような蒸気圧制御を行うために、化合物とその蒸気
圧が高い成分元素とを密閉容器内に納めて該化合物とそ
の成分元素のそれぞれ温度を独立して制御するようにし
た方法が採られていた。2. Description of the Related Art Compound semiconductors of this kind have a high vapor pressure such as As, P, Te, etc., so that the vapor pressure of such constituent elements can be controlled during synthesis, crystal growth or heat treatment in the manufacturing process. There is a need to do. Conventionally, in order to perform such a vapor pressure control, a compound and a component element having a high vapor pressure are contained in a closed container, and the temperatures of the compound and the component elements are independently controlled. The method was taken.
【0003】例えば、GaAsの結晶成長の場合を例に
して説明する。組成比1:1のGaAs融液の融点近傍
におけるAs蒸気圧は約1気圧であり、Gaの蒸気圧は
その1/1000以下である。このためGaAsの結晶
成長においては、Asの蒸気圧制御が必要になる。[0003] For example, a case of GaAs crystal growth will be described as an example. The vapor pressure of As in the vicinity of the melting point of the GaAs melt having a composition ratio of 1: 1 is about 1 atm, and the vapor pressure of Ga is 1/1000 or less. For this reason, in the growth of GaAs crystals, it is necessary to control the vapor pressure of As.
【0004】図2は縦型温度勾配法により、As蒸気圧
制御を行いながらGaAs結晶を成長させる従来装置の
構成例を示している。この装置によれば、種結晶1及び
GaAs原料2をチャージした坩堝3とAs4を真空封
入した石英容器5とを電熱炉にセットし、高温ヒータ6
によって上記GaAs原料2と種結晶1の上端部を融解
した後、徐々に温度を下げることにより、上記坩堝3底
部の種結晶1から上方へ結晶成長が行われていく。FIG. 2 shows a configuration example of a conventional apparatus for growing a GaAs crystal while controlling the vapor pressure of As by a vertical temperature gradient method. According to this apparatus, the crucible 3 charged with the seed crystal 1 and the GaAs raw material 2 and the quartz container 5 filled with As 4 in a vacuum are set in an electric furnace, and the high-temperature heater 6
After melting the GaAs raw material 2 and the upper end of the seed crystal 1 by heating, the temperature is gradually lowered, so that the crystal grows upward from the seed crystal 1 at the bottom of the crucible 3.
【0005】上記の場合、原料の融解過程から結晶成長
後の冷却過程において、石英容器5底部のAs溜め7の
温度を低温ヒータ8によって一定に保持・制御すること
により、As蒸気圧の制御が行われるようになってい
る。そしてGaAs結晶の組成比を1:1にしたい場
合、該GaAs原料融液に1気圧のAs蒸気圧を印加す
べく上記As溜め7の温度が615°Cになるように制
御する。In the above case, the temperature of the As reservoir 7 at the bottom of the quartz container 5 is kept and controlled by the low-temperature heater 8 in the cooling process after the raw material melting process and after the crystal growth, thereby controlling the As vapor pressure. Is being done. When it is desired to make the composition ratio of the GaAs crystal 1: 1, the temperature of the As reservoir 7 is controlled to be 615 ° C. so as to apply an As vapor pressure of 1 atm to the GaAs raw material melt.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
ようにAs蒸気圧制御をAs溜め7に対する温度制御を
以て代用することにより行う従来の方法では、特にGa
As原料融液に1気圧のAs蒸気圧を印加する際、結晶
成長開始時の原料融液上部の温度がその融点(1238
°C)よりも高くなっているため、印加されるAs蒸気
圧が1気圧になっていてはGaAs融液からAsが蒸発
してしまう結果、GaAs融液上部においてGaリッチ
の組成になってしまうという問題がある。一方、かかる
Asの蒸発に伴い上記As溜め7においてAsが増加
し、特にこのAs溜め7の均熱帯が不十分な場合にはA
s蒸気圧を決定する実効As温度が上昇し、このためA
s蒸気圧は1気圧よりも高くなる。そしてこの場合、結
晶成長の進行と伴に原料融液上部の温度が低下するの
で、As蒸気圧も減少することになる。即ち、As溜め
7を一定に制御しても、As蒸気圧が結晶成長の進行に
伴って変動を来たし、結局、該As蒸気圧を一定に制御
することが困難になる。However, as described above, in the conventional method in which the As vapor pressure control is performed by substituting the temperature control for the As reservoir 7 with the above-mentioned method, particularly, Ga
When an As vapor pressure of 1 atm is applied to the As material melt, the temperature of the upper portion of the material melt at the start of crystal growth has its melting point (1238).
° C), the As vaporizes from the GaAs melt if the applied As vapor pressure is 1 atm, resulting in a Ga-rich composition above the GaAs melt. There is a problem. On the other hand, as the As evaporates, As increases in the As reservoir 7, and especially when the leveling of the As reservoir 7 is insufficient, A
s The effective As temperature, which determines the vapor pressure, rises,
The s vapor pressure is higher than one atmosphere. In this case, the temperature of the upper portion of the raw material melt decreases as the crystal growth proceeds, so that the As vapor pressure also decreases. That is, even if the As reservoir 7 is controlled to be constant, the As vapor pressure fluctuates with the progress of crystal growth, and as a result, it becomes difficult to control the As vapor pressure to be constant.
【0007】また、上記のようにAs蒸気圧が一定に制
御され得ないことから、As蒸気圧の増加に起因して上
記石英容器5の破裂を引き起こす事態が生じ、さらに該
石英容器5の外圧が特に大気圧の場合では、かかる石英
容器5の破裂が起こらないようにするために、As蒸気
圧を意図的に1気圧からずらしてみたところでその制御
は実質上、不可能になってしまう等の不都合があった。[0007] Further, since the As vapor pressure cannot be controlled to be constant as described above, the quartz container 5 may be ruptured due to an increase in the As vapor pressure. In particular, in the case of atmospheric pressure, if the vapor pressure of As is intentionally shifted from 1 atm in order to prevent the quartz container 5 from bursting, the control becomes practically impossible. There was an inconvenience.
【0008】本発明はかかる実情に鑑み、この種の化合
物半導体の合成,結晶成長又は熱処理等において、成分
元素溜めに対する温度制御に依存することなく、成分元
素蒸気圧を的確に制御し得る化合物半導体の蒸気圧制御
方法及び装置を提供することを目的とする。In view of the above circumstances, the present invention provides a compound semiconductor capable of precisely controlling the vapor pressure of a component element without depending on the temperature control of the component element reservoir in the synthesis, crystal growth, or heat treatment of this kind of compound semiconductor. It is an object of the present invention to provide a vapor pressure control method and apparatus.
【0009】[0009]
【課題を解決するための手段】本発明による化合物半導
体の蒸気圧制御方法では、化合物半導体とその構成元素
を真空封入した石英容器が圧力容器内に密封される。そ
して上記石英容器の一部(変形検出部)を石英の塑性変
形領域の温度まで加熱し、上記石英容器の変形量がマイ
クロメータによって検出される。上記石英容器の変形量
に応じて上記圧力容器の内圧を変更し、これにより上記
石英容器の変形を抑制すると共に、該石英容器の変形が
停止した時の上記圧力容器の内圧が上記化合物半導体の
蒸気圧として読み取られる。そして上記のように読み取
られ、測定された蒸気圧に応じて上記石英容器内の上記
化合物半導体の温度及び上記化合物半導体を構成する元
素の温度のいずれか一つ以上を変更することにより蒸気
圧制御が行われる。上記の場合、上記圧力容器の内圧を
予め所望の値に一定に保持しておき、上記石英容器が変
形しないように該石英容器内の化合物半導体の温度及び
上記化合物半導体を構成する元素の温度のいずれか一つ
以上を変更することによっても上記と同様に蒸気圧制御
を行うようにしてもよい。In the method for controlling the vapor pressure of a compound semiconductor according to the present invention, a quartz container in which a compound semiconductor and its constituent elements are vacuum-sealed is sealed in a pressure container. Then, a part (deformation detection unit) of the quartz container is heated to the temperature of the plastic deformation region of quartz, and the amount of deformation of the quartz container is detected by a micrometer. The internal pressure of the pressure vessel is changed according to the amount of deformation of the quartz container, thereby suppressing the deformation of the quartz container, and the internal pressure of the pressure vessel when the deformation of the quartz container is stopped. Read as vapor pressure. Then, as described above, the vapor pressure control is performed by changing at least one of the temperature of the compound semiconductor and the temperature of the element constituting the compound semiconductor in the quartz container according to the measured vapor pressure. Is performed. In the above case, the internal pressure of the pressure vessel is kept constant at a desired value in advance, and the temperature of the compound semiconductor in the quartz vessel and the temperature of the elements constituting the compound semiconductor are kept so that the quartz vessel is not deformed. The vapor pressure control may be performed similarly to the above by changing any one or more.
【0010】また、本発明による上記化合物半導体の蒸
気圧制御方法に使用する装置は、石英容器内の化合物半
導体と化合物半導体を構成する元素の温度を独立して制
御するヒータと、圧力容器の内圧を測定する圧力計と、
該圧力容器の内圧を調節するガス注入・排出バルブと、
上記石英容器の変形量を検出するマイクロメータとを具
備し、上記マイクロメータによってその変形量が検出さ
れる上記石英容器の変形検出部の温度を、塑性変形領域
の温度に調整するようにしたものである。The apparatus used in the method for controlling the vapor pressure of a compound semiconductor according to the present invention comprises a heater for independently controlling the temperature of the compound semiconductor in the quartz container and the temperature of the elements constituting the compound semiconductor; A pressure gauge that measures
A gas injection / discharge valve for adjusting the internal pressure of the pressure vessel,
A micrometer for detecting the amount of deformation of the quartz container, wherein the temperature of the deformation detecting portion of the quartz container, the amount of deformation of which is detected by the micrometer, is adjusted to the temperature of the plastic deformation region. It is.
【0011】[0011]
【作用】先ず、本発明方法に使用する装置では、石英容
器内の化合物半導体と化合物半導体を構成する元素の温
度が、上記ヒータによって独立して制御されるが、特に
上記石英容器は、その内圧制御可能な上記圧力容器内に
設置されると共に、該石英容器の変形量が上記マイクロ
メータによって検出されるようになっている。なお、上
記圧力容器の内圧は上記圧力計によって測定され、設定
値よりも高いもしくは低い場合には上記ガス注入・排出
バルブにより、適宜内圧調節が行われる。First, in the apparatus used in the method of the present invention, the temperature of the compound semiconductor in the quartz container and the temperature of the elements constituting the compound semiconductor are independently controlled by the heater. The quartz container is installed in the controllable pressure vessel, and the amount of deformation of the quartz vessel is detected by the micrometer. The internal pressure of the pressure vessel is measured by the pressure gauge. When the internal pressure is higher or lower than a set value, the internal pressure is appropriately adjusted by the gas injection / discharge valve.
【0012】かかる装置を使用する本発明方法によれ
ば、蒸気圧の測定において、上記石英容器がその内圧
(蒸気圧)と外圧(圧力容器の内圧)との圧力差に基づ
き変形せしめられる現象を上記マイクロメータによって
検出する。そして石英容器の変形が停止した時点、即ち
該石英容器の内外圧力差が0となった時の上記外圧が上
記石英容器の内圧として読み取られる。上記の場合、石
英容器内の石英が塑性変形領域の温度にある状態では、
該石英容器の内外圧力差が生じていれば石英容器は変形
し続けるが、一方、内外圧力差が0であれば石英容器の
変形は停止する。このため、石英容器の変形検出部が塑
性変形領域の温度になっていることが必要になる。According to the method of the present invention using such an apparatus, in measuring the vapor pressure, the phenomenon that the quartz container is deformed based on the pressure difference between the internal pressure (steam pressure) and the external pressure (the internal pressure of the pressure container) is considered. It is detected by the micrometer. Then, when the deformation of the quartz container stops, that is, when the pressure difference between the inside and outside of the quartz container becomes 0, the above-mentioned external pressure is read as the internal pressure of the quartz container. In the above case, in a state where the quartz in the quartz container is at the temperature of the plastic deformation region,
If there is a pressure difference between the inside and outside of the quartz container, the quartz container continues to be deformed, while if the inside and outside pressure difference is 0, the deformation of the quartz container stops. For this reason, it is necessary that the temperature of the deformation detecting section of the quartz container is in the plastic deformation region.
【0013】従って、リアルタイムでの蒸気圧測定が可
能になり、その蒸気圧測定値に応じて石英容器内の上記
化合物半導体の温度及び上記化合物半導体を構成する元
素の温度の少なくとも一つを変更することにより、蒸気
圧制御を行うことができる。また、上記石英容器を圧力
容器内に設置したことにより、制御すべき蒸気圧に応じ
て石英容器の外圧を変更することが可能になり、大気圧
以外の圧力領域でも有効に蒸気圧制御を行うことができ
る。さらに、蒸気圧の測定過程において、石英容器の変
形を検出しながらその変形を抑制するようにしているた
め、該石英容器の破裂を確実に防止することができる。Therefore, the vapor pressure can be measured in real time, and at least one of the temperature of the compound semiconductor and the temperature of the element constituting the compound semiconductor in the quartz container is changed according to the measured vapor pressure. Thereby, the vapor pressure control can be performed. Further, by installing the quartz container in the pressure container, it becomes possible to change the external pressure of the quartz container according to the vapor pressure to be controlled, and to effectively control the vapor pressure even in a pressure region other than the atmospheric pressure. be able to. Further, in the process of measuring the vapor pressure, since the deformation of the quartz container is detected while suppressing the deformation, the rupture of the quartz container can be reliably prevented.
【0014】[0014]
【実施例】以下、図1に基づき、従来例と同一部材に同
一符号を用いて本発明による化合物半導体の蒸気圧制御
方法及び装置の一実施例を説明する。先ず、本発明方法
に使用する装置の概略構成を示した図1において、1は
種結晶、2はGaAs原料、3は坩堝、4はAs,5は
石英容器、6は高温ヒータ、7はAs溜め、8は低温ヒ
ータであり、これらの構成は従来の場合と基本的に同様
であるためその説明を省略する。なお、本実施例もGa
Asの結晶成長の場合の例とする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method and apparatus for controlling the vapor pressure of a compound semiconductor according to the present invention will be described below with reference to FIG. First, in FIG. 1 showing a schematic configuration of an apparatus used in the method of the present invention, 1 is a seed crystal, 2 is a GaAs raw material, 3 is a crucible, 4 is As, 5 is a quartz container, 6 is a high-temperature heater, 7 is As Reservoir 8 is a low-temperature heater, and the configuration thereof is basically the same as that of the conventional case, and the description thereof will be omitted. In this embodiment, Ga
This is an example of the case of As crystal growth.
【0015】さらに図において、9は上記石英容器5全
体を内部に収容する圧力容器、10は該圧力容器の内圧
を測定する圧力計、11及び12は上記圧力容器9にガ
スを注入し又は排出するそれぞれ注入バルブ及び排出バ
ルブである。ここで上記圧力容器9内の圧力は圧力計1
0によって測定され、この測定値が所望の設定値よりも
低ければ上記注入バルブ11を開いてガスが導入され、
また設定値よりも高ければ上記排出バルブ12を開いて
ガスが排出せしめられ、これにより圧力容器9の内圧制
御を行い得るようになっている。Further, in the drawing, 9 is a pressure vessel for housing the whole quartz vessel 5 therein, 10 is a pressure gauge for measuring the internal pressure of the pressure vessel, and 11 and 12 are for injecting or discharging gas into or from the pressure vessel 9. Respectively, an injection valve and a discharge valve. Here, the pressure in the pressure vessel 9 is measured with a pressure gauge 1
0, and if the measured value is lower than the desired set value, the injection valve 11 is opened to introduce gas,
If the pressure is higher than the set value, the discharge valve 12 is opened to discharge the gas, whereby the internal pressure of the pressure vessel 9 can be controlled.
【0016】また、13は石英容器5の頂部に設けられ
た後述するマイクロメータのための固定用治具、14は
該固定用治具13上に載置・固定された上記石英容器5
の変形量を検出するマイクロメータである。このマイク
ロメータ14は高精度で且つ軽量のものが選定される
が、上記石英容器5を封緘する石英キャップで成る変形
検出部15に対して上記マイクロメータ14の検針14
aが当接し、該検針14aの針圧のみが加わるようにな
っている。Reference numeral 13 denotes a fixing jig provided on the top of the quartz container 5 for a micrometer described later, and 14 denotes the quartz container 5 mounted and fixed on the fixing jig 13.
Is a micrometer that detects the amount of deformation of Although a high-precision and lightweight one is selected as the micrometer 14, the micrometer 14 has a probe 14 for the micrometer 14, which is formed of a quartz cap for sealing the quartz container 5.
a comes into contact, and only the needle pressure of the needle 14a is applied.
【0017】上記の場合、後述するように変形検出部1
5の温度は、GaAs結晶成長の場合では1200〜1
300°Cに設定され、この温度範囲では上記変形検出
部15は塑性変形領域にある。一方、化合物半導体の合
成,結晶成長又は熱処理が石英のかかる塑性変形温度領
域以下で行われる場合には、変形検出部15が塑性変形
する温度(1200〜1300°C)に保持するため
に、該変形検出部15付近に適宜ヒータが設置される。In the above case, as described later, the deformation detecting unit 1
The temperature of 5 is 1200 to 1 in the case of GaAs crystal growth.
The temperature is set to 300 ° C., and in this temperature range, the deformation detecting section 15 is in the plastic deformation region. On the other hand, when the synthesis, crystal growth, or heat treatment of the compound semiconductor is performed at or below the plastic deformation temperature range of quartz, the deformation detection unit 15 maintains the plastic deformation temperature (1200 to 1300 ° C.) to maintain the temperature. A heater is appropriately installed in the vicinity of the deformation detection unit 15.
【0018】次に、上記のように構成された本発明装置
を使用して化合物半導体の蒸気圧制御を行う場合の具体
的方法を説明する。先ず、8gのAs4がその底部に置
かれた石英容器5内に、3kgのGaAs原料2及び種
結晶1を装填したPBNの坩堝3を挿入し、石英容器5
内を10-6Torrまで真空排気して封止する。そし
て、かかる石英容器5を圧力容器9内の所定位置にセッ
トすると共に、固定用治具13によりマイクロメータ1
4が石英容器5の頂部に取り付けられる。この場合、マ
イクロメータ14の検針14aは変形検出部15の中心
部に当接される。Next, a specific method for controlling the vapor pressure of a compound semiconductor using the apparatus of the present invention configured as described above will be described. First, a PBN crucible 3 loaded with 3 kg of a GaAs raw material 2 and a seed crystal 1 is inserted into a quartz container 5 in which 8 g of As4 is placed at the bottom thereof.
The inside is evacuated to 10 -6 Torr and sealed. Then, the quartz container 5 is set at a predetermined position in the pressure container 9, and the micrometer 1 is fixed by the fixing jig 13.
4 is attached to the top of the quartz container 5. In this case, the needle 14 a of the micrometer 14 is brought into contact with the center of the deformation detector 15.
【0019】As溜め7は温度615°Cに、又種結晶
1及びその上のGaAs原料2は温度1238〜127
0°Cになるようにそれぞれ昇温される。そしてこの昇
温過程から石英容器5の変形量を上記マイクロメータ1
4によって検出するが、該石英容器5が膨張変形するの
に応じて圧力容器9の内圧の設定値が上げられる。上記
昇温過程終了後、GaAs原料2と種結晶1の上部が融
解した状態において石英の変形が停止した時の圧力容器
9の内圧は1.203kg/cm2 であった。この後、
徐々に圧力容器9の内圧を1.000kg/cm2 まで
下げていき、この間に石英容器5が膨張変形するのに応
じてAs溜め7の温度を下げていくが、圧力容器9の内
圧が1.000kg/cm2 で石英の変形が停止したと
きのAs溜め7の温度は608°Cであった。一方、こ
の時の変形検出部15の温度は1260°Cである。The temperature of the As reservoir 7 is 615 ° C., and the temperature of the seed crystal 1 and the GaAs raw material 2 thereover are 1238 to 127 ° C.
The temperature is raised to 0 ° C. From the heating process, the amount of deformation of the quartz container 5 was measured using the micrometer 1.
4, the set value of the internal pressure of the pressure vessel 9 is increased as the quartz vessel 5 expands and deforms. After the completion of the temperature raising process, the internal pressure of the pressure vessel 9 was 1.203 kg / cm 2 when the deformation of the quartz stopped in a state where the GaAs raw material 2 and the seed crystal 1 were melted. After this,
The internal pressure of the pressure vessel 9 is gradually reduced to 1.000 kg / cm 2. During this time, the temperature of the As reservoir 7 is reduced as the quartz vessel 5 expands and deforms. When the deformation of the quartz stopped at 0.000 kg / cm 2 , the temperature of the As reservoir 7 was 608 ° C. On the other hand, the temperature of the deformation detecting unit 15 at this time is 1260 ° C.
【0020】そしてGaAs原料2と種結晶1の上部が
融解した状態から、高温ヒータ6の設定温度を毎時0.
6°Cの割合で下げることにより結晶成長を行った。こ
の結晶成長過程では圧力容器9の内圧の設定値を1.0
00kg/cm2 に一定に保持しておき、石英容器5の
変形を検出して該石英容器5が収縮する(凹む)のに応
じてAs溜め7の温度を上げていくが、約53時間後に
結晶成長が終了した。この状態で石英の変形が停止した
ときのAs溜め7の温度は、615°Cであった。結晶
育成中の圧力容器9の内圧の制御精度は±0.003k
g/cm2 であり、また、石英容器5の変形検出部15
における変形量は最大約2mmである。From the state where the GaAs raw material 2 and the upper part of the seed crystal 1 are melted, the set temperature of the high-temperature heater 6 is set to 0.
Crystal growth was performed by lowering the temperature at a rate of 6 ° C. In this crystal growth process, the set value of the internal pressure of the pressure vessel 9 is set to 1.0.
The temperature is kept constant at 00 kg / cm 2, and the temperature of the As reservoir 7 is increased in response to the deformation of the quartz container 5 and the shrinkage (recess) of the quartz container 5. Crystal growth has ended. The temperature of the As reservoir 7 when the deformation of the quartz stopped in this state was 615 ° C. The control accuracy of the internal pressure of the pressure vessel 9 during crystal growth is ± 0.003k
g / cm 2 , and the deformation detector 15 of the quartz container 5.
Is a maximum of about 2 mm.
【0021】この後、高温ヒータ6の設定温度を毎時1
20°Cの割合で800°Cまで下げて冷却を行うが、
この冷却過程ではAs溜め7の温度は615°Cに一定
に保持される。そして引き続き上記高温ヒータ6及び低
温ヒータ8の設定温度を毎時180°Cの割合で室温ま
で下げて冷却を行った。Thereafter, the set temperature of the high-temperature heater 6 is increased by one hour.
It cools down to 800 ° C at a rate of 20 ° C,
In this cooling process, the temperature of the As reservoir 7 is kept constant at 615 ° C. Subsequently, the set temperatures of the high-temperature heater 6 and the low-temperature heater 8 were lowered to room temperature at a rate of 180 ° C./hour to perform cooling.
【0022】なお、上記実施例において前記昇温過程で
は、圧力容器9の内圧が1.000kg/cm2 になる
ように制御しながら、種結晶1の上部とその上のGaA
s原料2を温度1238〜1270°Cになるように昇
温せしめ、この過程から石英容器5の変形を検出し、該
石英容器5が収縮するのに応じてAs溜め7の温度を上
げていくことにより、As蒸気圧を1.000kg/c
m2 に制御することができる。また、As溜め7の均熱
帯が不十分な場合でも蒸気圧測定値に応じて該As溜め
7の温度を調整することにより、蒸気圧の制御を行うこ
とができる。In the above-described embodiment, in the temperature raising step, the upper part of the seed crystal 1 and the GaAs on the seed crystal 1 were controlled while controlling the internal pressure of the pressure vessel 9 to 1.000 kg / cm 2.
The raw material 2 is heated to a temperature of 1238 to 1270 ° C., and the deformation of the quartz container 5 is detected from this process, and the temperature of the As reservoir 7 is increased as the quartz container 5 contracts. As a result, the As vapor pressure becomes 1.000 kg / c.
It can be controlled in m 2. Further, even when the leveling of the As reservoir 7 is insufficient, the vapor pressure can be controlled by adjusting the temperature of the As reservoir 7 according to the measured vapor pressure value.
【0023】[0023]
【発明の効果】上述したように本発明によれば、化合物
半導体の合成,結晶成長又は熱処理等において、蒸気圧
制御を化合物半導体の構成元素(例えばAs)溜めの温
度制御で代用することなくリアルタイムでの蒸気圧測定
が可能になり、測定した蒸気圧をフィードバックして蒸
気圧制御を行うことができる。また、石英容器内での化
合物半導体の合成,結晶成長又は熱処理等において該石
英容器の破裂等の事故を有効に防止することができ、極
めて安全性の高い装置を実現することがでる等の利点が
ある。As described above, according to the present invention, in the synthesis, crystal growth or heat treatment of a compound semiconductor, the vapor pressure control is performed in real time without substituting the temperature control of the constituent element (eg, As) reservoir of the compound semiconductor. , And the measured vapor pressure can be fed back to control the vapor pressure. Further, it is possible to effectively prevent accidents such as rupture of the quartz container in the synthesis, crystal growth, heat treatment, etc. of the compound semiconductor in the quartz container, thereby realizing an extremely safe apparatus. There is.
【図1】本発明による化合物半導体の蒸気圧制御方法に
使用するGaAs結晶成長装置の概略構成を示す縦断面
図である。FIG. 1 is a longitudinal sectional view showing a schematic configuration of a GaAs crystal growth apparatus used for a compound semiconductor vapor pressure control method according to the present invention.
【図2】従来のGaAs結晶成長装置の概略構成を示す
縦断面図である。FIG. 2 is a longitudinal sectional view showing a schematic configuration of a conventional GaAs crystal growth apparatus.
1 種結晶 2 GaAs原料 3 坩堝 5 石英容器 6 高温ヒータ 7 As溜め 8 低温ヒータ 9 圧力容器 10 圧力計 11 注入バルブ 12 排出バルブ 13 固定用治具 14 マイクロメータ 15 変形検出部 Reference Signs List 1 seed crystal 2 GaAs raw material 3 crucible 5 quartz container 6 high temperature heater 7 As reservoir 8 low temperature heater 9 pressure container 10 pressure gauge 11 injection valve 12 discharge valve 13 fixing jig 14 micrometer 15 deformation detector
Claims (2)
半導体及びその構成元素を真空封入した石英容器を圧力
容器内で所定温度まで昇温し、上記石英容器の変形量を
マイクロメータによって検出すると共に、上記石英容器
の変形量に応じて石英容器内の上記化合物半導体の温
度,上記化合物半導体を構成する元素の温度又は上記圧
力容器の内圧の少なくとも一つを変更し、これにより上
記石英容器の変形を抑制すると共に、該石英容器の変形
が停止した時の上記圧力容器の内圧を上記化合物半導体
の蒸気圧として読み取って、該蒸気圧に応じて上記石英
容器内の上記化合物半導体の温度及び上記化合物半導体
を構成する元素の温度の少なくとも一つを変更するよう
にした化合物半導体の蒸気圧制御方法。An element constituting a compound semiconductor or a quartz container in which a compound semiconductor and its constituent elements are vacuum-sealed is heated to a predetermined temperature in a pressure vessel, and a deformation amount of the quartz container is detected by a micrometer. At least one of the temperature of the compound semiconductor in the quartz container, the temperature of an element constituting the compound semiconductor, or the internal pressure of the pressure container is changed according to the amount of deformation of the quartz container, thereby reducing the deformation of the quartz container. While suppressing, the internal pressure of the pressure vessel when the deformation of the quartz container is stopped is read as the vapor pressure of the compound semiconductor, and the temperature of the compound semiconductor in the quartz container and the compound semiconductor according to the vapor pressure A method of controlling the vapor pressure of a compound semiconductor, wherein at least one of the temperatures of the elements constituting the compound is changed.
体を構成する元素の温度を独立して制御するヒータと、
圧力容器の内圧を測定する圧力計と、該圧力容器の内圧
を調節するガス注入・排出バルブと、上記石英容器の変
形量を検出するマイクロメータとを具備し、上記マイク
ロメータによってその変形量が検出される上記石英容器
の変形検出部の温度を、塑性変形領域の温度に調整する
ようにしたことを特徴とする請求項1に記載の方法に使
用する装置。2. A heater for independently controlling the temperature of a compound semiconductor in a quartz container and an element constituting the compound semiconductor;
A pressure gauge that measures the internal pressure of the pressure vessel, a gas injection / discharge valve that adjusts the internal pressure of the pressure vessel, and a micrometer that detects the amount of deformation of the quartz container are provided. 2. The apparatus according to claim 1, wherein the detected temperature of the deformation detecting section of the quartz container is adjusted to a temperature of a plastic deformation region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3255408A JP3010832B2 (en) | 1991-10-02 | 1991-10-02 | Method and apparatus for controlling vapor pressure of compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3255408A JP3010832B2 (en) | 1991-10-02 | 1991-10-02 | Method and apparatus for controlling vapor pressure of compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0597564A JPH0597564A (en) | 1993-04-20 |
JP3010832B2 true JP3010832B2 (en) | 2000-02-21 |
Family
ID=17278354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3255408A Expired - Fee Related JP3010832B2 (en) | 1991-10-02 | 1991-10-02 | Method and apparatus for controlling vapor pressure of compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3010832B2 (en) |
-
1991
- 1991-10-02 JP JP3255408A patent/JP3010832B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0597564A (en) | 1993-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0068021B1 (en) | The method and apparatus for forming and growing a single crystal of a semiconductor compound | |
US10570528B2 (en) | Apparatus and method for producing gallium oxide crystal | |
US3898051A (en) | Crystal growing | |
US4521272A (en) | Method for forming and growing a single crystal of a semiconductor compound | |
US20040173140A1 (en) | Apparatus and method for balanced pressure growth of Group III-V monocrystalline semiconductor compounds | |
JP3010832B2 (en) | Method and apparatus for controlling vapor pressure of compound semiconductor | |
JP3010833B2 (en) | Method and apparatus for controlling vapor pressure of compound semiconductor | |
US5493985A (en) | Process and apparatus for controlled synthesis and in-situ single crystal growth of phosphorus compounds and the crystals therefrom | |
EP0947609B1 (en) | Method of preparing a compound semiconductor crystal and compound semiconductor crystal | |
GB2139918A (en) | Crystal growing apparatus | |
JPS58135626A (en) | Manufacture of compound semiconductor single crystal and manufacturing device thereof | |
JP3185421B2 (en) | Method and apparatus for producing compound crystal | |
JP2517803B2 (en) | Method for synthesizing II-VI compound semiconductor polycrystal | |
KR101186751B1 (en) | Melt Gap Controlling Apparatus and Single Crystal Grower including the same | |
JP2800713B2 (en) | Method for manufacturing compound semiconductor single crystal | |
US4612082A (en) | Arsenic cell stabilization valve for gallium arsenide in-situ compounding | |
JP3788156B2 (en) | Method for producing compound semiconductor single crystal and PBN container used therefor | |
JP3991400B2 (en) | Single crystal growth method and apparatus | |
JP3695263B2 (en) | Method and apparatus for producing compound semiconductor crystal | |
US10815586B2 (en) | Gallium-arsenide-based compound semiconductor crystal and wafer group | |
JPH07165488A (en) | Apparatus for producing single crystal and method therefor | |
US4522791A (en) | Arsenic cell stabilization valve for gallium arsenide in-situ compounding | |
JP2830306B2 (en) | Compound semiconductor crystal manufacturing equipment | |
JP3170577B2 (en) | Processing equipment for high dissociation pressure compounds | |
JPH0380180A (en) | Device for producing single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |