JP3007969B1 - Soil organism density detection method - Google Patents

Soil organism density detection method

Info

Publication number
JP3007969B1
JP3007969B1 JP4642799A JP4642799A JP3007969B1 JP 3007969 B1 JP3007969 B1 JP 3007969B1 JP 4642799 A JP4642799 A JP 4642799A JP 4642799 A JP4642799 A JP 4642799A JP 3007969 B1 JP3007969 B1 JP 3007969B1
Authority
JP
Japan
Prior art keywords
soil
density
potential
distribution
natural potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4642799A
Other languages
Japanese (ja)
Other versions
JP2000236794A (en
Inventor
裕臣 中里
睦雄 竹内
健 小泉
弘明 吉田
Original Assignee
農林水産省農業工学研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 農林水産省農業工学研究所長 filed Critical 農林水産省農業工学研究所長
Priority to JP4642799A priority Critical patent/JP3007969B1/en
Application granted granted Critical
Publication of JP3007969B1 publication Critical patent/JP3007969B1/en
Publication of JP2000236794A publication Critical patent/JP2000236794A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【要約】 【課題】容易にかつ短時間で精密な線虫密度分布を得
る。 【解決手段】第1の工程で、自然電位測定装置2により
圃場3の自然電位を測定し、その圃場3の自然電位分布
を作成する。第2の工程で、第1の工程により得られた
自然電位分布のうち自然電位が異なる値を示す地点にお
いて土壌を採取する。次に、第3の工程で、第2の工程
により得られた土壌からネグサレセンチュウの地中密度
を測定し、測定された密度と採取された地点の自然電位
との相関関係を判断する。第4の工程で、第3の工程に
より判断された土壌生物密度と自然電位との相関関係に
基づき、第1の工程により得られた自然電位に対応させ
て上記圃場3の土壌生物の密度を探知するようにしてい
る。
The present invention provides a precise nematode density distribution easily and in a short time. In a first step, a natural potential of a field is measured by a natural potential measuring device to generate a natural potential distribution of the field. In the second step, soil is collected at a point where the natural potential shows a different value in the natural potential distribution obtained in the first step. Next, in a third step, the underground density of the nematode in the soil obtained in the second step is measured, and a correlation between the measured density and the natural potential at the sampled point is determined. In the fourth step, based on the correlation between the soil organism density determined in the third step and the natural potential, the density of the soil organisms in the field 3 is determined in accordance with the natural potential obtained in the first step. I try to detect it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、農耕地における土
壌生物の密度探知法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the density of soil organisms on agricultural land.

【0002】[0002]

【従来の技術】農耕地では、自活性線虫により土づくり
がなされる一方、寄生性線虫による作物への被害が問題
となっている。有害線虫の病害対策を有効なものとする
には、寄生性線虫の分布状況の把握が不可欠である。従
来、かかる寄生性線虫の分布状況の把握には、多数の地
点で土壌を採取し、採取した試料中の線虫を分離し、分
離した線虫を顕微鏡下で同定してその数を計数し、各地
点における線虫密度を面で把握するようにしている。
2. Description of the Related Art In an agricultural land, soil is formed by self-active nematodes, while damage to crops by parasitic nematodes is a problem. It is indispensable to understand the distribution of parasitic nematodes in order to effectively control harmful nematodes. Conventionally, to understand the distribution of such parasitic nematodes, the soil was collected at many points, the nematodes in the collected samples were separated, the separated nematodes were identified under a microscope, and the number was counted. Then, the nematode density at each point is grasped on the surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
線虫密度分布の把握の仕方では、1試料の分析に1〜2
日程度の時間がかかり、試料が多くなればなるほど線虫
の分離、及び計数に多大の労力と時間を必要としてい
た。このため、大量の試料の分析を行うことが難しく、
単位面積あたりの精密な線虫密度分布を得にくく、線虫
被害の予測あるいは対策に必要な情報の入手が困難であ
るという問題がある。また、経時的に変化する線虫密度
分布を得るためには、何度も土壌のサンプリングを行う
必要がある。さらに、採取された試料の数が少ないと、
線虫の数のばらつきが生じやすく、標本としての意味を
失う畏れがある。正確な線虫密度分布が得られないと、
土壌消毒用の農薬の過剰投入を招いたり、消毒不十分に
より農作物の被害を招くという問題がある。
However, in the conventional method of grasping the nematode density distribution, one to two samples are analyzed.
It took about a day, and the larger the number of samples, the more labor and time required for separation and counting of nematodes. For this reason, it is difficult to analyze a large amount of sample,
There is a problem that it is difficult to obtain a precise nematode density distribution per unit area, and it is difficult to predict nematode damage or obtain information necessary for countermeasures. Further, in order to obtain a nematode density distribution that changes over time, it is necessary to sample the soil many times. Furthermore, if the number of samples taken is small,
Variations in the number of nematodes are likely to occur, and there is a fear of losing the meaning as a specimen. If an accurate nematode density distribution cannot be obtained,
There is a problem that an excessive input of pesticides for soil disinfection may be caused, or crops may be damaged due to insufficient disinfection.

【0004】本発明は、上記問題点を除くためになされ
たもので、簡素な構成で測定の省力化をはかり、容易に
かつ短時間で精密な線虫密度分布を得ることができる土
壌生物の密度探知法を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned problems, and has a simple configuration to save labor for measurement and to obtain a soil nematode density distribution that can easily and precisely obtain a precise nematode density distribution. It is intended to provide a density detection method.

【0005】[0005]

【課題を解決するための手段】本発明に係る土壌生物の
密度探知法は、自然電位測定装置により所定の土地の自
然電位を測定し、その土地の自然電位分布を作成する第
1の工程と、第1の工程により得られた自然電位分布の
うち自然電位が異なる値を示す地点において土壌を採取
する第2の工程と、第2の工程により得られた土壌から
所定の生物の地中密度を測定し、測定された密度と採取
された地点の自然電位との相関関係を判断する第3の工
程と、第3の工程により判断された土壌生物密度と自然
電位との相関関係に基づき、第1の工程により得られた
自然電位に対応させて上記土地の土壌生物の密度を探知
する第4の工程とを備えるようにしたものである。
The method for detecting the density of soil organisms according to the present invention comprises a first step of measuring a natural potential of a predetermined land by a natural potential measuring device and forming a natural potential distribution of the land. A second step of collecting soil at a point where the natural potential shows a different value in the natural potential distribution obtained in the first step, and an underground density of a predetermined organism from the soil obtained in the second step. And a third step of determining the correlation between the measured density and the natural potential at the sampled point, and a correlation between the soil biological density and the natural potential determined by the third step, And a fourth step of detecting the density of soil organisms on the land corresponding to the natural potential obtained in the first step.

【0006】本発明に係る土壌生物の密度探知法では、
まず初めに、第1の工程により自然電位測定装置により
所定範囲の土地の自然電位を測定し、その土地の自然電
位分布を作成し、第2の工程により第1の工程で得られ
た自然電位分布のうち電位が異なる値を示す地点におい
て土壌を採取し、第3の工程により第2の工程で得られ
た土壌から所定の生物の地中密度を測定し、測定された
密度と採取された地点の自然電位との相関関係を判断
し、第4の工程により第3の工程で判断された土壌生物
密度と自然電位との相関関係に基づき、第1の工程によ
り得られた自然電位に対応させて上記土地の土壌生物の
密度が探知される。このため、エネルギーが異なる値を
示す地点を任意に選択し、その選択された地点の数に応
じてサンプリングの点数が決定されるので、従来のもの
に較べてサンプリング点数を減らすことができるととも
に、少ないサンプリング数でより精密な土壌生物密度の
分布を得ることができる。また、第3の工程では、自然
電位と土壌生物密度との間の相関関係を判断するように
しているので、相関関係の強弱に基づいて探知対象とな
る土壌生物が特定される。従って、自然電位の分布に基
づいて土壌生物の密度が推定される。このため、一旦サ
ンプリングにより相関関係が判断された土壌生物を絞り
込んで、その土壌生物の土壌生物密度が判明すると、自
然電位分布を調べるだけで、土壌生物密度の分布を得る
ことができる。
In the method for detecting the density of soil organisms according to the present invention,
First, in a first step, the natural potential of a predetermined range of land is measured by a natural potential measuring device in a first step, a natural potential distribution of the land is created, and in a second step, the natural potential obtained in the first step is obtained. The soil was collected at a point where the potential shows a different value in the distribution, and the underground density of a predetermined organism was measured from the soil obtained in the second step in the third step, and the measured density was collected. The correlation between the natural potential at the point and the natural potential obtained in the first step is determined based on the correlation between the soil biological density and the natural potential determined in the third step in the fourth step. The density of soil organisms on the land is then detected. For this reason, arbitrarily select points showing different values of energy, and the number of sampling points is determined according to the number of the selected points, so that the number of sampling points can be reduced as compared with the conventional one, A more precise distribution of soil biodensity can be obtained with a small number of samplings. In the third step, since the correlation between the natural potential and the density of the soil organism is determined, the soil organism to be detected is specified based on the strength of the correlation. Therefore, the density of the soil organism is estimated based on the distribution of the natural potential. For this reason, once a soil organism whose correlation has been determined by sampling is narrowed down and the soil organism density of the soil organism is found, the distribution of the soil organism density can be obtained only by examining the self potential distribution.

【0007】[0007]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態について説明する。図1は、本発明の土壌生物
の密度探知法に用いられる自然電位測定装置の一実施の
形態を示す概念図である。本発明の自然電位測定装置2
は、図1に示すように、非分極性電極l−1〜l−15
が接続された電極切替器4と、この電極切替器4と基準
電極(非分極性電極)Sとにそれぞれ電気的に接続され
る自然電位測定器5とを備えて構成される。非分極性電
極l−1〜l−15は土壌生物密度を探る対象となる圃
場3に、それぞれ所定の間隔で均一に設置される。ここ
で用いる非分極性電極l−1〜l−15は電極−土壌間
の接地抵抗の影響の小さいものである。自然電位測定装
置2は、電極切替器4により、基準電極Sと非分極性電
極l−1との電位差、基準電極Sと非分極性電極l−2
との電位差、というように順次切り替えて圃場3の自然
電位の測定を行うようになっている。この測定に基づい
て、圃場3の自然電位分布が得られる。基準電極Sは、
圃場のある地点の電極(図3のStandard Point参照))
を0mVとして基準化するようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing one embodiment of a self-potential measuring device used in the density detection method for soil organisms of the present invention. Self potential measuring device 2 of the present invention
Are non-polarizable electrodes 1-1 to 1-15 as shown in FIG.
And a self-potential measuring device 5 electrically connected to the electrode switching device 4 and the reference electrode (non-polarizable electrode) S, respectively. The non-polarizable electrodes 1-1 to 1-15 are uniformly arranged at predetermined intervals in the field 3 where the density of soil organisms is to be searched. The non-polarizable electrodes 1-1 to 1-15 used here have a small influence of the ground resistance between the electrode and the soil. The self-potential measuring device 2 uses the electrode switch 4 to control the potential difference between the reference electrode S and the non-polarizable electrode 1-1, the reference electrode S and the non-polarizable electrode 1-2.
, And the natural potential of the field 3 is measured by switching sequentially. Based on this measurement, the natural potential distribution of the field 3 is obtained. The reference electrode S is
Electrode at a certain point in the field (see Standard Point in Fig. 3)
Is standardized as 0 mV.

【0008】ところで、図2は、ある実験用圃場3の自
然電位の経時的な変化を示す自然電位モニター図であ
る。この図2に示すように、土壌中の自然電位分布には
様々な要因が作用し、気温や降雨等によっても変化す
る。しかしながら、そのような短期的な要因による自然
電位の変化幅は10〜20mV程度(図2参照)であ
る。ところが、実験用圃場(以下圃場と称す)3では、
図3に示すように、これ以上の70mVの変化幅を持つ
定常的な自然電位分布が存在している。このような自然
電位分布は、植物の根の活性度や線虫の生育に影響を与
えると予想される。
FIG. 2 is a natural potential monitor diagram showing a change in the natural potential of a certain experimental field 3 with time. As shown in FIG. 2, various factors act on the self-potential distribution in the soil, and change depending on temperature, rainfall, and the like. However, the change width of the self potential due to such a short-term factor is about 10 to 20 mV (see FIG. 2). However, in the experimental field (hereinafter referred to as the field) 3,
As shown in FIG. 3, there is a steady spontaneous potential distribution having a variation width of 70 mV or more. Such a self-potential distribution is expected to affect the root activity of plants and the growth of nematodes.

【0009】そこで、圃場3において、線虫密度の測定
と、自然電位の分布とを調査したところ、ある種の線虫
の密度と自然電位との間には相関関係があることが判明
した(図4参照)。そこで、本願の発明者らは、この相
関関係に着目し、自然電位を測定することにより、ある
種の線虫の密度、特に、農耕地における有害線虫の密度
の把握に成功した。すなわち、本発明の土壌生物の密度
探知法では、まず、自然電位測定装置2により圃場3の
自然電位を測定し、圃場3の自然電位分布を作成する
(以下、第1の工程と称す、図3参照)。図3は、19
98年4月12日−25日にかけて行った13回の自然
電位探査の平均による自然電位分布であり、X=60
m、Y=0m点の電極を0Vとして基準化して表示した
ものである。この点(X=60m、Y=0m)は図2に
示した自然電位のモニター点である。これにより得られ
た自然電位分布のうち自然電位が異なる値を示す地点に
おいて土壌を採取する(以下、第2の工程と称す)。こ
のとき、試料採取を行う地点は、自然電位が最大値、最
小値及び中間値を示す地点とすることが好ましい。
[0009] Then, in field 3, when the measurement of the nematode density and the distribution of the spontaneous potential were investigated, it was found that there was a correlation between the density of certain nematodes and the spontaneous potential ( (See FIG. 4). Therefore, the inventors of the present application have paid attention to this correlation, and have succeeded in grasping the density of certain kinds of nematodes, particularly the density of harmful nematodes in agricultural lands, by measuring the natural potential. That is, in the method for detecting the density of soil organisms of the present invention, first, the natural potential of the field 3 is measured by the self-potential measuring device 2 to create a self-potential distribution of the field 3 (hereinafter, referred to as a first step, FIG. 3). FIG.
It is a self potential distribution by the average of 13 self potential surveys performed from April 12 to 25, 1998, and X = 60.
In this example, the electrodes at the points m and Y = 0m are displayed as normalized with 0V. This point (X = 60 m, Y = 0 m) is the monitor point of the natural potential shown in FIG. The soil is collected at a point where the natural potential shows a different value in the obtained self-potential distribution (hereinafter, referred to as a second step). At this time, it is preferable that the sampling point is a point where the natural potential shows the maximum value, the minimum value, and the intermediate value.

【0010】この第2の工程により得られた土壌から所
定の生物の地中密度を測定し、測定された密度と採取さ
れた地点の自然電位との相関関係を判断する(以下、第
3の工程と称す)。本実施の形態では、図4に示すよう
に、土壌生物を、有害なネグサレセンチュウと、有害性
が認められない自活性線虫とについて行ったところ、ネ
グサレセンチュウの地中密度と自然電位との間に正の相
関関係が認められ、自活性線虫の地中密度と自然電位と
の間には相関関係が認められなかった。そして、ネグサ
レセンチュウの地中密度と自然電位とについて図4に示
すように、自然電位−ネグサレセンチュウ密度の回帰直
線Lを導く。このとき、予めある土壌生物(例えば、ネ
グサレセンチュウ、自活性線虫等)の地中密度と自然電
位との相関関係を判断した後、相関関係の強い土壌生物
(例えば、ネグサレセンチュウ等)を密度分布探知の対
象とし、相関関係が明確でない土壌生物(例えば、自活
性線虫等)を対象から外しておくようにしてもよい。
The underground density of a given organism is measured from the soil obtained in the second step, and the correlation between the measured density and the natural potential at the sampled point is determined (hereinafter referred to as the third). Process). In the present embodiment, as shown in FIG. 4, when soil organisms were examined for harmful nematode and nematode-free self-acting nematodes, the underground density and natural potential of And a positive correlation was observed between them, and no correlation was found between the ground density of self-active nematodes and the self potential. Then, as shown in FIG. 4, a regression line L of natural potential-negusare nematode density is derived for the underground density of the nematode and the natural potential. At this time, after determining the correlation between the underground density of a certain soil organism (for example, a nematode nematode, a self-acting nematode, etc.) and the natural potential, a soil organism having a strong correlation (for example, a nexare nematode, etc.) May be targeted for density distribution detection, and soil organisms (for example, self-acting nematodes) whose correlation is not clear may be excluded from the target.

【0011】第3の工程により導かれた土壌生物密度と
自然電位との相関関係(図4の自然電位−ネグサレセン
チュウ密度の回帰直線L参照)に基づき、第1の工程に
より得られた自然電位分布(図3参照)に対応させて圃
場3の土壌生物(ネグサレセンチュウ)の密度分布を作
成する(以下、第4の工程と称す)ようにしている。従
って、一旦サンプリングにより相関関係のある土壌生物
について土壌生物密度が判明すると、自然電位分布を調
べるだけで、土壌生物密度の分布を得ることができるの
で、簡素な構成で測定の省力化をはかり、短時間で精密
な線虫密度分布を得ることができる。本実施の形態で
は、予めある土壌生物(例えば、ネグサレセンチュウ、
自活性線虫等)の地中密度と自然電位との関連を判断
し、関連が認められた土壌生物(例えば、ネグサレセン
チュウ等)のみを密度分布探知の対象とし、関連が認め
られない土壌生物(例えば、自活性線虫等)を対象から
外すようにしてるが、これに限られるものではなく、第
3の工程で、ある土壌生物の地中密度と自然電位との相
関関係の有無を判別し、相関関係が認められた土壌生物
(例えば、ネグサレセンチュウ等)を特定する工程を設
け、この特定された土壌生物のみを密度分布探知の対象
とするようにしてもよい。
On the basis of the correlation between the density of soil organisms and the natural potential derived in the third step (see the regression line L of the self-potential-negusa nematode density in FIG. 4), the natural state obtained in the first step is obtained. A density distribution of soil organisms (negusa nematodes) in the field 3 is created corresponding to the potential distribution (see FIG. 3) (hereinafter, referred to as a fourth step). Therefore, once the soil organism density is found for the correlated soil organisms by sampling, the distribution of the soil organism density can be obtained only by examining the self-potential distribution, so that the measurement is labor-saving with a simple configuration. A precise nematode density distribution can be obtained in a short time. In the present embodiment, a certain soil organism (for example, Negusare nematode,
Judgment of the relationship between the underground density of self-acting nematodes, etc.) and the natural potential, and only those soil organisms (for example, Negusare nematode, etc.) that were found to be related to the density distribution detection. Organisms (e.g., self-acting nematodes) are excluded from the target, but are not limited to this. In the third step, the presence or absence of a correlation between the underground density of a certain soil organism and the natural potential is determined. A step of discriminating and identifying a soil organism (for example, a nematode nematode or the like) having a correlation may be provided, and only the identified soil organism may be targeted for density distribution detection.

【0012】自然電位は、図2に示すように、気温や降
雨等によって変化する。このため、予め気象条件と自然
電位との相関関係を導き、土壌採取時の気象条件に応じ
て自然電位分布を補正した後、土壌生物の密度分布を作
成することが好ましい。また、自然電位は、年間の時期
的条件(季節等)によっても変化する。このため、予め
年間の時期的条件と自然電位との相関関係を導き、土壌
採取時の時期に応じて自然電位分布を補正した後、土壌
生物の密度分布を作成することが好ましい。さらに、時
間的間隔をおいて第1ないし第4の工程を繰り返し、気
候的条件や時期的条件を補正し、土壌生物の、経時的に
変化する密度分布を作成することもできる。このよう
に、経時的に変化する土壌生物密度の分布をも得ること
ができるので、事前に土壌生物(線虫)密度の予測が可
能となる。
As shown in FIG. 2, the natural potential changes depending on the temperature, rainfall, and the like. For this reason, it is preferable that the correlation between the weather condition and the natural potential is derived in advance, and the natural potential distribution is corrected according to the weather condition at the time of soil collection, and then the density distribution of the soil organisms is created. Further, the spontaneous potential changes depending on the yearly seasonal conditions (season and the like). For this reason, it is preferable that the correlation between the seasonal conditions of the year and the natural potential is derived in advance, and the natural potential distribution is corrected according to the time at which the soil was collected, and then the density distribution of the soil organisms is created. Furthermore, the first to fourth steps can be repeated at intervals of time to correct the climatic and temporal conditions, and create a time-dependent density distribution of soil organisms. In this way, it is possible to obtain a distribution of soil organism density that changes with time, and thus it is possible to predict soil organism (nematode) density in advance.

【0013】なお、上記実施の形態では、自然電位と有
害土壌生物(ネグサレセンチュウ)との相関関係につい
て述べたがこれに限られるものではなく、土壌生物密度
と関連性を有するものであれば、自然電位に限られるも
のでなく、磁場(電磁場)、放射線等の自然エネルギー
であってもよい。また、上記実施の形態では、土壌生物
としてネグサレセンチュウを対象に挙げているがこれに
限られるものではなく、他の有害な生物や有益な生物で
あってもよい。また、上記実施の形態では、自然電位分
布に基づいて、土壌生物の密度分布を作成するようにし
ているが、これに限られるものではなく、上記圃場3の
ある地点における土壌生物の密度を自然電位に対応させ
て探知するようにしてもよいのは勿論である。
In the above-described embodiment, the correlation between the natural potential and the harmful soil organisms (Nexare nematodes) has been described. However, the present invention is not limited to this, as long as it has a relationship with the density of soil organisms. The energy is not limited to the natural potential, but may be natural energy such as a magnetic field (electromagnetic field) or radiation. In the above-described embodiment, the soil nematode is described as a soil creature, but is not limited thereto, and may be another harmful creature or a beneficial creature. In the above embodiment, the density distribution of soil organisms is created based on the self-potential distribution. However, the present invention is not limited to this, and the density of soil organisms at a certain point in the Needless to say, the detection may be performed in accordance with the potential.

【0014】[0014]

【実施例】次に、上記構成に係る自然電位測定装置を用
いて実験を行った一実施例を示す。実験は、本出願人の
畑地かんがい圃場において行った。図3に示す所定範囲
の圃場3において、X方向に6m間隔12列、Y方向に
6m間隔で7行、14m間隔で1行の計96点に非分極
性電極を設置し、自然電位測定装置により測定範囲外2
00m地点に設置した非分極性電極と圃場内各電極との
電位差を自然電位として測定した。図表を説明すると、
図1は、自然電位測定装置2の概念図、図2は、自然電
位の経時変化図である。図2の測定値は図3のX=60
m、Y=0m点と測定範囲外200m地点に設置した非
分極性電極間の電位差であり、変動幅は20mV以内で
ある。図3は、66×50mの範囲(圃場3)に設置し
た96点の非分極性電極による自然電位分布図であり、
黒丸(●)印で示す点が電極点である。表示した値は、
1998年4月12日〜25日にかけて行った13回の
測定値を平均し、X=60m、Y=0m点を0mVとし
て正規化したものである。自然電位分布の変化幅は70
mVに及ぶ。図4は、図3において+印を付した電極点
において採取した土壌の線虫密度と自然電位の相関を示
したグラフである。探査期間中は圃場3は無作付け状態
であった。
Next, an embodiment in which an experiment was conducted using the self potential measuring apparatus having the above-described configuration will be described. The experiment was performed in the applicant's upland irrigation field. In a predetermined range of the field 3 shown in FIG. 3, non-polarizable electrodes are installed at a total of 96 points, 12 columns at 6 m intervals in the X direction, 7 rows at 6 m intervals in the Y direction, and 1 row at 14 m intervals. Out of measurement range by 2
The potential difference between the non-polarizable electrode placed at the 00 m point and each electrode in the field was measured as a natural potential. To explain the chart,
FIG. 1 is a conceptual diagram of the self-potential measuring device 2, and FIG. The measured value in FIG. 2 is X = 60 in FIG.
m, Y = potential difference between non-polarizable electrodes installed at 0 m point and 200 m point outside the measurement range, and the fluctuation width is within 20 mV. FIG. 3 is a self-potential distribution diagram of 96 non-polarizable electrodes installed in a 66 × 50 m area (field 3).
The points indicated by black circles (●) are the electrode points. The displayed value is
13 measurements taken from April 12 to 25, 1998 are averaged, and the points at X = 60 m and Y = 0 m are normalized to 0 mV. The change width of the self potential distribution is 70
mV. FIG. 4 is a graph showing the correlation between the nematode density of the soil collected at the electrode point marked + in FIG. 3 and the natural potential. During the exploration period, the field 3 was left uncultivated.

【0015】図3において、近接して高電位から低電位
を示すY=12m行のX=0m,X=6m,X=12
m,X=18mの地点および低電位を示すX=42m、
Y=36mの地点の5地点において土壌試料を採取し、
線虫密度測定を行った。その結果、図4に示すように、
自活性線虫密度と自然電位には相関は認められなかった
が、有害線虫であるネグサレセンチュウ類の線虫密度と
自然電位の間には正の相関が認められた。この結果か
ら、自然電位分布から線虫密度分布を検出可能であるこ
とが確認された。
In FIG. 3, X = 0m, X = 6m, and X = 12 in a row of Y = 12m indicating a high potential to a low potential in proximity.
m, X = 18 m and X = 42 m indicating low potential;
Soil samples were collected at 5 points of Y = 36m,
A nematode density measurement was performed. As a result, as shown in FIG.
No correlation was found between the self-acting nematode density and the spontaneous potential, but a positive correlation was observed between the nematode density and the spontaneous potential of the harmful nematodes, Nexare nematodes. From this result, it was confirmed that the nematode density distribution can be detected from the spontaneous potential distribution.

【0016】[0016]

【発明の効果】以上説明したように本発明の土壌生物の
密度探知法は、自然電位測定装置により所定の土地の自
然電位を測定し、その土地の自然電位分布を作成する第
1の工程と、第1の工程により得られた自然電位分布の
うち自然電位が異なる値を示す地点において土壌を採取
する第2の工程と、第2の工程により得られた土壌から
所定の生物の地中密度を測定し、測定された密度と採取
された地点の自然電位との相関関係を判断する第3の工
程と、第3の工程により判断された土壌生物密度と自然
電位との相関関係に基づき、第1の工程により得られた
自然電位に対応させて上記土地の土壌生物の密度を探知
する第4の工程とを備えているため、簡素な構成で測定
の省力化をはかることができる。また、容易にかつ短時
間で精密な土壌生物密度分布を得ることができる。さら
に、一旦サンプリングにより土壌生物密度が判明する
と、自然電位分布を調べるだけで、土壌生物密度の分布
を得ることができるので、従来困難であった土壌生物密
度分布の事前予測が可能となる。また、精密な土壌生物
密度分布が得られるので、対象となる土壌生物が有害線
虫の場合、農耕地において土壌消毒等に用いる農薬の量
を必要最小限の量に抑えることができるので、コストの
低減化や農薬低投入農業の実現をはかることができる効
果がある。
As described above, the method for detecting the density of soil organisms according to the present invention comprises the first step of measuring the natural potential of a predetermined land with a natural potential measuring device, and creating the natural potential distribution of the land. A second step of collecting soil at a point where the natural potential shows a different value in the natural potential distribution obtained in the first step, and an underground density of a predetermined organism from the soil obtained in the second step. And a third step of determining the correlation between the measured density and the natural potential at the sampled point, and a correlation between the soil biological density and the natural potential determined by the third step, Since the method includes the fourth step of detecting the density of the soil organisms on the land corresponding to the natural potential obtained in the first step, the measurement can be saved with a simple configuration. In addition, a precise soil biodensity distribution can be obtained easily and in a short time. Further, once the soil biodensity is determined by sampling, the soil biodensity distribution can be obtained only by examining the self-potential distribution, so that it is possible to predict the soil biodensity distribution, which has been difficult in the past. In addition, since a precise soil organism density distribution can be obtained, if the target soil organism is a harmful nematode, the amount of pesticides used for soil disinfection, etc. on agricultural land can be reduced to the minimum necessary amount, thus reducing costs. This has the effect of reducing agricultural consumption and realizing agriculture with low pesticide input.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る土壌生物の密度探
知法に用いられる自然電位測定装置を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a self-potential measuring device used for a density detection method for soil organisms according to an embodiment of the present invention.

【図2】基準点における自然電位の経時的な変化を示す
自然電位モニター図である。
FIG. 2 is a spontaneous potential monitor diagram showing a temporal change of a spontaneous potential at a reference point.

【図3】圃場における自然電位分布と試料採取位置を示
す図である。
FIG. 3 is a diagram showing a natural potential distribution and a sampling position in a field.

【図4】土壌の線虫密度と自然電位との相関関係を示す
相関図である。
FIG. 4 is a correlation diagram showing the correlation between the nematode density of soil and the natural potential.

【符号の説明】[Explanation of symbols]

2 自然電位測定装置 3 圃場 2 Self-potential measuring device 3 Field

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 弘明 茨城県つくば市観音台2丁目1番2号 農業工学研究所内 (58)調査した分野(Int.Cl.7,DB名) A01M 1/00 G01N 33/24 BIOSIS(DIALOG) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroaki Yoshida 2-1-2-2 Kannondai, Tsukuba, Ibaraki Pref. Agricultural Engineering Research Institute (58) Field surveyed (Int. Cl. 7 , DB name) A01M 1/00 G01N 33/24 BIOSIS (DIALOG) JICST file (JOIS)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自然電位測定装置により所定の土地の自
然電位を測定し、その土地の自然電位分布を作成する第
1の工程と、第1の工程により得られた自然電位分布の
うち自然電位が異なる値を示す地点において土壌を採取
する第2の工程と、第2の工程により得られた土壌から
所定の生物の地中密度を測定し、測定された密度と採取
された地点の自然電位との相関関係を判断する第3の工
程と、第3の工程により判断された土壌生物密度と自然
電位との相関関係に基づき、第1の工程により得られた
自然電位に対応させて上記土地の土壌生物の密度を探知
する第4の工程とを備えていることを特徴とする土壌生
物の密度探知法。
A first step of measuring a natural potential of a predetermined land by a self-potential measuring device and generating a self-potential distribution of the land; and a self-potential of the self-potential distribution obtained in the first step. A second step of collecting soil at a point at which a different value is obtained, and measuring an underground density of a predetermined organism from the soil obtained by the second step, and measuring the measured density and the natural potential of the sampled point. A third step of determining the correlation between the land and the land based on the correlation between the soil organism density and the natural potential determined in the third step, and corresponding to the natural potential obtained in the first step. And a fourth step of detecting the density of the soil organisms.
【請求項2】 予めある土壌生物の地中密度と自然電位
との相関関係を判断し、探知対象の土壌生物を特定する
工程を有することを特徴とする請求項1に記載の土壌生
物の密度探知法。
2. The density of soil organisms according to claim 1, further comprising a step of previously determining the correlation between the underground density of the soil organisms and the natural potential and identifying the soil organism to be detected. Detection method.
【請求項3】 時間的間隔をおいて第1ないし第4の工
程を繰り返し、土壌生物の、経時的に変化する密度分布
を作成する工程を有することを特徴とする請求項1また
は2に記載の土壌生物の密度探知法。
3. The method according to claim 1, further comprising the step of repeating the first to fourth steps at time intervals to create a time-dependent density distribution of the soil organism. Method for detecting the density of soil organisms.
【請求項4】 予め年間の時期的条件と自然電位との相
関関係を導き、土壌採取時の時期に応じて自然電位分布
を補正した後、土壌生物の密度分布を作成することを特
徴とする請求項1ないし3のうちいずれか1に記載の土
壌生物の密度探知法。
4. The method according to claim 1, wherein a correlation between the seasonal conditions of the year and the self-potential is derived in advance, and the self-potential distribution is corrected according to the time at which the soil is collected, and then a density distribution of soil organisms is created. The method for detecting the density of soil organisms according to any one of claims 1 to 3.
【請求項5】 予め気象条件と自然電位との相関関係を
導き、土壌採取時の気象条件に応じて自然電位分布を補
正した後、土壌生物の密度分布を作成することを特徴と
する請求項1ないし4のうちいずれか1に記載の土壌生
物の密度探知法。
5. The method according to claim 1, wherein a correlation between the weather condition and the natural potential is derived in advance, and the natural potential distribution is corrected according to the weather condition at the time of collecting the soil, and then a density distribution of the soil organism is created. 5. The method for detecting the density of a soil organism according to any one of 1 to 4.
【請求項6】 第2の工程において、自然電位が最大
値、最小値及び中間値を示す地点において試料採取を行
うことを特徴とする請求項1ないし5のうちいずれか1
に記載の土壌生物の密度探知法。
6. The method according to claim 1, wherein in the second step, sampling is performed at a point where the self potential shows a maximum value, a minimum value, and an intermediate value.
2. The method for detecting the density of soil organisms according to claim 1.
【請求項7】 第3の工程において、土壌中の生物が有
害線虫であることを特徴とする請求項1ないし6のいず
れか1に記載の土壌生物の密度探知法。
7. The method for detecting the density of soil organisms according to claim 1, wherein in the third step, organisms in the soil are harmful nematodes.
JP4642799A 1999-02-24 1999-02-24 Soil organism density detection method Expired - Lifetime JP3007969B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4642799A JP3007969B1 (en) 1999-02-24 1999-02-24 Soil organism density detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4642799A JP3007969B1 (en) 1999-02-24 1999-02-24 Soil organism density detection method

Publications (2)

Publication Number Publication Date
JP3007969B1 true JP3007969B1 (en) 2000-02-14
JP2000236794A JP2000236794A (en) 2000-09-05

Family

ID=12746863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4642799A Expired - Lifetime JP3007969B1 (en) 1999-02-24 1999-02-24 Soil organism density detection method

Country Status (1)

Country Link
JP (1) JP3007969B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154159A1 (en) * 2017-02-21 2018-08-30 Marti Sauras Jose Maria Method and apparatus for determining areas of favourable plant growth

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542530B2 (en) 2010-06-04 2014-07-09 株式会社日立ソリューションズ Sampling position determination device
JP5366274B2 (en) * 2011-05-13 2013-12-11 独立行政法人農業・食品産業技術総合研究機構 Measuring device for measuring redox potential of wet soil, and measuring method for measuring redox potential of wet soil
JP2023516294A (en) * 2020-03-04 2023-04-19 エフ エム シー コーポレーション Systems and methods for predicting pest pressure using geospatial features and machine learning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154159A1 (en) * 2017-02-21 2018-08-30 Marti Sauras Jose Maria Method and apparatus for determining areas of favourable plant growth

Also Published As

Publication number Publication date
JP2000236794A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
Guo et al. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots
Schrön et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity
Stadler et al. Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements
Mary et al. Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method
Beyer et al. Rainfall characteristics and their implications for rain-fed agriculture: a case study in the Upper Zambezi River Basin
Joschko et al. Spatial analysis of earthworm biodiversity at the regional scale
Garré et al. Evaluating experimental design of ERT for soil moisture monitoring in contour hedgerow intercropping systems
Chaplot et al. Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity
CN113948220A (en) Anthrax pathogen infection stage detection method with pre-analysis capability
Huising et al. Sampling strategy and design to evaluate below-ground biodiversity
Kontgis et al. Leveraging Sentinel-1 time-series data for mapping agricultural land cover and land use in the tropics
Martini et al. A combined geophysical-pedological approach for precision viticulture in the Chianti hills.
Pepin et al. The role of measurement error on the interpretation of otolith increment width in the study of growth in larval fish
JP3007969B1 (en) Soil organism density detection method
Brown et al. Time‐lapse mapping of crop and tillage interactions with soil water using electromagnetic induction
Matranga et al. Estimating soil surface roughness by proximal sensing for soil erosion modeling implementation at field scale
Phonphan et al. Modelling electrical conductivity of soil from backscattering coefficient of microwave remotely sensed data using artificial neural network
Mankin et al. Acoustic detection of Melolonthine larvae in Australian sugarcane
Stek et al. Scratching the surface: Integrating low-visibility zones and large rural sites in landscape archaeology using point sampling
Long et al. Monitoring seagrasses in tropical ports and harbours
Deragon et al. Improving a regional peat thickness map using soil apparent electrical conductivity measurements at the field-scale
Kweon et al. The ultimate soil survey in one pass: soil texture, organic matter, pH, elevation, slope, and curvature
Joschko et al. The apparent electrical conductivity as a surrogate variable for predicting earthworm abundances in tilled soils
Henrion et al. Mapping and monitoring peatlands in the Belgian Hautes Fagnes: Insights from Ground-penetrating radar and Electromagnetic induction characterization
Kumar et al. Design and development of an embedded framework to test soil for urban terrace farming

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term