JP3006283B2 - Laminated batteries - Google Patents
Laminated batteriesInfo
- Publication number
- JP3006283B2 JP3006283B2 JP12592792A JP12592792A JP3006283B2 JP 3006283 B2 JP3006283 B2 JP 3006283B2 JP 12592792 A JP12592792 A JP 12592792A JP 12592792 A JP12592792 A JP 12592792A JP 3006283 B2 JP3006283 B2 JP 3006283B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- fine powder
- zinc
- dry battery
- conductive carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、積層型乾電池に関し、
さらに詳しくは、その亜鉛−炭素結合電極(以下、結合
電極)の負極亜鉛と導電性炭素被膜の一体化加工と、そ
れを用いた積層型乾電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated type dry battery,
More specifically, the present invention relates to an integrated processing of a negative electrode zinc and a conductive carbon film of the zinc-carbon bonded electrode (hereinafter, referred to as a bonded electrode), and a stacked battery using the same.
【0002】[0002]
【従来の技術】一般に6F22型に代表される積層型マ
ンガン乾電池は図1に示す構造を持つ。6個の素電池7
と最上部に正極集電板5を積み重ねた外郭にワックスを
塗布し、PVCチューブ4によって覆被された内容物
を、上下部にそれぞれ、端子板3と底板9を配し、外装
缶10によって仮締めされている。2. Description of the Related Art In general, a stacked manganese dry battery represented by a 6F22 type has a structure shown in FIG. 6 cells 7
A wax is applied to the outer periphery where the positive electrode current collector plate 5 is stacked on the uppermost portion, and the contents covered with the PVC tube 4 are arranged on the upper and lower portions, respectively, with the terminal plate 3 and the bottom plate 9 being arranged. Temporarily tightened.
【0003】図2に示す素電池は、亜鉛板と導電性炭素
被膜とを一体化した結合電極14と正極合剤11とをセ
パレータ13で隔て、PVCチューブ12のセルグロメ
ットに納められている。The unit cell shown in FIG. 2 is housed in a cell grommet of a PVC tube 12 with a separator 13 separating a bonding electrode 14 in which a zinc plate and a conductive carbon film are integrated and a positive electrode mixture 11.
【0004】従来の積層型マンガン乾電池用炭素結合電
極は、図3に示すような構成であった。図3において、
15は導電性炭素被膜であり、16は亜鉛板である。図
5に示すように、従来の結合電極は負極をなす亜鉛シー
ト19の片面に、合成樹脂と多量のカーボン粉末とを混
練し、圧延ロールで薄膜化した柔軟なシート状の導電性
炭素被膜20を貼り合わせる製造方式をとっていた。特
にこの製造方式は、予めポリビニルイソブチルアルコー
ル等の粘着剤を添加した導電性炭素被膜20の片面に、
導電性炭素被膜を溶かすキシレン等の有機溶媒を塗布し
て亜鉛シート19に圧着させ、ついでプレスにて所定形
状に打ち抜くものであった。A conventional carbon-bonded electrode for a stacked manganese dry battery has a configuration as shown in FIG. In FIG.
Reference numeral 15 denotes a conductive carbon coating, and reference numeral 16 denotes a zinc plate. As shown in FIG. 5, in the conventional bonding electrode, a flexible sheet-like conductive carbon film 20 formed by kneading a synthetic resin and a large amount of carbon powder on one surface of a zinc sheet 19 forming a negative electrode and reducing the thickness by a rolling roll. The manufacturing method of bonding was adopted. In particular, this manufacturing method is applied to one surface of the conductive carbon coating 20 to which an adhesive such as polyvinyl isobutyl alcohol is added in advance.
An organic solvent such as xylene for dissolving the conductive carbon film was applied and pressed against the zinc sheet 19, and then punched into a predetermined shape by a press.
【0005】[0005]
【発明が解決しようとする課題】このような従来の結合
電極の構成では、導電性炭素被膜と亜鉛板との接着が、
キシレン等の有機溶媒の塗布によって溶け出した、予め
導電性炭素被膜に添加されている粘着剤とバインダーで
ある合成樹脂によってのみ行われる。しかし同時に、導
電性炭素被膜中のカーボン粉末も被膜から離れ、接着層
の導電性を高める働きをするものの、カーボン自身の離
型作用と、表面の不活性さのために、導電性炭素被膜と
亜鉛板との接着を著しく弱いものにしてしまうという欠
点を持つ。この現象は(表1)に示すように、結合電極
を長期に渡り貯蔵する場合に顕著に見られ、導電性炭素
被膜と亜鉛板との接着の弱さが、結合電極の抵抗に直
接、反映してしまう。In the structure of such a conventional coupling electrode, the adhesion between the conductive carbon film and the zinc plate is as follows.
It is performed only by a synthetic resin as a binder and a binder which has been melted out by applying an organic solvent such as xylene and has been added to the conductive carbon film in advance. However, at the same time, the carbon powder in the conductive carbon coating also separates from the coating and acts to increase the conductivity of the adhesive layer, but due to the release action of carbon itself and the inertness of the surface, the conductive carbon coating is It has the disadvantage that the adhesion to the zinc plate is significantly weakened. As shown in Table 1, this phenomenon is remarkable when the bonding electrode is stored for a long time, and the weak bonding between the conductive carbon coating and the zinc plate is directly reflected in the resistance of the bonding electrode. Resulting in.
【0006】[0006]
【表1】 [Table 1]
【0007】(表1)で、特に45℃に貯蔵した結合電
極では、貯蔵後に導電性炭素被膜と亜鉛板とが簡単に剥
離を起こしてしまう状態に至った。[0007] In Table 1, especially in the case of the bonding electrode stored at 45 ° C, the conductive carbon coating and the zinc plate easily peeled off after storage.
【0008】一方、積層マンガン乾電池はその構造にお
いて同じ素電池を複数個積み重ねて高電圧を得ている
が、その素電池間は結合電極の片面の導電性炭素被膜を
介して接続されているため、この結合電極自体が低い抵
抗を経時的に安定に有することが要求されることは言う
までもなく、特に重負荷放電性能においてはこの結合電
極の抵抗の影響が大きく、できる限り低い抵抗を持った
結合電極が望ましい。On the other hand, a stacked manganese dry battery has a structure in which a plurality of the same unit cells are stacked to obtain a high voltage, but the unit cells are connected via a conductive carbon film on one surface of a coupling electrode. Needless to say, the coupling electrode itself is required to have a low resistance stably over time. Particularly in heavy load discharge performance, the resistance of the coupling electrode is greatly affected, and the coupling having the lowest possible resistance is required. Electrodes are preferred.
【0009】そこで本発明は、第一に結合電極の亜鉛板
と導電性炭素被膜とが強固に接着され、その接着が経時
的に安定であるものを供給すること、第二にできる限り
低く経時的に安定な抵抗を有する結合電極を供給するこ
とを目的とするものである。Therefore, the present invention is to provide a material in which the zinc plate of the bonding electrode and the conductive carbon film are firmly adhered and the adhesion is stable over time. It is an object of the present invention to provide a coupling electrode having a stable resistance.
【0010】[0010]
【課題を解決するための手段】このような課題を解決す
るために本発明は、亜鉛シートと導電性炭素被膜とを貼
り合わせる際、エポキシ樹脂やウレタン樹脂等の熱硬化
性樹脂系接着剤を所定の硬化剤とともにアセトン等の有
機溶媒に希釈し、これらを導電性炭素被膜の片面に塗布
して亜鉛シートに接着させ、さらに亜鉛シートと導電性
炭素被膜との間の接着層が電気絶縁体の熱硬化性樹脂系
接着剤で占められ結合電極が高い抵抗を持つのを防ぐよ
うに、接着層の導電性を高めるために、予め熱硬化性樹
脂系接着剤と硬化剤を有機溶媒に希釈する際に一定量の
電気良導体の金属微粉末を添加するものである。SUMMARY OF THE INVENTION In order to solve such problems, the present invention provides a method of bonding a zinc sheet and a conductive carbon film to a thermosetting resin-based adhesive such as an epoxy resin or a urethane resin. It is diluted with an organic solvent such as acetone together with a predetermined curing agent, applied to one surface of the conductive carbon film and adhered to a zinc sheet, and furthermore, an adhesive layer between the zinc sheet and the conductive carbon film forms an electric insulator. Preliminarily dilute the thermosetting resin-based adhesive and the curing agent in an organic solvent to increase the conductivity of the adhesive layer so that the bonding electrode occupied by the thermosetting resin-based adhesive does not have a high resistance. In this case, a certain amount of fine metal powder of an electric good conductor is added.
【0011】[0011]
【作用】この構成によって本発明の結合電極は、導電性
炭素被膜と亜鉛板との間に、電気良導体の金属微粉末が
存在することにより、結合電極の抵抗を低く抑えること
ができる。またこれらは、熱硬化性樹脂系接着剤で強固
に接着されるため、接着強度と抵抗が経時的に安定させ
ることができる。According to this structure, the resistance of the coupling electrode of the present invention can be reduced by the presence of the fine metal powder of the electric conductor between the conductive carbon film and the zinc plate. In addition, since these are firmly bonded with a thermosetting resin-based adhesive, the bonding strength and resistance can be stabilized with time.
【0012】[0012]
【実施例】以下、本発明の実施例について、表を参照し
ながら説明する。Embodiments of the present invention will be described below with reference to the tables.
【0013】(表2)に実施例に用いる導電性炭素被膜
の配合例を、(表3)に(表2)の導電性炭素被膜に塗
布する接着剤液の、金属微粉末を添加する前の配合例を
示した。(Table 2) shows an example of the composition of the conductive carbon film used in the examples, and (Table 3) shows the adhesive liquid to be applied to the conductive carbon film shown in (Table 2) before adding the metal fine powder. Are shown below.
【0014】[0014]
【表2】 [Table 2]
【0015】[0015]
【表3】 [Table 3]
【0016】(表2)の導電性炭素被膜と(表3)の接
着剤液にそれぞれ金属微粉末を加えたものについて、
(表4)に示す実施例をもとに結合電極を構成し、その
抵抗の経時変化を(表5)に示した。図4に本発明によ
る結合電極の拡大断面図を示す。With respect to the conductive carbon coating of (Table 2) and the adhesive liquid of (Table 3), each of which was added with metal fine powder,
A coupling electrode was constructed based on the examples shown in (Table 4), and the change over time in the resistance was shown in (Table 5). FIG. 4 shows an enlarged sectional view of the coupling electrode according to the present invention.
【0017】図4において、15は導電性炭素被膜、1
6は亜鉛板で、17はエポキシ樹脂及び硬化剤等からな
る接着剤で、その中にニッケル微粉末18等の金属微粉
末が添加されている。(表4)において、添加率は、
(表3)の接着剤液1〜3に対する重量比である。ま
た、実施例に用いた金属微粉末には、ニッケルが、純度
の高い微粉末が得られるカルボニル法によって得られる
ものであり、その他の金属は、電解、粉砕によって得ら
れるものを使用した。In FIG. 4, reference numeral 15 denotes a conductive carbon film,
Reference numeral 6 denotes a zinc plate, and reference numeral 17 denotes an adhesive made of an epoxy resin, a curing agent, and the like, into which a fine metal powder such as a fine nickel powder 18 is added. In Table 4, the addition rate is
It is a weight ratio with respect to the adhesive liquids 1 to 3 in (Table 3). Further, as the metal fine powder used in the examples, nickel was obtained by a carbonyl method capable of obtaining a fine powder of high purity, and other metals used were obtained by electrolysis and pulverization.
【0018】[0018]
【表4】 [Table 4]
【0019】[0019]
【表5】 [Table 5]
【0020】(表5)から明らかなように、本発明によ
って構成される実施例2〜11の結合電極の抵抗は、経
時変化も含め、全て従来例の結合電極より優れている、
実施例1は、エポキシ樹脂による強固な接着が成されて
いるが、金属微粉末を添加していないために、経時的に
抵抗値は安定しているものの、その値は極めて高いこと
が認められた。さらに詳しくは、実施例2〜5において
接着剤液に添加する金属微粉末の粒径は10μm未満が
好ましく、それ以上の粒径では、同じ重量の添加を行っ
ても抵抗が高く、また接着剤液に金属微粉末を添加、分
散させても、金属微粉末の沈降が著しく、均一に塗布す
るのが困難となった。As is clear from Table 5, the resistances of the coupling electrodes of Examples 2 to 11 constituted according to the present invention are all superior to those of the conventional coupling electrodes, including the change with time.
In Example 1, although strong adhesion was achieved with the epoxy resin, the resistance value was stable over time because no metal fine powder was added, but the value was extremely high. Was. More specifically, the particle diameter of the metal fine powder added to the adhesive liquid in Examples 2 to 5 is preferably less than 10 μm. If the particle diameter is larger than that, the resistance is high even if the same weight is added. Even when the metal fine powder was added and dispersed in the liquid, the metal fine powder settled remarkably, making it difficult to apply uniformly.
【0021】また、本実施例に用いたエポキシ樹脂系、
及びウレタン樹脂系接着剤ともに良好な接着が認められ
た。Further, the epoxy resin used in the present embodiment,
Good adhesion was observed for both the urethane resin adhesive and the urethane resin adhesive.
【0022】そして添加する金属微粉末に関しても、
金、銀、銅、ニッケルとも低い抵抗が実現できることが
認められたが、比較例1〜3に示すようにニッケルより
も卑な金属では抵抗値が高いものとなっている。Regarding the metal fine powder to be added,
Although it was recognized that a low resistance can be realized for all of gold, silver, copper, and nickel, as shown in Comparative Examples 1 to 3, metals having a lower resistance than nickel have a higher resistance value.
【0023】これらの金属微粉末の添加率は、樹脂と硬
化剤との総重量に対して、10重量%以上が適切であ
り、添加率を高くするとともに導電性は向上するが、金
属微粉末の使用量が増えることによるコスト増が問題と
なる。The addition rate of these metal fine powders is suitably at least 10% by weight based on the total weight of the resin and the curing agent. There is a problem of an increase in cost due to an increase in the amount of used.
【0024】さらに本発明による実施例により構成され
る結合電極を用い、以下の6F22型の積層型マンガン
乾電池を構成し、構成直後、常温で1年貯蔵後、45℃
で3ヵ月貯蔵後の3つの条件で、50mAで連続して定
電流放電を行い、電池電圧が5.4Vに達するまでの放
電時間を(表6)に示した。Further, the following 6F22 type stacked manganese dry battery was constructed using the coupling electrode constructed according to the embodiment of the present invention, immediately after the construction, and after storage at room temperature for one year, at 45 ° C.
Under the three conditions after storage for three months, constant current discharge was continuously performed at 50 mA, and the discharge time until the battery voltage reached 5.4 V is shown in (Table 6).
【0025】乾電池A…(表5)の従来例の結合電極で
構成した6F22型積層乾電池。 乾電池B…(表5)の実施例3の結合電極で構成した6
F22型積層乾電池。Dry cell A: A 6F22-type laminated dry battery comprising the conventional coupling electrodes shown in Table 5. Dry battery B ... 6 composed of the coupling electrode of Example 3 of (Table 5)
F22 type dry battery.
【0026】乾電池C…(表5)の実施例8の結合電極
で構成した6F22型積層乾電池。Dry cell C: A 6F22 type laminated dry battery comprising the coupling electrodes of Example 8 in (Table 5).
【0027】[0027]
【表6】 [Table 6]
【0028】(表6)から明らかなように、本発明の実
施例による結合電極によって構成された積層マンガン乾
電池は、その抵抗が低く、しかも経時的に安定なため、
従来の乾電池よりも重負荷放電性能が向上し、貯蔵性も
改善されることが認められた。As is clear from Table 6, the laminated manganese dry battery constituted by the coupling electrode according to the embodiment of the present invention has a low resistance and is stable over time.
It was recognized that the heavy-load discharge performance was improved and the storability was also improved as compared with the conventional dry battery.
【0029】[0029]
【発明の効果】本発明は、積層マンガン乾電池の結合電
極において、その導電性炭素被膜と亜鉛とを一体化する
際に、エポキシ樹脂やウレタン樹脂の熱硬化性樹脂系の
接着剤に金、銀、銅、ニッケルなどの比較的に貴な、導
電性の高い金属微粉末を添加して貼り合わせることによ
り、強固な接着を可能にするとともに、低い抵抗を実現
し、さらにこの低い抵抗が経時的に安定させることがで
きる優れた結合電極を提供し、これらを用いて、乾電池
の重負荷放電性能を改善し、さらに貯蔵性を向上させる
ことができるものである。According to the present invention, when the conductive carbon film and zinc are integrated with each other in the bonding electrode of the laminated manganese dry battery, gold, silver or the like is used for the thermosetting resin adhesive such as epoxy resin or urethane resin. By adding a relatively noble, highly conductive metal fine powder such as copper, nickel, etc. and bonding them together, it enables strong adhesion and realizes low resistance. The present invention provides an excellent bonding electrode which can stabilize the dry battery, and using these, it is possible to improve the heavy load discharge performance of the dry battery and further improve the storage stability.
【0030】なお、本発明では接着層の導電性を上げる
ために金属微粉末を用いたが、この観点からはグラファ
イトやカーボンブラック等の炭素質微粉末を用いても、
同様に接着層の導電性を上げ、抵抗の低い結合電極を提
供できるが、炭素質微粉末の表面の不活性さと、微粉末
自体が離型性を持つため、導電性炭素被膜と亜鉛板との
接着が経時的に不安定で、結合電極の抵抗が貯蔵中に徐
々に上昇していく特性を持つ。In the present invention, the metal fine powder is used to increase the conductivity of the adhesive layer, but from this viewpoint, even if a carbon fine powder such as graphite or carbon black is used,
Similarly, the conductivity of the adhesive layer can be increased to provide a bonding electrode with low resistance.However, since the surface of the carbonaceous fine powder is inert and the fine powder itself has mold release properties, the conductive carbon coating and the zinc plate can be used. Has a characteristic that the adhesion of the electrode is unstable over time and the resistance of the coupling electrode gradually increases during storage.
【図1】本発明の対象となる積層型マンガン乾電池の構
造例の断面図FIG. 1 is a cross-sectional view of a structural example of a stacked manganese dry battery to which the present invention is applied.
【図2】本発明の対象となる積層型マンガン乾電池を構
成する素電池の構造例の断面図FIG. 2 is a cross-sectional view of a structural example of a unit cell constituting a stacked manganese dry battery to which the present invention is applied.
【図3】従来の結合電極の拡大断面図FIG. 3 is an enlarged sectional view of a conventional coupling electrode.
【図4】本発明による結合電極の拡大断面図FIG. 4 is an enlarged sectional view of a coupling electrode according to the present invention.
【図5】本発明による結合電極の製造装置の概略図FIG. 5 is a schematic view of an apparatus for manufacturing a coupling electrode according to the present invention.
11 正極合剤 13 セパレータ 14 炭素−亜鉛結合電極 15 導電性炭素被膜 16 亜鉛板 17 接着剤(エポキシ樹脂、及び硬化剤) 18 ニッケル微粉末 DESCRIPTION OF SYMBOLS 11 Positive electrode mixture 13 Separator 14 Carbon-zinc bonding electrode 15 Conductive carbon film 16 Zinc plate 17 Adhesive (epoxy resin and hardener) 18 Nickel fine powder
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 6/46 H01M 4/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 6/46 H01M 4/06
Claims (3)
極から成る素電池を複数個積み重ねて構成した積層型電
池であって、亜鉛−炭素結合電極は、板状亜鉛負極と、
合成樹脂、カーボンを主成分とする導電性炭素被膜と
を、導電性金属微粉末が添加された接着剤で一体化され
てなる積層型乾電池。1. A stacked battery comprising a plurality of unit cells each comprising a positive electrode mixture, a separator and a zinc-carbon binding electrode, wherein the zinc-carbon binding electrode comprises a plate-like zinc negative electrode,
A laminated dry battery in which a synthetic resin and a conductive carbon film mainly composed of carbon are integrated with an adhesive to which conductive metal fine powder is added.
金、銀、銅、ニッケルのうちの少なくとも一種類である
請求項1記載の積層型乾電池。2. The stacked dry battery according to claim 1, wherein the conductive metal fine powder is at least one of gold, silver, copper, and nickel having a particle size of 10 μm or less.
が10〜50重量%である請求項1記載の積層型乾電
池。3. The laminated dry battery according to claim 1, wherein the amount of the conductive metal fine powder added to the adhesive is 10 to 50% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12592792A JP3006283B2 (en) | 1992-05-19 | 1992-05-19 | Laminated batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12592792A JP3006283B2 (en) | 1992-05-19 | 1992-05-19 | Laminated batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05325949A JPH05325949A (en) | 1993-12-10 |
JP3006283B2 true JP3006283B2 (en) | 2000-02-07 |
Family
ID=14922400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12592792A Expired - Lifetime JP3006283B2 (en) | 1992-05-19 | 1992-05-19 | Laminated batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3006283B2 (en) |
-
1992
- 1992-05-19 JP JP12592792A patent/JP3006283B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05325949A (en) | 1993-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6022642A (en) | Lithium ion battery containing an electrically insulative film | |
US4888135A (en) | Electrically conductive powder and electrically conductive composition using the same | |
US3945847A (en) | Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them | |
JPH11506264A (en) | Electrical connection to polymer stack battery structure | |
US2762858A (en) | Punched-cell wax electrolyte batteries | |
US7092239B2 (en) | Electric double layer capacitor with improved activated carbon electrodes | |
JPS5873968A (en) | Electrode unit, battery cell and method of improving inversion thereof | |
WO1999067838A1 (en) | Cell and method of producing the same | |
JP3006283B2 (en) | Laminated batteries | |
EP0211394B1 (en) | Organic electrolyte cell | |
JP2006245149A (en) | Wet electrolytic capacitor and its manufacturing method | |
JP4715299B2 (en) | Solid electrolytic capacitor | |
JPH06342739A (en) | Electric double layer capacitor and manufacture thereof | |
JPH0329131B2 (en) | ||
JP2000277393A (en) | Electric double-layer capacitor and its manufacturing method | |
JP2511947B2 (en) | Solid electrolyte molding | |
KR100445416B1 (en) | Battery collector capable of preventing short circuit and separation of active materials, and manufacturing method thereof | |
JPS62254367A (en) | Solid electrolyte secondary cell | |
US20010008727A1 (en) | Lithium polymer battery | |
JPS58189963A (en) | Positive electrode for organic electrolyte battery | |
JPS62268119A (en) | Carbon paste electrode | |
JPH07307250A (en) | Electric double-layer capacitor | |
JP2638162B2 (en) | Solid electrolytic capacitors | |
JP3132181B2 (en) | Electric double layer capacitor | |
JP2871058B2 (en) | Electrodes for alkaline storage batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20071126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20091126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20101126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20121126 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |