JP3005267B2 - Method and apparatus for removing ruthenium from aqueous solution - Google Patents
Method and apparatus for removing ruthenium from aqueous solutionInfo
- Publication number
- JP3005267B2 JP3005267B2 JP2240622A JP24062290A JP3005267B2 JP 3005267 B2 JP3005267 B2 JP 3005267B2 JP 2240622 A JP2240622 A JP 2240622A JP 24062290 A JP24062290 A JP 24062290A JP 3005267 B2 JP3005267 B2 JP 3005267B2
- Authority
- JP
- Japan
- Prior art keywords
- ruthenium
- aqueous solution
- anode
- light
- converted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は放射性廃液中のルテニウムを陽極酸化を含む
手段で除去する方法および装置に関するもので、特に硝
酸濃度1規定以上の酸性溶液からのルテニウム除去に適
する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing ruthenium in a radioactive waste liquid by means including anodic oxidation, and particularly to ruthenium from an acidic solution having a nitric acid concentration of 1 N or more. Suitable for removal.
[従来の技術] 従来、放射性廃液から陽極酸化を含む手段によりルテ
ニウムを不溶形に転化して除去する技術は公開特許公報
平1−138496で論じられている。すなわち、ルテニウム
を含む溶液に一対の電極を浸漬することにより電気化学
的セルを構成し、セル中でルテニウムを電気化学的に酸
化し、かつ次いで電気化学的に還元することによりルテ
ニウムを不溶形に転化して除去する方法である。この方
法は溶液中のルテニウムが陽極において酸化されて高次
の酸化物である四酸化ルテニウムに転化し、四酸化ルテ
ニウムが陰極において還元されて不溶形である二酸化ル
テニウムに転化するという原理によっている。ルテニウ
ム除去後の放射性廃液は蒸発等の手段により固化減容し
て廃棄物とされるが、前記方法はルテニウム除去のため
に化学物質を添加する必要がなく、固化減容後の排気物
量を増やさない点で特に優れている。[Prior Art] Conventionally, a technique for converting ruthenium into an insoluble form and removing it from a radioactive waste liquid by means including anodic oxidation has been discussed in JP-A-1-138496. That is, an electrochemical cell is formed by immersing a pair of electrodes in a solution containing ruthenium, in which ruthenium is electrochemically oxidized and then electrochemically reduced in the cell to make ruthenium insoluble. It is a method of inverting and removing. This method is based on the principle that ruthenium in a solution is oxidized at the anode and converted to a higher oxide ruthenium tetroxide, and the ruthenium tetroxide is reduced at the cathode and converted to ruthenium dioxide which is in an insoluble form. The radioactive waste liquid after the removal of ruthenium is solidified and reduced in volume by means such as evaporation to become waste.However, the above method does not require the addition of a chemical substance for removing ruthenium and increases the amount of exhaust after the solidification and volume reduction. It is especially good at not having any.
[発明が解決しようとする課題] 上記従来技術はルテニウムを含む水溶液中に浸漬した
電極に電圧を印加し陽極上でルテニウムの酸化、陰極上
でルテニウムの酸化生成物の還元を行なうことにより水
溶液中のルテニウム化合物を不溶形に転化して除去する
方法を与えるものである。しかし上記技術が適用可能な
溶液のpH範囲は3〜12であるとされており、核燃料再処
理高レベル廃液に代表される硝酸濃度1規定以上の低pH
の酸性廃液からのルテニウム除去には適していない。[Problems to be Solved by the Invention] In the above-mentioned conventional technique, a voltage is applied to an electrode immersed in an aqueous solution containing ruthenium to oxidize ruthenium on an anode and reduce an oxidation product of ruthenium on a cathode to reduce an oxidation product of ruthenium. And converting the ruthenium compound to an insoluble form. However, the pH range of the solution to which the above-mentioned technology can be applied is said to be 3 to 12, and the nitric acid concentration is 1N or higher, which is a low pH value represented by high-level waste liquid for nuclear fuel reprocessing.
It is not suitable for removing ruthenium from acidic wastewater.
しかし固化減容後の廃棄物量を増やさないルテニウム
除去方法としては電気化学的方法が最適である。よっ
て、本発明は電気化学的方法により硝酸濃度1規定以上
の溶液からルテニウムを除去するのに好適な方法および
装置を与えることを目的とする。However, as a method for removing ruthenium without increasing the amount of waste after solidification and volume reduction, an electrochemical method is optimal. Therefore, an object of the present invention is to provide a method and an apparatus suitable for removing ruthenium from a solution having a nitric acid concentration of 1 N or more by an electrochemical method.
[課題を解決するための手段] 上記の目的を達成するため本発明は、四酸化ルテニウ
ムを生成する陽極または光励起半導体構造物に生成物を
滞留させる構造を与えることにより四酸化ルテニウムを
自己分解により不溶形へ転化させるものである。[Means for Solving the Problems] In order to achieve the above object, the present invention provides ruthenium tetroxide by self-decomposition by providing a structure for retaining the product on an anode or a photoexcited semiconductor structure for generating ruthenium tetroxide. It is converted to insoluble form.
[作用] 陽極または光励起半導体構造物により生成する四酸化
ルテニウムは、自己分解により不溶形である二酸化ルテ
ニウムに転化する性質を持つ。一方、溶液中には初期形
態のルテニウム(これは、通常の核燃料再処理廃液とし
ての溶液中では、ニトロシルルテニウムの形態をしてい
る)が残っており、四酸化ルテニウムと初期形態ルテニ
ウムが反応して第3の溶存形のルテニウム化合物(その
形態は未同定であるが、色は赤褐色)が生成される。四
酸化ルテニウムが不溶形の二酸化ルテニウムに転化する
速度は四酸化ルテニウム濃度の2乗に比例し、他方、四
酸化ルテニウムが第3の溶存形に転化する速度は四酸化
ルテニウム濃度の1乗に比例する。従って四酸化ルテニ
ウム濃度が高い程、四酸化ルテニウムは不溶形へ転化す
る確立は高くなる。一方、溶液の酸濃度が0.01規定以上
(pH2以下に相当)になると、酸濃度が高いほど、四酸
化ルテニウムの不溶形への転化速度は遅くなり、第3の
溶存形への転化速度は逆に速くなる。ところが、陽極で
生成した四酸化ルテニウムは拡散により陽極近傍から離
れていくため濃度が減少し、pH2以下の酸性溶液では、
もっぱら溶存形への転化しか生じない。従来の技術がpH
2以下の酸性溶液に適しない原因は陽極で生成した四酸
化ルテニウムが陰極に達する前に濃度減少により溶存形
ルテニウムに転化してしまうためであろう。[Function] Ruthenium tetroxide generated by the anode or the photoexcited semiconductor structure has a property of being converted into insoluble ruthenium dioxide by self-decomposition. On the other hand, ruthenium in the initial form (which is in the form of nitrosylruthenium in the solution as a normal nuclear fuel reprocessing waste liquid) remains in the solution, and the ruthenium tetroxide reacts with the ruthenium in the initial form. Thus, a third dissolved form of the ruthenium compound (its form is unidentified, but the color is reddish brown) is produced. The rate at which ruthenium tetroxide is converted to the insoluble form of ruthenium dioxide is proportional to the square of the ruthenium tetroxide concentration, while the rate at which ruthenium tetroxide is converted to the third dissolved form is proportional to the first power of the ruthenium tetroxide concentration. I do. Thus, the higher the concentration of ruthenium tetroxide, the higher the probability that ruthenium tetroxide will be converted to an insoluble form. On the other hand, when the acid concentration of the solution becomes 0.01N or more (corresponding to pH 2 or less), the higher the acid concentration, the lower the conversion rate of ruthenium tetroxide to the insoluble form and the reverse the conversion rate to the third dissolved form. Be faster. However, the concentration of ruthenium tetroxide generated at the anode decreases because it moves away from the vicinity of the anode due to diffusion.
Only conversion to the dissolved form takes place. Conventional technology is pH
The reason why it is not suitable for an acidic solution of 2 or less may be that ruthenium tetroxide produced at the anode is converted to dissolved ruthenium due to a decrease in concentration before reaching the cathode.
本発明では、四酸化ルテニウムの陰極還元による不溶
形への転化を利用するのではなく、四酸化ルテニウムが
自己分解により不溶形である二酸化ルテニウムに転化す
る性質を利用して溶液中のルテニウムを不溶形に転化す
る。本発明では陽極または光励起半導体構造物により溶
液中のルテニウムを酸化し四酸化ルテニウムに転化す
る。陽極または光励起半導体構造物を管状またはウール
状または編目状の構造にすることにより四酸化ルテニウ
ムを陽極または光励起半導体構造物の近傍に滞留させ、
拡散による濃度減少を抑制する。この抑制により、近傍
の四酸化ルテニウム濃度が上昇し、四酸化ルテニウムの
不溶形への転化が生じる。従って、ルテニウムを不溶形
に転化することにより溶液から除去することができる。In the present invention, instead of utilizing the conversion of ruthenium tetroxide to an insoluble form by cathodic reduction, ruthenium in a solution is insoluble by utilizing the property that ruthenium tetroxide is converted to ruthenium dioxide which is an insoluble form by self-decomposition. Convert to shape. In the present invention, ruthenium in a solution is oxidized and converted to ruthenium tetroxide by an anode or a photoexcited semiconductor structure. Ruthenium tetroxide stays in the vicinity of the anode or the photoexcited semiconductor structure by making the anode or the photoexcited semiconductor structure into a tubular or wool-like or knitted structure,
Suppress the concentration decrease due to diffusion. Due to this suppression, the concentration of ruthenium tetroxide in the vicinity increases, and conversion of ruthenium tetroxide to an insoluble form occurs. Thus, ruthenium can be removed from solution by converting it to an insoluble form.
[実 施 例] 本発明の一実施例を第1図を用いて説明する。[Embodiment] An embodiment of the present invention will be described with reference to FIG.
1は電解槽であって、ルテニウムを含む硝酸溶液2で
満たされる。3は陽極であり、両端開放の円筒管状のガ
ラス管4の中に挿入されている。陽極3およびガラス管
4は前記溶液2の中に浸漬される。5は陰極であり、前
記溶液2の中に浸漬される。6は電解用の直流電源であ
り、陽極3と陰極5の間に電流を供給する。本実施例に
おける溶液2は、硝酸1モル/リットルおよびニトロシ
ルルテニウム三硝酸塩1ミリモル/リットルを含む水溶
液である。また陽極3は直径0.5ミリメートル、長さ50
ミリメートルの白金線であり、陰極5は幅20ミリメート
ル、長さ50ミリメートル、厚さ0.5ミリメートルの白金
板である。ガラス管4の内径は6ミリメートルである。
直流電源6により陰陽両極間に200ミリアンペアの電流
を供給したところ、ガラス管4内の溶液の色は褐色から
次第に黄色に変化し、約15分後ガラス管4内に黒色の粒
子が生成し始めた。この溶液の色の変化はニトロシルル
テニウム(褐色)が四酸化ルテニウム(黄色)に変化し
たことを示す。黒色の粒子は二酸化ルテニウムであっ
た。An electrolytic cell 1 is filled with a nitric acid solution 2 containing ruthenium. Reference numeral 3 denotes an anode, which is inserted into a cylindrical glass tube 4 open at both ends. The anode 3 and the glass tube 4 are immersed in the solution 2. Reference numeral 5 denotes a cathode, which is immersed in the solution 2. Reference numeral 6 denotes a DC power supply for electrolysis, which supplies a current between the anode 3 and the cathode 5. The solution 2 in this embodiment is an aqueous solution containing 1 mol / liter of nitric acid and 1 mmol / liter of nitrosyl ruthenium trinitrate. The anode 3 has a diameter of 0.5 mm and a length of 50
The cathode 5 is a platinum plate 20 mm wide, 50 mm long and 0.5 mm thick. The inner diameter of the glass tube 4 is 6 mm.
When a current of 200 mA was supplied between the positive and negative electrodes by the DC power supply 6, the color of the solution in the glass tube 4 gradually changed from brown to yellow, and after about 15 minutes, black particles began to form in the glass tube 4. Was. The change in color of this solution indicates that ruthenium nitrosyl (brown) has changed to ruthenium tetroxide (yellow). The black particles were ruthenium dioxide.
比較のためガラス管4を取り去って同一の試験を実施
したところ、約15分で陽極3の近傍直径5ミリメートル
程度の範囲の溶液は淡黄色に変化したが、そのさらに外
側は赤褐色に変化した。そのまま電流の供給を継続した
ところ赤褐色の部分は次第に外側へ広がり、一方、電極
3近傍の淡黄色の部分は変化が見られなかった。電流の
供給を8時間にわたり継続したが黒色の粒子は生成しな
かった。陽極3近傍の溶液が淡黄色を呈するのは四酸化
ルテニウムが生成していることを示すが、ガラス管4が
存在する場合より色が薄いのは拡散により四酸化ルテニ
ウムが陽極近傍から失われるためである。その外側が赤
褐色になるのは四酸化ルテニウムがニトロシルルテニウ
ムと反応し第3の溶存形態に変化するためである。また
黒色粒子が生成しないのは、四酸化ルテニウム濃度がガ
ラス管4のある場合より小さくなり、四酸化ルテニウム
の自己分解による黒色粒子(二酸化ルテニウム)生成速
度よりも第3の溶存形態への変化速度の方が大きいため
である。For comparison, when the same test was carried out with the glass tube 4 removed, the solution in the range of about 5 mm in diameter in the vicinity of the anode 3 turned pale yellow in about 15 minutes, but turned reddish brown further outside. When the current supply was continued as it was, the red-brown portion gradually spread outward, while the pale yellow portion near the electrode 3 showed no change. The current supply was continued for 8 hours, but no black particles were formed. The light yellow color of the solution near the anode 3 indicates that ruthenium tetroxide is generated, but the color is lighter than when the glass tube 4 is present because ruthenium tetroxide is lost from the vicinity of the anode due to diffusion. It is. The reddish brown on the outside is because ruthenium tetroxide reacts with nitrosylruthenium and changes to the third dissolved form. The reason that no black particles are formed is that the concentration of ruthenium tetroxide is lower than that in the case of the glass tube 4 and the rate of change to the third dissolved form is lower than the rate of formation of black particles (ruthenium dioxide) by self-decomposition of ruthenium tetroxide. Is larger.
すなわち、本実施例におけるガラス管4は陽極で生成
する四酸化ルテニウムを陽極近傍に滞留させ、四酸化ル
テニウムの二酸化ルテニウムへの転化を促進する効果を
もつ。本実施例によれば硝酸溶液中のルテニウムを不溶
形に転化することが可能である。なおガラス管4はガラ
スで作られる必要は無く陶磁器又は金属であっても差し
支えない。またガラス管4の形状は円筒管状である必要
はなく陽極生成物が滞留する構造であればよい。たとえ
ば多角形管でもよく、複数の平板または曲面板で仕切ら
れた小室でもよい。小室は横方向に溶液が流通するよう
に開放されていてもよい。That is, the glass tube 4 in this embodiment has the effect of retaining ruthenium tetroxide generated at the anode near the anode and promoting the conversion of ruthenium tetroxide to ruthenium dioxide. According to this embodiment, it is possible to convert ruthenium in a nitric acid solution to an insoluble form. The glass tube 4 does not need to be made of glass and may be made of ceramic or metal. Further, the shape of the glass tube 4 does not need to be a cylindrical tube, and may be any structure as long as the anode product stays therein. For example, it may be a polygonal tube or a small chamber partitioned by a plurality of flat plates or curved plates. The compartment may be open to allow the solution to flow laterally.
本発明の別の実施例について第2図、第3図、第4図
を用いて説明する。第2図中、7は管状電極で、その詳
細な構造を第3図に示す。本実施例は、第1図の実施例
における陽極3とガラス管4に替えて管状電極7を用い
たものである。すなわち、第1図の実施例では陽極と陽
極生成物を滞留させる構造物(ガラス管)とが独立して
いたが、本実施例では管状電極7が該構造物を兼ねた構
造になっている。第3図の如く、管状電極7は両端開放
のガラス管10の内面に白金鍍金11を施し、白金鍍金部分
11を陽極として用いるものである。第4図に本実施例の
変形例を示す。第4図中の8は円盤状の回転子で、回転
用モータ9により磁石で回転する。回転子8の回転によ
り管状電極7の上部から下部に向かって溶液が流通す
る。溶液の流通により管状電極7より黒色粒子を排出
し、同時に管状電極7内の溶液を更新する。Another embodiment of the present invention will be described with reference to FIG. 2, FIG. 3, and FIG. In FIG. 2, reference numeral 7 denotes a tubular electrode, the detailed structure of which is shown in FIG. In the present embodiment, a tubular electrode 7 is used in place of the anode 3 and the glass tube 4 in the embodiment of FIG. That is, in the embodiment of FIG. 1, the anode and the structure (glass tube) for retaining the anode product are independent, but in the present embodiment, the tubular electrode 7 has a structure also serving as the structure. . As shown in FIG. 3, the tubular electrode 7 is provided with a platinum plating 11 on the inner surface of a glass tube 10 having both ends open, and a platinum plated portion.
11 is used as an anode. FIG. 4 shows a modification of this embodiment. Reference numeral 8 in FIG. 4 denotes a disk-shaped rotor which is rotated by a magnet by a rotation motor 9. The solution flows from the upper part to the lower part of the tubular electrode 7 by the rotation of the rotor 8. The black particles are discharged from the tubular electrode 7 by the flow of the solution, and at the same time, the solution in the tubular electrode 7 is renewed.
本実施例によれば硝酸溶液中のルテニウムを不溶形に
転化することが可能である。なおガラス管10はガラスで
作られる必要はなく、絶縁体であれば差し支えない。ま
たガラス管10の形状は円筒管状である必要はなく陽極生
成物がその中に滞留する構造であればよい。たとえば多
角形管でもよく、複数の平板または曲線板で仕切られた
小室でもよい。小室は横方向に溶液が流通するように開
放されていてもよい。According to this embodiment, it is possible to convert ruthenium in a nitric acid solution to an insoluble form. The glass tube 10 does not need to be made of glass, and may be an insulator. Further, the shape of the glass tube 10 does not need to be a cylindrical tube, and may be any structure as long as the anode product stays therein. For example, it may be a polygonal tube or a small chamber partitioned by a plurality of flat plates or curved plates. The compartment may be open to allow the solution to flow laterally.
なお、第1図の実施例では陽極3で生成した四酸化ル
テニウムは管4の中心から外側へ拡散していくので電極
3から離れるに従って四酸化ルテニウム濃度は減少す
る。このため中心から遠ざかった位置では四酸化ルテニ
ウムは不溶形に転化しない。これに対し、第2図、第3
図の実施例のようにガラス管内面に陽極を施して用いる
と、陽極で生成した物質は管の中心方向へ拡散していく
ので四酸化ルテニウム濃度は陽極から離れても減少しな
い。従って、この実施例では、前記第1図の実施例に比
べて四酸化ルテニウムの不溶形への転化効率が良好であ
る。In the embodiment of FIG. 1, ruthenium tetroxide generated at the anode 3 diffuses from the center of the tube 4 to the outside, so that the concentration of ruthenium tetroxide decreases as the distance from the electrode 3 increases. For this reason, ruthenium tetroxide is not converted to an insoluble form at a position away from the center. 2 and 3
When the anode is applied to the inner surface of the glass tube as in the embodiment shown in the figure, the substance generated at the anode diffuses toward the center of the tube, so that the concentration of ruthenium tetroxide does not decrease even if the anode is separated from the anode. Therefore, in this embodiment, the conversion efficiency of ruthenium tetroxide to the insoluble form is better than in the embodiment of FIG.
なお、本実施例における前記管状電極7の代りに、糸
状の電極[例えば電極金属(白金など)の線、または、
電極金属を鍍金したガラス繊維]を編目状またはウール
状の構造物としたものを用いた実施例も可能である。Instead of the tubular electrode 7 in this embodiment, a thread-like electrode [for example, a wire of an electrode metal (such as platinum), or
Glass fibers plated with an electrode metal] may be used as a stitch-like or wool-like structure.
本発明の別の実施例を第5図を用いて説明する。本実
施例では第2、3、4図に示した実施例の管状電極、陰
極および直流電源に替えて光励起半導体構造物14および
光源12を用いた例である。光励起半導体構造物14の構造
を第6図に示す。光励起半導体16は、気泡18を含ませて
散乱性を与えたガラス管15の内面に塗布されている。ガ
ラス管15は光励起半導体16の支持構造物である。ガラス
管15の外面は銀鍍金面17としてある。光源12から反射鏡
13で反射してガラス管15の上部より入射した光は19ガラ
ス管15中の気泡18により散乱されて向きを変え、一部は
光励起半導体16を塗布した面へ、一部は下方へ、一部は
外方へ向う。外方へ向った光は銀鍍金面17での反射によ
り向きを変えて光励起半導体16を塗布した面または下方
へ向かう。下方に向かった光もさらに下にある気泡18に
より散乱されるので、入射した光の殆どは光励起半導体
16を塗布した面へ照射される。光励起半導体16は光を受
けると分極し、微小な陽極として作用するので溶液中の
ルテニウムを四酸化ルテニウムに転化する。既に示した
実施例と同様に、四酸化ルテニウムは管状の光励起半導
体構造物14の管径内で不溶形に転化する。光励起半導体
16は光照射による分極の際に陽極側電位が標準水素極電
位より2.0ボルト以上正になる材料であればよく、例え
ば二酸化チタンまたは炭化ケイ素を用いることができ
る。なおガラス管15はガラスで作られる必要は無く透明
な素材で作られたものであれば差し支えない。また気泡
18のかわりに散乱性の小粒子を用いてよく、散乱性でな
く反射性または屈折性の小粒子でもよい。またガラス管
15の形状は円筒管状である必要はなく生成物が滞留する
構造であればよい。たとえば多角形管でもよく、複数の
平板または曲面板で仕切られた小室でもよい。小室は横
方向に溶液が流通するように開放されていてもよい。な
お、光励起半導体を分極させるには波長440ナノメータ
以下の光を照射する必要があるが、硝酸溶液は440ナノ
メータ以下の光を吸収するため一般には溶液に浸漬した
光励起半導体に光を照射するのは困難であるが、しか
し、本実施例によれば硝酸溶液中に浸漬した光励起半導
体16に効率よく光を照射することが可能である。なお、
前記光励起半導体構造物14の代りに、下記の如き光励起
半導体構造物を用いた実施例も可能である。すなわち、
ガラス繊維の外面に光励起半導体を塗布してなる糸状物
を編目状またはウール状とした構造物を酸溶液に浸漬
し、該ガラス繊維の端部から該ガラス繊維内に光を導入
する手段を設ける。この導入された光はガラス繊維に沿
って進行するにつれてガラス繊維の外へ洩れるので、外
面に塗布されている光励起半導体が分極して微小な陽極
として作用し、前記実施例と同様に、溶液中のルテニウ
ムを四酸化ルテニウムに転化する。Another embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which the photoexcited semiconductor structure 14 and the light source 12 are used in place of the tubular electrodes, the cathode, and the DC power supply of the embodiments shown in FIGS. The structure of the photoexcited semiconductor structure 14 is shown in FIG. The photoexcited semiconductor 16 is applied to the inner surface of the glass tube 15 which has a scattering property by including bubbles 18. The glass tube 15 is a support structure for the photoexcited semiconductor 16. The outer surface of the glass tube 15 is a silver-plated surface 17. Reflector from light source 12
The light reflected by 13 and incident from the upper part of the glass tube 15 is scattered by the bubbles 18 in the glass tube 19 and changes its direction, partly to the surface coated with the photoexcited semiconductor 16, partly downward, and Department goes outward. The light directed outward changes its direction by reflection on the silver-plated surface 17 and goes to the surface coated with the photoexcited semiconductor 16 or downward. Most of the incident light is also a photoexcited semiconductor, since the light going downward is also scattered by the bubbles 18 below.
Irradiation is applied to the surface coated with 16. When the photoexcited semiconductor 16 receives light, it is polarized and acts as a fine anode, so that ruthenium in the solution is converted to ruthenium tetroxide. As in the previously described embodiment, ruthenium tetroxide is converted to an insoluble form within the diameter of the tubular photoexcited semiconductor structure 14. Optically pumped semiconductor
The material 16 may be any material that makes the anode side potential more positive by 2.0 volts or more than the standard hydrogen electrode potential when polarized by light irradiation. For example, titanium dioxide or silicon carbide can be used. The glass tube 15 does not need to be made of glass and may be made of a transparent material. Also bubbles
Scattering small particles may be used instead of 18, and reflective or refractive small particles may be used instead of scattering. Also glass tube
The shape of 15 does not need to be a cylindrical tube, and may be a structure in which the product stays. For example, it may be a polygonal tube or a small chamber partitioned by a plurality of flat plates or curved plates. The compartment may be open to allow the solution to flow laterally. It is necessary to irradiate light with a wavelength of 440 nanometers or less to polarize the photoexcited semiconductor. Although difficult, however, according to the present embodiment, it is possible to efficiently irradiate light to the photoexcited semiconductor 16 immersed in the nitric acid solution. In addition,
An embodiment using the following photoexcited semiconductor structure instead of the photoexcited semiconductor structure 14 is also possible. That is,
A thread-shaped or wool-shaped structure formed by applying a photoexcited semiconductor to the outer surface of a glass fiber is immersed in an acid solution, and a means for introducing light into the glass fiber from an end of the glass fiber is provided. . Since the introduced light leaks out of the glass fiber as it travels along the glass fiber, the photo-excited semiconductor applied to the outer surface is polarized and acts as a fine anode, and as in the above-described embodiment, the light-excited semiconductor is in a solution. Of ruthenium to ruthenium tetroxide.
[発明の効果] 本発明によれば溶液中で酸化して生成させた四酸化ル
テニウムを滞留させることにより、これを自己分解によ
り不溶形へ転化することが可能であり、溶液中の溶存ル
テニウムを不溶形に転化して除去することが可能であ
る。しかも、本発明は、硫酸濃度1規定以上の低pH(pH
2以下)の酸性廃液中のルテニウム除去にも有効に適用
できる。[Effects of the Invention] According to the present invention, by retaining ruthenium tetroxide generated by oxidation in a solution, it is possible to convert the ruthenium to an insoluble form by self-decomposition. It can be converted to insoluble form and removed. In addition, the present invention provides a low pH (pH
2 or less) can be effectively applied to the removal of ruthenium in acidic waste liquid.
第1図は本発明の1実施例を示す図、第2図は同じく他
の1実施例を示す図、第3図は第2図中の管状電極の拡
大断面図、第4図は第2図の変形実施例を示す図、第5
図は同じく更に他の実施例を示す図、第6図は第5図中
の光励起半導体構造物の拡大断面図である。 1……電解槽、2……硝酸溶液 3……陽極、4……ガラス管 5……陰極、6……直流電源 8……回転子、9……回転子用モータ 10……ガラス管、11……白金鍍金面 12……光源、13……反射鏡 15……ガラス管、16……光励起半導体 17……反射用銀鍍金面、18……気泡 19……光線1 is a view showing one embodiment of the present invention, FIG. 2 is a view showing another embodiment of the present invention, FIG. 3 is an enlarged sectional view of the tubular electrode in FIG. 2, and FIG. The figure which shows the modification of FIG.
The figure is a view showing still another embodiment, and FIG. 6 is an enlarged sectional view of the photoexcited semiconductor structure in FIG. DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank, 2 ... Nitric acid solution 3 ... Anode, 4 ... Glass tube 5 ... Cathode, 6 ... DC power supply 8 ... Rotor, 9 ... Rotor motor 10 ... Glass tube, 11 Platinum-plated surface 12 Light source 13 Reflecting mirror 15 Glass tube 16 Photoexcited semiconductor 17 Reflective silver-plated surface 18 Bubbles 19 Light beam
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 正典 茨城県日立市森山町1168番地 株式会社 日立製作所エネルギー研究所内 (56)参考文献 特開 昭62−172298(JP,A) 特開 昭63−42499(JP,A) 特開 昭63−243232(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21F 9/06 G21F 9/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masanori Takahashi 1168 Moriyama-cho, Hitachi City, Ibaraki Pref. Energy Laboratory, Hitachi, Ltd. (56) References JP-A-62-172298 (JP, A) JP-A-63- 42499 (JP, A) JP-A-63-243232 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21F 9/06 G21F 9/10
Claims (10)
に転化して溶液から除去する方法であって、水溶液中の
ルテニウムを陽極酸化することにより四酸化ルテニウム
に転化し、該四酸化ルテニウムを陽極近傍で滞留させる
ことにより該四酸化ルテニウムを自己分解により不溶形
ルテニウムに転化させることを特徴とする、水溶液中の
ルテニウムの除去方法。1. A method for converting ruthenium in an aqueous solution to insoluble ruthenium and removing it from the solution, wherein the ruthenium in the aqueous solution is converted to ruthenium tetroxide by anodic oxidation, and the ruthenium tetroxide is converted to the vicinity of the anode. Wherein the ruthenium tetroxide is converted to insoluble ruthenium by self-decomposition by allowing the ruthenium to stay in the aqueous solution.
または板状の陽極および該陽極を覆う形で管状構造物を
設置し、該陽極で酸化されて生成した四酸化ルテニウム
を該管状構造物内に滞留させて自己分解により不溶形ル
テニウムに転化させる様に構成したことを特徴とする水
溶液中のルテニウムの除去装置。2. A linear or plate-like anode and a tubular structure are installed in an aqueous solution containing ruthenium so as to cover the anode, and ruthenium tetroxide produced by oxidation at the anode is converted into the tubular structure. An apparatus for removing ruthenium in an aqueous solution, wherein the apparatus is configured to be retained in a substance and converted into insoluble ruthenium by self-decomposition.
構造物の内面の一部または全部を陽極面としてなる陽極
構造物を設置し、該陽極面で酸化されて生成した四酸化
ルテニウムを該管状構造物内部に滞留させて自己分解に
より不溶形ルテニウムに転化させる様に構成したことを
特徴とする水溶液中のルテニウムの除去装置。3. An anode structure in which a part or all of the inner surface of a tubular structure is used as an anode surface in a ruthenium-containing aqueous solution, and ruthenium tetroxide generated by oxidation on the anode surface is produced. An apparatus for removing ruthenium from an aqueous solution, wherein the apparatus is configured to be retained inside a tubular structure and converted into insoluble ruthenium by self-decomposition.
状またはウール状構造物の一部または全部を陽極面とし
てなる陽極構造物を設置し、該陽極面で酸化されて生成
した四酸化ルテニウムを該構造物の間隙に滞留させて自
己分解により不溶形ルテニウムに転化させる様に構成し
たことを特徴とする水溶液中のルテニウムの除去装置。4. An anode structure in which a part or all of a stitch-like or wool-like structure is used as an anode surface in an aqueous solution containing ruthenium, and ruthenium tetroxide produced by oxidation on the anode surface A device for removing ruthenium from an aqueous solution, wherein the ruthenium is retained in gaps of the structure and converted into insoluble ruthenium by self-decomposition.
状構造物の内面の一部または全部を光励起半導体で構成
してなる光励起半導体構造物をルテニウムを含有してい
る水溶液中に設置し、該光励起半導体構造物に光を照射
する光照射手段を備え、該光照射により該光励起半導体
にて酸化されて生成した四酸化ルテニウムを該管状構造
物内部に滞留させて自己分解により不溶形ルテニウムに
転化させる様に構成したことを特徴とする水溶液中のル
テニウムの除去装置。5. A light-excited semiconductor structure comprising a transparent material and a part of or the entire inner surface of a light-scattering tubular structure is made of a light-excited semiconductor, placed in an aqueous solution containing ruthenium. A light irradiating means for irradiating the photoexcited semiconductor structure with light; ruthenium tetroxide oxidized and generated by the photoexcited semiconductor by the light irradiation is retained inside the tubular structure to form an insoluble form by self-decomposition; An apparatus for removing ruthenium from an aqueous solution, wherein the apparatus is configured to convert the ruthenium into ruthenium.
光5記載の水溶液中のルテニウムの除去装置。6. The apparatus for removing ruthenium in an aqueous solution according to claim 5, further comprising a light reflecting layer on the outer surface of the tubular structure.
料中に気泡、光散乱性粒子、あるいは光反射性または光
屈折性の粒子を混在させたことによって与えられている
請求項6記載の水溶液中のルテニウムの除去装置。7. The light scattering property inside the tubular structure is provided by mixing bubbles, light scattering particles, or light reflecting or light refracting particles in a transparent material. A device for removing ruthenium in an aqueous solution as described above.
様な光伝送ファイバーの表面の一部又は全部に光励起半
導体を施したものを編目状またはウール状にしてなる光
励起半導体構造物をルテニウムを含有している水溶液中
に設置し、該光伝送ファイバーの端部からその内部へ光
を導入する手段を備え、該光の導入により該光励起半導
体にて酸化されて生成した四酸化ルテニウムを該光励起
半導体構造物の間隙に滞留させて自己分解により不溶形
ルテニウムに転化させる様に構成したことを特徴とする
水溶液中のルテニウムの除去装置。8. An optically-pumped semiconductor structure in which a part or all of the surface of an optically-transmitting fiber in which light propagating inside leaks out of the surface one by one is provided with a photo-excited semiconductor and is formed into a stitch or wool shape. It is provided in an aqueous solution containing ruthenium, and is provided with a means for introducing light from the end of the optical transmission fiber into the inside thereof, and the ruthenium tetroxide generated by being oxidized by the photoexcited semiconductor by the introduction of the light is produced. An apparatus for removing ruthenium from an aqueous solution, wherein the apparatus is configured to be retained in a gap between the photoexcited semiconductor structures and converted into insoluble ruthenium by self-decomposition.
ニウムの除去装置において、管状構造物に替えて小室を
画成する仕切り板を用いた水溶液中のルテニウムの除去
装置。9. The apparatus for removing ruthenium from an aqueous solution according to claim 2, 3, 5, or 7, wherein the partitioning plate defining a small chamber is used instead of the tubular structure.
液を流通させる機構を備えたことを特徴とする請求項2
ないし8のいずれかに記載の水溶液中のルテニウムの除
去装置。10. A mechanism for forcing an aqueous solution to flow through each of said structures.
9. The apparatus for removing ruthenium from an aqueous solution according to any one of claims 8 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2240622A JP3005267B2 (en) | 1990-09-11 | 1990-09-11 | Method and apparatus for removing ruthenium from aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2240622A JP3005267B2 (en) | 1990-09-11 | 1990-09-11 | Method and apparatus for removing ruthenium from aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04120499A JPH04120499A (en) | 1992-04-21 |
JP3005267B2 true JP3005267B2 (en) | 2000-01-31 |
Family
ID=17062235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2240622A Expired - Fee Related JP3005267B2 (en) | 1990-09-11 | 1990-09-11 | Method and apparatus for removing ruthenium from aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3005267B2 (en) |
-
1990
- 1990-09-11 JP JP2240622A patent/JP3005267B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04120499A (en) | 1992-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yae et al. | Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells | |
Wang et al. | Activation of glassy carbon electrodes by alternating current electrochemical treatment | |
Compton et al. | Voltammetry in the presence of ultrasound. Sonovoltammetry and surface effects | |
Watanabe et al. | Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells | |
US4427749A (en) | Product intended to be used as a photocatalyst, method for the preparation of such product and utilization of such product | |
Sakai et al. | Local Detection of Photoelectrochemically Produced H2O2 with a" Wired" Horseradish Peroxidase Microsensor | |
Huang et al. | Electron transfer kinetics of Fe (CN) 63− 4− on laser-activated and CN−-modified Pt electrodes | |
Petit et al. | Hydrated electron in reverse micelles: 3. Distribution and location of probes such as ions and hydrophilic proteins | |
Watanabe et al. | Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups | |
Engstrom et al. | Fluorescence imaging of electrode-solution interfacial processes | |
US7696121B2 (en) | Photocatalytic electrode and fuel cell | |
WO2008121209A1 (en) | Photocatalytic electrode and fuel cell | |
Ohno et al. | Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodide using platinum-loaded TiO2 powder | |
Juodkazis et al. | Anodic dissolution of palladium in sulfuric acid: An electrochemical quartz crystal microbalance study | |
Kobayashi et al. | Effective surfaces of semiconductor catalysts for light-induced heterogeneous reactions evaluated by simultaneous photodeposition of both oxidation and reduction products | |
De Tacconi et al. | Photoelectrochemical behavior of nanocomposite films of cadmium sulfide, or titanium dioxide, and nickel | |
Hada et al. | Photoreduction of silver ion in a titanium dioxide suspension. | |
Finklea et al. | Chemically modified electrodes. 12. Effects of silanization on titanium dioxide electrodes | |
Ichikawa | Photoelectrocatalytic production of hydrogen from natural seawater under sunlight | |
Pennarun et al. | Micro-optical ring electrode: development of a novel electrode for photoelectrochemistry | |
JP3005267B2 (en) | Method and apparatus for removing ruthenium from aqueous solution | |
Rojhantalab et al. | Characterization of the silver/aqueous electrolyte interface by optical second harmonic generation and differential capacitance | |
Hada et al. | Photoreduction of silver ion on the surface of titanium dioxide single crystals | |
Pollet et al. | The effect of ultrasonic frequency and intensity upon electrode kinetic parameters for the Ag (S2O3) 23−/Ag redox couple | |
Krýsa et al. | Electrochemically assisted photocatalytic degradation of oxalic acid on particulate TiO 2 film in a batch mode plate photoreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |