JP3004433B2 - Underwater acoustic signal transmission method - Google Patents
Underwater acoustic signal transmission methodInfo
- Publication number
- JP3004433B2 JP3004433B2 JP3337699A JP33769991A JP3004433B2 JP 3004433 B2 JP3004433 B2 JP 3004433B2 JP 3337699 A JP3337699 A JP 3337699A JP 33769991 A JP33769991 A JP 33769991A JP 3004433 B2 JP3004433 B2 JP 3004433B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- control signal
- underwater acoustic
- control
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は水中音響信号伝送方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transmitting underwater acoustic signals.
【0002】[0002]
【従来の技術】母船から無索式潜水機等への水中音響制
御信号の伝送方法では従来、伝送誤りをパリティチェッ
クやチェックサム等で検出し、もし誤りが見つかれば、
その前の制御信号を継続している。2. Description of the Related Art In a method of transmitting an underwater acoustic control signal from a mother ship to a cableless submersible or the like, conventionally, a transmission error is detected by a parity check, a checksum, or the like.
The previous control signal is continued.
【0003】ここでパリティチェックは、nビットの情
報にさらに1ビットを加え、この合計が常に奇数(又は
偶数)になるように調節し、受信側が偶数(又は奇数)
になった場合、エラーとして検出する方法で、1バイト
の場合には普通8ビット目をパリティチェックとする。
また、チェックサムは例えば、1バイトの情報を4種類
送るとすると、順に1バイトずつ送り、4つ目の後にさ
らに4つの和の信号すなわち計5つ信号を送る。そして
受信側がこの和の信号と4つの和が等しくないときはエ
ラーとして検出する方法である。Here, the parity check adds one bit to the n-bit information, adjusts the sum so that the sum is always odd (or even), and the receiving side is even (or odd).
In this case, the parity check is normally performed on the eighth bit in the case of 1 byte in the method of detecting an error.
Assuming that four types of 1-byte information are sent, for example, the checksum is sent one byte at a time in order, and after the fourth, a sum signal of four more, that is, a total of five signals is sent. When the sum signal is not equal to the sum of the four signals, the receiving side detects the error as an error.
【0004】[0004]
【発明が解決しようとする課題】しかしながらこのよう
な従来の信号伝送方法では、誤りが見つかっても補正す
ることなく前の制御信号を継続しているので、例えば伝
送誤り率が小さく、1フレーム内に1個の誤りしかなく
ても、そのフレームが連続すれば制御信号としては役に
立たなくなり、潜水機が制御できなくなることがある。
特に無索式の水中音響通信では水面や海底の反射音の影
響も受け易く、誤り率をゼロにすることはできない。However, in such a conventional signal transmission method, even if an error is found, the previous control signal is continued without correction. However, even if there is only one error, if the frame is continuous, it may not be useful as a control signal, and the submersible may not be able to control.
In particular, the cableless underwater acoustic communication is easily affected by the reflected sound from the water surface and the sea floor, and the error rate cannot be reduced to zero.
【0005】本発明はこのような事情に鑑みて提案され
たもので、受信データにある程度誤りを含んでいても、
得られたデータから正しい制御信号を推定し、潜水機等
を無制御状態に落ち入れないように遠隔操作する水中音
響信号伝送方法を提供することを目的とする。[0005] The present invention has been proposed in view of such circumstances, and even if the received data contains a certain error,
It is an object of the present invention to provide a method of transmitting an underwater acoustic signal in which a correct control signal is estimated from obtained data and a submersible or the like is remotely operated so as not to fall into an uncontrolled state.
【0006】[0006]
【課題を解決するための手段】そのために本発明は、母
船から無人潜水機に送る制御信号の水中音響通信におい
て、母船上で制御信号を制御方向とその大きさを示す複
数又は単数の直線に画面上で作成し、この画素信号を送
波器より送信し、水中媒体を経由し受波器で得られた画
素信号をハフ変換して複数又は単数の直線近似を行い、
この近似直線の原点に対する上下左右の位置により上記
無人潜水機への制御信号を得ることで伝送誤りを補正す
ることを特徴とする。For this purpose, the present invention relates to an underwater acoustic communication of a control signal sent from a mother ship to an unmanned submersible. In the underwater acoustic communication, the control signal is converted into a plurality or a single straight line indicating the control direction and the magnitude on the mother ship. Create on the screen, transmit this pixel signal from the transmitter, perform Hough transform of the pixel signal obtained by the receiver via the underwater medium and perform multiple or singular linear approximation,
The transmission error is corrected by obtaining a control signal to the unmanned underwater vehicle based on the vertical and horizontal positions with respect to the origin of the approximate straight line.
【0007】[0007]
【作用】このような構成によれば、発信側は制御信号を
原点(画像中央)を基準点とした直線群に変換し、原点
に対してのその直線の位置および距離により制御信号の
方向および程度を表すように変換する。この直線の2値
信号(画素信号)を発信し、受信側では伝送誤りを含ん
だこの2値信号に基づき、直線群を近似再生する。この
直線近似にハフ変換を用いることで複数の直線近似が可
能となる。受信側では得られた近似直線と原点との位置
関係および距離により制御の方向および程度を推定し、
制御を行うことができる。According to this structure, the transmitting side converts the control signal into a group of straight lines with the origin (center of the image) as a reference point, and determines the direction and direction of the control signal based on the position and distance of the straight line with respect to the origin. Convert to represent degree. A binary signal (pixel signal) of the straight line is transmitted, and a group of straight lines is approximately reproduced on the receiving side based on the binary signal including a transmission error. By using the Hough transform for this linear approximation, multiple linear approximations are possible. The receiving side estimates the direction and degree of control based on the positional relationship and distance between the obtained approximate straight line and the origin,
Control can be performed.
【0008】[0008]
【実施例】本発明の一実施例を図面について説明する
と、図1はその全体概念図、図2は図1における母船側
および無人潜水機側の送受信系統を示すブロック図、図
3は図2における送信側信号図、図4は図3の画素分解
の一例を示す説明図、図5(A)は図2における受信側
近似直線図であり、同図(B)は画素分解の一例を示す
説明図、図6は図5(B)の各画素のρとθとの関係を
示す方程式、図7は図5(A)の2直線化図、図8は2
元制御の場合の全体フローチャートである。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall conceptual diagram, FIG. 2 is a block diagram showing a transmission / reception system on the mother ship side and the unmanned submersible side in FIG. 1, and FIG. 4, FIG. 4 is an explanatory diagram showing an example of the pixel decomposition of FIG. 3, FIG. 5A is an approximate linear diagram of the reception side in FIG. 2, and FIG. 5B shows an example of the pixel decomposition. FIG. 6 is an equation showing the relationship between ρ and θ of each pixel in FIG. 5B, FIG. 7 is a bilinearized diagram in FIG. 5A, and FIG.
It is an overall flowchart in the case of original control.
【0009】まず、図1において、母船2からの送波器
3からオペレーターにより無人潜水機1へ速度小で前進
という制御信号が与えられたとする。この発信信号は図
2のブロック図の矢印に沿って直線化,画素信号,PS
K変調,増巾器を経て送波器3から水中へ発射される。
その際、発信側ではまず、これを図3に示すような直交
する2本の直線に変換する。ここで、横軸は前後進を表
し、縦軸が左右移動を表す。いま、発信信号は小速度の
前進であるので、横軸が原点より少し上側となり、縦軸
は原点上にある。この直線を例えば64×64の画素に
分割し、その画素に対しての2値信号をPSK(Pha
se Shift Keying)方式により図5
(A)に示すように、縦般送波の位相の変化を“0”ま
たは“1”のデータ系列に対応させて送信する。PSK
方式は拘束データ伝送が可能である。そうすると、受信
側では図2の下半部のブロック図に示すように、このP
SK信号を受信し、受信信号はまず、復調器(位相歪に
よる信号の補正)を通り、この後この画素信号に基づき
ハフ変換を行い直線近似を行って、図5(A)のような
受信画像を得る。First, in FIG. 1, it is assumed that a control signal is given from the transmitter 3 from the mother ship 2 to the unmanned submersible 1 by the operator to move forward at a low speed. This transmission signal is linearized along the arrow in the block diagram of FIG.
The wave is transmitted from the transmitter 3 into the water through the K modulator and the amplifier.
At this time, the transmitting side first converts this into two orthogonal straight lines as shown in FIG. Here, the horizontal axis represents forward / backward movement, and the vertical axis represents left / right movement. Now, since the transmission signal is a forward movement at a low speed, the horizontal axis is slightly above the origin, and the vertical axis is on the origin. This straight line is divided into, for example, 64 × 64 pixels, and a binary signal corresponding to the pixel is PSK (Pha
5 by the “Shift Keying” method.
As shown in (A), a change in the phase of the longitudinal transmission is transmitted in accordance with a data sequence of "0" or "1". PSK
The system is capable of constrained data transmission. Then, on the receiving side, as shown in the block diagram in the lower half of FIG.
The SK signal is received, and the received signal first passes through a demodulator (correction of a signal due to phase distortion), and then performs a Hough transform based on the pixel signal to perform a linear approximation to obtain a reception signal as shown in FIG. Get an image.
【0010】いま説明の便宜上、図3を例えば図4に示
す13個の画素に分けて送信するとする。ところで外乱
のため受信側では図4の画素のうち、(−3,2),
(−1,2),(1,2),(3,2),(0,1),
(0,−1),(0,−3)の7画素しか受信できなか
ったとすると、受信画像としては図5(B)が得られ
る。この各画素はハフ変換により下記の式〜で表さ
れ、これをθを変数として表すと図6線図となる。 ρ=−3cosθ+2sinθ・・・ ρ=−1cosθ+2sinθ・・・ ρ= cosθ+2sinθ・・・ ρ= 3cosθ+2sinθ・・・ ρ= sinθ・・・ ρ= −sinθ・・・ ρ= −3sinθ・・・ 図6において、0≦θ<πの範囲で見ると点P1 (2,
π/2)を通る線が4本、点P2 (0,0)を通る線が
3本あり、この2点P1 ,P2 が線の重なりの上位2点
となり、残りは2本で交わっている点が12点ある。こ
れより、式に示すように、再びx,y平面に変換した
2本の直線が得られる。 2=xcosπ/2+ysinπ/2 および 0−xcos0+ysin0・・・ これを整理すると式に示すように、 y=2←前後進信号 x=0←左右旋回信号・・・・・・ の2本の線が得られ、これはさきに図3に示した図に外
ならず、このようにして、外乱にもかかわらず図3は受
信されたのち、同一の形として再生されるのである。For the sake of convenience, it is assumed that FIG. 3 is transmitted by dividing it into, for example, 13 pixels shown in FIG. By the way, on the receiving side due to disturbance, (−3, 2),
(−1,2), (1,2), (3,2), (0,1),
Assuming that only seven pixels (0, -1) and (0, -3) can be received, FIG. 5B is obtained as a received image. Each pixel is represented by the following formulas (1) to (3) by Hough transform, and when this is represented by θ as a variable, the diagram shown in FIG. 6 is obtained. ρ = −3 cos θ + 2 sin θ ρ = −1 cos θ + 2 sin θ ρ = cos θ + 2 sin θ ρ = 3 cos θ + 2 sin θ ρ = sin θ ρ = −sin θ ρ = −3 sin θ In FIG. Looking at the range of 0 ≦ θ <π, the point P 1 (2,
There are four lines passing through (π / 2) and three lines passing through the point P 2 (0,0). These two points P 1 and P 2 are the top two points of the line overlap, and the rest are two. There are 12 intersecting points. As a result, as shown in the equations, two straight lines converted into the x and y planes are obtained again. 2 = xcosπ / 2 + ysinπ / 2 and 0−xcos0 + ysin0... When these are arranged, two lines of y = 2 ← forward / backward traveling signals x = 0 ← left / right turning signals... This does not deviate from the diagram shown in FIG. 3 earlier, and thus, despite the disturbance, FIG. 3 is reproduced in the same form after being received.
【0011】以上述べたところを一般的にいうと、ρ−
θ空間での曲線が最も多く交わる点P1 (ρ1 ,θ1 )
およびその次に多く交わる点P2 (ρ2 ,θ2 )を見つ
けることにより2本の直線 ρ1 =xcosθ1 +ysinθ1 ρ2 =xcosθ2 −ysinθ2 が得られる(図7)。発信側でこの直線の傾きが決まる
ので(この場合横軸,縦軸に平行)得られた近似直線の
cosθ1 又はcosθ2 がゼロに近い場合を前後進制
御信号とみなし、さらにcos(θ1 −△θ1 )となる
ように近似直線を補正してρ1 /sin(θ−△θ1 )
とし、同様にρ2 /cos(θ2 −△θ2 )を制御量と
することができる。[0011] Generally speaking, what has been described above is ρ-
Point P 1 (ρ 1 , θ 1 ) where the curve in θ space intersects most
By finding a point P 2 (ρ 2 , θ 2 ) that intersects with the following two points, two straight lines ρ 1 = xcos θ 1 + ysin θ 1 ρ 2 = xcos θ 2 −ysin θ 2 are obtained (FIG. 7). Since the slope of the straight line is determined on the transmitting side (in this case, parallel to the horizontal axis and the vertical axis), a case where the obtained approximate straight line cos θ 1 or cos θ 2 is close to zero is regarded as a forward / backward control signal, and cos (θ 1 − △ θ 1 ) by correcting the approximation line so that ρ 1 / sin (θ− △ θ 1 )
Similarly, ρ 2 / cos (θ 2 − △ θ 2 ) can be used as the control amount.
【0012】以上は前進および左右制御の2元制御の場
合について述べたがその際の全体フロー図を画くと図8
に示す通りである。なお、さきに述べた図1において
は、補正が不要であったため、これを省略したが、もし
仮に以下の2式がハフ変換により得られたとすると 2=xcos(1.70)+ysin(1.70)・・・(α) 0=xcos(0.15)+ysin(0.15)・・・(β) 送信側は式αのx係数が0となる信号を送っているのだ
からcos(1.70−△θ1 )=0となるように△θ
1 を求め、これより△θ1 ≒0.13が得られる。同様
に式βのy係数が0より、sin(0.15)=0より
△θ2 ≒0.15故に制御信号は y=2/sin(1.70−0.13)≒2 x=0/cos(0.15−0.15)≒0 となる。In the above, the case of the dual control of the forward and the left and right control has been described.
As shown in FIG. Note that, in FIG. 1 described above, since no correction was necessary, this was omitted, but if the following two equations were obtained by Hough transform, 2 = xcos (1.70) + ysin (1. 70) (α) 0 = xcos (0.15) + ysin (0.15) (β) Since the transmitting side is transmitting a signal in which the x coefficient of the expression α is 0, cos (1 .70− △ θ 1 ) = 0
1 is obtained, from which Δθ 1 ≒ 0.13 is obtained. Similarly, since the y coefficient of equation β is 0 and sin (0.15) = 0, the control signal is y = 2 / sin (1.70−0.13) ≒ 2 x = 0 since △ θ 2 ≒ 0.15. /Cos(0.15-0.15)≒0.
【0013】2元制御でなく、1元制御を行う場合は、
例えば、前後進制御信号のみを送る。この場合、Y=2
の信号のみを送るので、受信側では式〜が得られ、
これよりy=2となり、中速での前後進信号が得られ
る。When performing one-way control instead of two-way control,
For example, only the forward / reverse control signal is transmitted. In this case, Y = 2
Since only the signal of
From this, y = 2, and a forward / backward traveling signal at a medium speed is obtained.
【0014】[0014]
【発明の効果】一般に水中音響通信においては、伝送誤
り率をゼロに限りなく近づけることはそれだけ伝達時間
が多くかかるのみならず、完全にゼロにすることもでき
ない。しながらこのような伝送誤りを含んだ情報から本
発明によれば、直線近似という方法を用いて眞値を推定
し、制御することで無索式潜水機の無制御状態が防止で
きる。本発明方法は、潜水船に搭載された水中カメラの
出力信号の母船への伝達にも適用可能である。In general, in underwater acoustic communication, making the transmission error rate as close as possible to zero not only takes much transmission time, but also cannot make it completely zero. In the meantime, according to the present invention, the true value is estimated from the information including the transmission error by using the method of linear approximation and controlled, whereby the uncontrolled state of the cableless submersible can be prevented. The method of the present invention is also applicable to transmission of an output signal of an underwater camera mounted on a submerged ship to a mother ship.
【0015】要するに本発明によれば、母船から無人潜
水機に送る制御信号の水中音響通信において、母船上で
制御信号を制御方向とその大きさを示す複数又は単数の
直線に画面上で作成し、この画素信号を送波器より送信
し、水中媒体を経由し受波器で得られた画素信号をハフ
変換して複数又は単数の直線近似を行い、この近似直線
の原点に対する上下左右の位置により上記無人潜水機へ
の制御信号を得ることで伝送誤りを補正することによ
り、受信データにある程度誤りを含んでいても、得られ
たデータから正しい制御信号を推定し、潜水機等を無制
御状態に落ち入れないように遠隔操作する水中音響信号
伝送方法を得るから、本発明は産業上極めて有益なもの
である。In short, according to the present invention, in underwater acoustic communication of a control signal sent from a mother ship to an unmanned submersible vehicle, a control signal is created on the screen in a plurality or a single straight line indicating the control direction and the magnitude on the mother ship. This pixel signal is transmitted from the transmitter, and the pixel signal obtained by the receiver via the underwater medium is subjected to Hough transform to perform plural or singular linear approximation. By correcting the transmission error by obtaining the control signal to the unmanned submersible by the above, even if the received data contains errors to some extent, it estimates the correct control signal from the obtained data and controls the submersible etc. The present invention is extremely useful in industry because it provides a method for transmitting underwater acoustic signals that is remotely controlled so as not to fall into a state.
【図1】本発明の一実施例を示す全体概念図である。FIG. 1 is an overall conceptual diagram showing one embodiment of the present invention.
【図2】図1における母船側および無人潜水機側の送受
信系統を示すブロック図である。FIG. 2 is a block diagram illustrating a transmission / reception system on the mother ship side and the unmanned submersible side in FIG.
【図3】図2における送信側信号図である。FIG. 3 is a transmission signal diagram in FIG. 2;
【図4】図3の画素分解の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the pixel decomposition of FIG. 3;
【図5】同図(A)は図2における受信側近似直線図で
あり、同図(B)は画素分解の一例を示す説明図であ
る。5A is an approximate linear diagram on the receiving side in FIG. 2, and FIG. 5B is an explanatory diagram showing an example of pixel decomposition.
【図6】図5(B)の各画素のρとθとの関係を示す方
程式である。FIG. 6 is an equation showing a relationship between ρ and θ of each pixel in FIG. 5 (B).
【図7】図5(A)の2直線化図である。FIG. 7 is a two-linearized diagram of FIG.
【図8】2元制御の場合のフローチャートである。FIG. 8 is a flowchart in the case of binary control.
1 無人潜水機 2 母船 3 送波器 4 受波器 1 Unmanned submersible 2 Mother ship 3 Transmitter 4 Receiver
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B63C 11/00 G05D 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B63C 11/00 G05D 1/00
Claims (1)
中音響通信において、母船上で制御信号を制御方向とそ
の大きさを示す複数又は単数の直線に画面上で作成し、
この画素信号を送波器より送信し、水中媒体を経由し受
波器で得られた画素信号をハフ変換して複数又は単数の
直線近似を行い、この近似直線の原点に対する上下左右
の位置により上記無人潜水機への制御信号を得ることで
伝送誤りを補正することを特徴とする水中音響信号伝送
方法。In underwater acoustic communication of a control signal transmitted from a mother ship to an unmanned submersible, a control signal is created on a screen in a plurality or a single straight line indicating a control direction and a magnitude on the mother ship,
Transmit this pixel signal from the transmitter, perform Hough transform on the pixel signal obtained by the receiver via the underwater medium, and perform multiple or single linear approximation. An underwater acoustic signal transmission method, wherein a transmission error is corrected by obtaining a control signal to the unmanned submersible.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3337699A JP3004433B2 (en) | 1991-11-27 | 1991-11-27 | Underwater acoustic signal transmission method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3337699A JP3004433B2 (en) | 1991-11-27 | 1991-11-27 | Underwater acoustic signal transmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05147583A JPH05147583A (en) | 1993-06-15 |
JP3004433B2 true JP3004433B2 (en) | 2000-01-31 |
Family
ID=18311129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3337699A Expired - Lifetime JP3004433B2 (en) | 1991-11-27 | 1991-11-27 | Underwater acoustic signal transmission method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3004433B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6991545B2 (en) | 2017-03-31 | 2022-01-12 | 国立研究開発法人 海上・港湾・航空技術研究所 | Operation method of multiple underwater vehicles and operation system of multiple underwater vehicles |
KR102497993B1 (en) | 2017-03-31 | 2023-02-10 | 고쿠리츠겐큐카이하츠호진 가이죠·고완·고쿠기쥬츠겐큐죠 | Control method of an underwater hang main body, input method of an underwater hang main body, pumping method of an underwater hang main body, control system of an underwater hang main body, and input and pumping equipment of an underwater hang main body control system |
-
1991
- 1991-11-27 JP JP3337699A patent/JP3004433B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05147583A (en) | 1993-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101151130B1 (en) | Method and apparatus for transmitting and receiving data using full rate full diversity stbc | |
US4709377A (en) | Viterbi decoder for wireline modems | |
US20200028595A1 (en) | System and Method for Communication with Time Distortion | |
US8719656B2 (en) | Four-dimensional non-binary LDPC-coded modulation schemes for ultra high-speed optical fiber communication | |
EP3469400B1 (en) | Device and method for positioning an underwater device | |
JP3004433B2 (en) | Underwater acoustic signal transmission method | |
US20050111563A1 (en) | De-mapping method for wireless communications systems | |
JPH0370420B2 (en) | ||
CN1118543A (en) | Trellis coding in a simultaneous voice and data system | |
EP0630132A2 (en) | Shaped signal spaces in a simultaneous voice and data system | |
US5425037A (en) | Data transmission apparatus | |
JPS60134545A (en) | Data communication signal structure | |
US11770289B2 (en) | Communication device for transmitting data by using multilevel coding, and communication system | |
US8543268B2 (en) | Cumulative lateral slide indication | |
US4590570A (en) | Marine navigational aid | |
CN110683009B (en) | Method, system and storage medium for remotely controlling ship by satellite | |
CA2034007A1 (en) | Modulator-demodulator device capable of detecting an unsynchronized frame state | |
Ochi et al. | The acoustic communication experiment at 1,600 m depth using QPSK and 8PSK | |
CN116566487A (en) | Underwater visible light communication system | |
JP2606593B2 (en) | Command transmission system | |
JPS5881356A (en) | Error control system | |
CN112803951A (en) | Method for reducing noise of communication system received signal, receiving end and communication system | |
JP2006213265A (en) | Communication device and communication method of submersible | |
CN112272351B (en) | Anti-passive positioning device and system | |
JP2754836B2 (en) | Underwater digital communication device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991020 |