JP3004029B2 - Production quantity analysis system - Google Patents

Production quantity analysis system

Info

Publication number
JP3004029B2
JP3004029B2 JP2097762A JP9776290A JP3004029B2 JP 3004029 B2 JP3004029 B2 JP 3004029B2 JP 2097762 A JP2097762 A JP 2097762A JP 9776290 A JP9776290 A JP 9776290A JP 3004029 B2 JP3004029 B2 JP 3004029B2
Authority
JP
Japan
Prior art keywords
state quantity
difficult
process element
measure
online
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2097762A
Other languages
Japanese (ja)
Other versions
JPH042446A (en
Inventor
修市 牧
孝司 迫
辰也 福永
和喜 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd
Original Assignee
Asahi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd filed Critical Asahi Engineering Co Ltd
Priority to JP2097762A priority Critical patent/JP3004029B2/en
Publication of JPH042446A publication Critical patent/JPH042446A/en
Application granted granted Critical
Publication of JP3004029B2 publication Critical patent/JP3004029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Multi-Process Working Machines And Systems (AREA)
  • General Factory Administration (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生産設備の生産量の予測および品質予測を
行う生産状態量解析システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a production state quantity analysis system for predicting a production amount and a quality prediction of a production facility.

[従来の技術] 従来、生産設備の能力を予め数式化して生産結果を予
測(シミュレーションとも呼ばれる)する生産状態量解
析システムが提案されている。生産状態量解析システム
で用いられる生産結果を予測する数式は次式で表わされ
る。
[Related Art] Conventionally, there has been proposed a production state quantity analysis system for predicting a production result by formulating the capacity of a production facility in advance (also called simulation). An equation for predicting a production result used in the production state quantity analysis system is represented by the following equation.

P=f(s,c) (1) ここで、Pは出力状態量であり、生産量および生産さ
れた製品の品質を表わす各出力要素、たとえば、重量,
色,不良品の発生個数等の行列で表わされる。
P = f (s, c) (1) Here, P is an output state quantity, and each output element representing the production quantity and the quality of the produced product, for example, weight,
It is represented by a matrix such as the color and the number of defective products.

sは入力状態量あであり、生産設備に供給する原材料
の入力状態、たとえば重量,成分,温度等の各入力要素
の行列で表わされる。
s is an input state quantity, which is represented by a matrix of input elements of raw materials supplied to the production equipment, for example, input elements such as weight, components, and temperature.

cは工程状態量であり、生産工程での生産処理状態を
示す、たとえば、添加物,運転条件等の各工程要素の行
列で表わされる。
c is a process state quantity, which indicates a production processing state in the production process, and is represented by a matrix of each process element such as an additive and operating conditions.

fは関数を意味する。 f means a function.

生産が開始されると、生産状態量解析システムは上述
の入力状態量を示すデータおよびこのデータが入力され
た時点と対応する工程状態量および実測の出力状態量を
示すデータを用いて、統計解析を行って、上記関数f
(s,c)を自動的に算出する。具体的には関数f(s,c)
を f(s,c)=A×C+B×S (2) で表わし、定数A,Bの値を決定する。
When the production is started, the production state quantity analysis system performs a statistical analysis using the data indicating the input state quantity described above, the process state quantity corresponding to the time when the data is input, and the data indicating the actually measured output state quantity. And the above function f
(S, c) is calculated automatically. Specifically, the function f (s, c)
Is expressed by f (s, c) = A × C + B × S (2), and the values of the constants A and B are determined.

このように決定された演算式に入力状態量および工程
状態量を代入して、出力状態量を算出することにより、
出力状態量を予測する。また、出力状態量の予測機能を
用いて異常原因の診断処理も行われている。
By substituting the input state quantity and the process state quantity into the arithmetic expression thus determined, and calculating the output state quantity,
Predict output state quantities. Diagnosis processing of the cause of the abnormality is also performed using the output state quantity prediction function.

すなわち、生産結果として得られる製品に品質不良が
生じた場合、設備運転者は生産量状態解析システムに蓄
積,記憶された入力状態量,工程状態量および実測の出
力状態量の各要素データを印刷出力し、その印刷結果を
参照して、異常の原因となったと思われる入力状態また
は工程状態の要素を過去の経験に基づき検索抽出する。
次に検索抽出した要素についてのデータを変更し、この
変更データを用いて生産状態量解析システムにより異常
を生じた要素についての出力状態量の計算を行う。その
計算結果が正常となったときには、検索抽出した要素が
異常原因であると確定する。
In other words, when a quality defect occurs in the product obtained as a production result, the facility operator prints each element data of the input state quantity, the process state quantity, and the actually measured output state quantity accumulated and stored in the production quantity state analysis system. The output and the print result are referred to, and the elements of the input state or the process state considered to be the cause of the abnormality are retrieved and extracted based on past experience.
Next, the data on the searched and extracted element is changed, and the output state quantity of the element having the abnormality is calculated by the production state quantity analysis system using the changed data. When the calculation result becomes normal, it is determined that the searched and extracted element is the cause of the abnormality.

[発明が解決しようとする課題] しかしながら、従来の生産状態量解析システムでは、
上記入力状態量および工程状態量のデータが多い程、異
常診断を行うときに設備運転者は参照するデータも多く
なる。また、異常原因の要素の検索のために、試行錯誤
的に出力状態量の計算を実行しなければならず、その結
果、従来システムは異常原因の分析に時間がかかるとい
う不具合があった。
[Problems to be solved by the invention] However, in the conventional production state quantity analysis system,
As the data of the input state quantity and the process state quantity increases, the equipment operator refers to more data when performing the abnormality diagnosis. In addition, the calculation of the output state quantity must be performed by trial and error in order to search for the element of the cause of the abnormality. As a result, the conventional system has a problem that it takes time to analyze the cause of the abnormality.

そこで、本願出願人は、出力要素を指定し、指定した
出力要素に影響を与える入力要素または工程要素を検
索、抽出することにより異常原因の分析処理の時間を短
縮する生産状態量解析システムを提案した(平成1,10月
2日出願)。
Therefore, the applicant of the present application has proposed a production state quantity analysis system in which an output element is specified, and an input element or a process element that affects the specified output element is searched and extracted, thereby shortening the time required for the analysis processing of the cause of the abnormality. (Filed on October 2, Heisei 1).

しかしながら、上記提案では環境条件や技術的制約な
どのために、オンラインにて実測困難な工程要素や制御
困難な工程要素については管理できないという点で、な
お改善すべき点があった。
However, in the above proposal, there is still a point to be improved in that it is not possible to manage process elements that are difficult to measure or control on-line due to environmental conditions and technical constraints.

そこで、本発明の目的は、上述の点に鑑みて、オンラ
インで計測が困難な状態量や制御困難な中間製品の状態
量についても解析が行える生産状態量解析システムを提
供することにある。
In view of the above, an object of the present invention is to provide a production state quantity analysis system capable of analyzing a state quantity that is difficult to measure online or an intermediate product that is difficult to control online.

[課題を解決するための手段] このような目的を達成するために、請求項1の発明
は、生産設備における入力要素,工程要素および出力要
素についての各状態量を実測し、当該実測の状態量によ
り前記出力要素の状態量と、前記入力要素の状態量なら
びに前記工程要素の状態量との関係を表す第2演算式を
自動作成することにより、生産状態の解析を行う生産状
態量解析システムであって、直接的には制御困難な工程
要素またはオンラインで直接的には実測困難な工程要素
の状態量を実測可能な入力要素および/または工程要素
の状態量から推定するための第1演算式を予め定め、当
該第1演算式により制御困難な工程要素またはオンライ
ンで実測困難な工程要素の状態量を算出する第1演算処
理手段と、該第1演算処理手段により算出された制御困
難な工程要素またはオンラインで実測困難な工程要素に
ついての状態量を見かけ上の実測の状態量として用いて
当該制御困難な工程要素またはオンラインで実測困難な
工程要素を含めた前記第2演算式を自動作成する第2演
算処理手段とを具えたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the invention according to claim 1 measures actual state quantities of input elements, process elements, and output elements in a production facility, and determines the actual measured state. A production state quantity analysis system for analyzing a production state by automatically creating a second arithmetic expression representing the relationship between the state quantity of the output element, the state quantity of the input element, and the state quantity of the process element based on the quantity. A first operation for estimating a state quantity of a process element that is directly difficult to control or a process element that is difficult to measure directly online from a state quantity of an input element and / or a process element that can be measured. A first arithmetic processing means for determining an equation in advance and calculating a state quantity of a process element difficult to control or a process element difficult to measure online by the first arithmetic expression; The second operation including the difficult-to-control process elements or the on-line difficult-to-measure process elements using the state quantities of the difficult-to-control process elements or the on-line difficult-to-measure process elements. And a second arithmetic processing means for automatically creating an expression.

請求項2の発明は、前記直接的には制御困難な工程要
素またはオンラインで直接的には実測困難な工程要素の
状態量について警告のための閾値を予め定め、前記第1
演算処理手段により算出された当該直接的には制御困難
な工程要素またはオンラインで直接的には実測困難な工
程要素の状態量を当該閾値と比較判定する比較手段と、
該比較手段の判定結果が当該閾値を超えたことを示すと
きは警告を行う警告手段とをさらに具えたことを特徴と
する。
The invention according to claim 2 is characterized in that a threshold value for warning is set in advance for the state quantity of the process element that is difficult to control directly or that is difficult to measure directly online.
Comparing means for comparing the state quantity of the directly difficult-to-control process element or the on-line directly difficult-to-measure process element calculated by the arithmetic processing means with the threshold value;
And a warning means for giving a warning when the determination result of the comparison means exceeds the threshold value.

[作 用] 本発明は、従来の解析で得られた状態量を用いて、予
め定めた第1演算式により直接的には制御困難またはオ
ンラインで直接的には実測困難な状態量を算出する。こ
の算出の状態量を見かけ上の実測値として取扱うことに
より直接的には制御困難またはオンラインで直接的には
実測困難な工程要素を出力状態算出のための第2演算式
に含めることができる。また、第1演算式により算出し
た見かけ上の実測値を閾値を比較することにより従来で
はできなかった直接的には制御困難またはオンラインで
直接的には実測困難な工程要素についても管理すること
が可能となる。
[Operation] The present invention calculates a state quantity that is difficult to control directly or is difficult to measure directly online using a predetermined first arithmetic expression by using a state quantity obtained by a conventional analysis. . By treating the calculated state quantity as an apparent actually measured value, a process element that is difficult to directly control or that cannot be directly measured online can be included in the second arithmetic expression for calculating the output state. In addition, by comparing the apparent measured value calculated by the first arithmetic expression with the threshold value, it is possible to manage a process element that is difficult to directly control or that cannot be directly measured online, which has not been conventionally possible. It becomes possible.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明実施例の基本構成を示す。 FIG. 1 shows a basic configuration of an embodiment of the present invention.

本実施例における生産状態量解析システムは、生産設
備における入力要素,工程要素および出力要素について
の各状態量を実測し、当該実測の状態量により前記出力
要素の状態量と、前記入力要素の状態量ならびに前記工
程要素の状態量との関係を表す第2演算式を自動作成す
ることにより、生産状態の解析を行う生産状態量解析シ
ステムである。
The production state quantity analysis system in the present embodiment measures each state quantity of an input element, a process element, and an output element in a production facility, and, based on the actually measured state quantity, the state quantity of the output element and the state of the input element. This is a production state quantity analysis system for analyzing a production state by automatically creating a second arithmetic expression representing a relationship between the quantity and the state quantity of the process element.

第1図において、100は制御困難な工程要素またはオ
ンラインで実測困難な工程要素の状態量を実測可能な入
力要素および/または工程要素の状態量から算出するた
めの第1演算式を予め定め、当該第1演算式により制御
困難な工程要素またはオンラインで実測困難な工程要素
の状態量を算出する第1演算処理手段である。
In FIG. 1, reference numeral 100 designates a first arithmetic expression for calculating a state quantity of a process element that is difficult to control or a process element that is difficult to measure online from an input element and / or a state quantity of a process element that can be measured, The first arithmetic processing means calculates the state quantity of the process element that is difficult to control or that is difficult to measure online using the first arithmetic expression.

200は該第1演算処理手段により算出された制御困難
な工程要素またはオンラインで実測困難な工程要素につ
いての状態量を見かけ上の実測の状態量として用いて当
該制御困難な工程要素またはオンラインで実測困難な工
程要素を含めた前記第2演算式を自動作成する第2演算
処理手段である。
Reference numeral 200 denotes a state quantity of the process element difficult to control or the process element difficult to measure online calculated by the first arithmetic processing means as an apparent actual measurement state quantity, and the process element difficult to control or the actual measurement online. The second arithmetic processing means automatically creates the second arithmetic expression including a difficult process element.

300は前記制御困難な工程要素またはオンラインで実
測困難な工程要素の状態量について警告のための閾値を
予め定め、前記第1演算処理手段により算出された当該
制御困難な工程要素またはオンラインで実測困難な工程
要素の状態量を当該閾値と比較判定する比較手段であ
る。
Reference numeral 300 designates a threshold value for warning the state quantity of the process element that is difficult to control or the process element that is difficult to measure online, and the process element that is difficult to control or that is difficult to measure online calculated by the first arithmetic processing means. This is a comparing means for comparing and determining the state quantities of the various process elements with the threshold.

400は該比較手段の判定結果が当該閾値を超えたこと
を示すときは警告を行う警告手段である。
Reference numeral 400 denotes a warning unit that gives a warning when the determination result of the comparison unit exceeds the threshold value.

第2図は本発明実施例の具体的な回路構成を示す。 FIG. 2 shows a specific circuit configuration of the embodiment of the present invention.

第2図において、コンピュータ1,ディスク記憶装置2,
キーボード入力装置3,表示装置4,印刷装置5,入出力イン
ターフェース6が共通バス7に接続されている。
In FIG. 2, a computer 1, a disk storage device 2,
A keyboard input device 3, a display device 4, a printing device 5, and an input / output interface 6 are connected to a common bus 7.

コンピュータ1は生産状態解析システム全体の動作制
御を司ると共に、本発明に関わる生産状態式の自動作成
の他、従来から行なわれている出力状態量の予測ならび
に異常診断処理を行う。
The computer 1 controls the operation of the entire production state analysis system, and automatically performs a production state expression relating to the present invention, and also predicts an output state quantity and performs a fault diagnosis process, which has been conventionally performed.

ディスク記憶装置2はキーボード3および/または入
出力インターフェース6を介して生産設備20から入力さ
れる入力状態量,工程状態量,実測の出力状態量を示す
データをその要素項目毎にディスクに記憶する。
The disk storage device 2 stores data indicating the input state quantity, the process state quantity, and the actually measured output state quantity input from the production facility 20 via the keyboard 3 and / or the input / output interface 6 on a disk for each element item. .

表示装置4はコンピュータ1により計算された出力状
態量の予測結果や異常診断結果を表示するときに用いら
れる。印刷装置5はディスク記憶装置2に記憶された入
力状態量,工程状態量,実測の出力状態量のデータ等を
印刷出力するときに用いられる。
The display device 4 is used when displaying the prediction result of the output state quantity and the abnormality diagnosis result calculated by the computer 1. The printing device 5 is used to print out data such as input state quantities, process state quantities, and measured output state quantities stored in the disk storage device 2.

第3図はディスク記憶装置2のディスクの各状態量の
データ記憶領域のアドレス構成を示す。
FIG. 3 shows an address configuration of a data storage area of each state quantity of the disk of the disk storage device 2.

メモリアドレスはデータ入力時刻毎に入力データを記
憶するように構成され、要素毎にデータの格納領域が定
められている。
The memory address is configured to store input data at each data input time, and a data storage area is determined for each element.

第4図はディスク記憶装置2のディスクの出力状態量
の予測データの記憶領域のアドレス構成を示す。
FIG. 4 shows the address configuration of the storage area of the prediction data of the output state quantity of the disk of the disk storage device 2.

メモリアドレスは入力状態量のデータが入力された時
刻情報と、その時刻に入力された原材料が製品として出
力されるときの出力状態量の予測データとを対応させて
記憶するように格納領域が定められている。
The storage area is defined such that the memory address stores the time information when the data of the input state quantity is input and the predicted data of the output state quantity when the raw material input at that time is output as a product in association with each other. Have been.

次に、本発明の出力状態量Y(t)を工程状態量X
(t)および入力状態量U(t)により算出する演算式
(第2演算式)について説明する。
Next, the output state quantity Y (t) of the present invention is converted to the process state quantity X.
(T) and an arithmetic expression (second arithmetic expression) calculated from the input state quantity U (t) will be described.

すなわち、出力状態量Y(t)は一般的に次式により
求められる。
That is, the output state quantity Y (t) is generally obtained by the following equation.

Y(t)=AX(t)+BU(t) …(2) 上式において、y1(t)〜yn(t)は出力状態量Y
(t)を構成する1〜n(正の整数)個の要素(出力要
素)のレベル値であり、時刻tに入力された原材料に対
する出力要素の実測値を表わす。
Y (t) = AX (t) + BU (t) (2) In the above formula, y 1 (t) ~y n (t) is the output state quantity Y
These are the level values of 1 to n (positive integer) elements (output elements) constituting (t), and represent the actual measured values of the output elements for the raw material input at time t.

x1(t)〜xm(t)は工程状態量X(t)を構成する
1〜m(正の整数)個の要素(工程要素)の状態を示す
レベル値で、時刻tに入力された原材料に対して加えら
れた工程要素の状態を表わす。なお、この中には本発明
に関わる工程要素としてオンラインで実測困難な工程要
素または制御(設定)困難な工程要素が含まれている。
たとえば、製糸工程の中で溶液の中に含まれる生産物と
は関係ない特定の副産物であるイオンの濃度がオンライ
ンで実測困難であるので、上記副産物のイオン濃度を制
御困難な工程要素とすることが考えられる。
x 1 (t) to x m (t) are level values indicating the states of 1 to m (positive integer) elements (process elements) constituting the process state quantity X (t), and are input at time t. Represents the state of the process element added to the raw material. These include process elements that are difficult to measure online or difficult to control (set) as process elements related to the present invention.
For example, it is difficult to measure the concentration of a specific by-product ion, which is unrelated to the product contained in the solution in the spinning process, online, so that the ion concentration of the by-product is a process element that is difficult to control. Can be considered.

u1(t)〜u(t) は工程状態量U(t)を構成す
る時刻tに入力された原材料の1〜(正の整数)個の
要素(入力要素)の状態を示すレベル値である。
 u1(T) to u (t) Constitutes the process state quantity U (t).
1 to (positive integer) of the raw materials input at time t
This is a level value indicating the state of the element (input element).

A,Bは実測の出力状態量から定められる定数である。
定数Aはn個の出力要素とm個の工程要素との組み合わ
せで定める各計数a11〜anmの行列で表わされる。定数B
はn個の出力要素とl個の入力要素との組み合せで定ま
る各計数b11bn の行列で表わされる。
 A and B are constants determined from measured output state quantities.
Constant A is a combination of n output elements and m process elements
Each count a11~ AnmIs represented by the following matrix. Constant B
Is determined by the combination of n output elements and l input elements.
Each count b11bn Is represented by the following matrix.

上記行列式の中の部分式として例えば次のような出力
状態式を得たとする。
It is assumed that, for example, the following output state formula is obtained as a sub-expression in the above determinant.

yi(t)=ai1x1(t)+ai2x2(t)+…+aipxp(t) +…+aimxm(t)+bi1u1(t)+bi2u2(t) +…+bi (t) …(8) この時、xp(t)はオンラインで実測困難な状態量や制
御困難な工程要素の状態量である。この状態量は、前の
工程の状態量および入力状態量との関係が次式(9)に
より予め定められている。
yi (t)= Ai1x1 (t)+ Ai2x2 (t)+ ... + aipxp (t) + ... + aimxm (t)+ Bi1u1 (t)+ Bi2u2 (t) + ... + bi u (t) … (8) At this time, xp (t)Are difficult to measure online
It is a state quantity of a difficult process element. This state quantity is
The relationship between the process state quantity and the input state quantity is given by the following equation (9).
More predetermined.

xp(t)=cqxq(t)+drur(t) …(9) xq(t),ur(t)は制御可能状態量、cq,drは係数である。 x p (t) = c q x q (t) + d r u r (t) ... (9) x q (t), u r (t) is the control state quantity, c q, d r is the coefficient .

したがって、(9)(式が本発明の第1演算式に相当
して、この(9)式に実測値xq(t),ur(t)を代入し、見
かけ上の実測値xp(t)を算出する。また、本実施例では
見かけ上の実測値xp(t)と、予め定めた異常検知用の閾
値との比較を行う。見かけ上の実測値xp(t)が閾値を超
えた時には、表示装置4や印刷装置5に警告出力を行
う。
Therefore, (9) (Expression corresponds to the first arithmetic expression of the present invention, and the actual measured values x q (t) and ur (t) are substituted into the expression (9), and the apparent actual measured value x p (t) is calculated. Further, the measured values x p apparent in this embodiment (t), it is compared with the predetermined abnormality detection threshold value. apparent measured values x p (t) is When the threshold value is exceeded, a warning is output to the display device 4 and the printing device 5.

また、出力状態量を算出するための行列式には(8)
式に(9)式を代入した(10)式を用いる。(10)式が
本発明の第2演算式に相当する。
The determinant for calculating the output state quantity includes (8)
Expression (10) obtained by substituting expression (9) into the expression is used. Expression (10) corresponds to the second operation expression of the present invention.

yi(t)=ai1x1(t)+ai2x2(t)+…+cqxq(t)+drur(t) +…+aimx+bi1u1(t)+bi2u2(t) +…+b (t) …(10) または(8)式に用いられている状態量のうち制御困
難な状態量xq(t)の代わりに、(9)式に用いられてい
る制御可能な状態量xq(t),ur(t)を用いて、新たに各状
態量の係数を求めて出力状態式(11)式を作成し直して
も良い。
yi (t)= Ai1x1 (t)+ Ai2x2 (t)+ ... + cqxq (t)+ Drur (t) + ... + aimx + bi1u1 (t)+ Bi2u2 (t) + ... + biu (t) … Of the state variables used in equation (10) or (8)
Difficult state quantity xq (t)Is used in equation (9) instead of
Controllable state xq (t), ur (t)Using the
Recalculate the output state equation (11) by calculating the coefficient of state quantity,
Is also good.

yi(t)=ei1x1(t)+ei2x2(t)+…+eiqxq(t) +eirur(t)…+eimxm+fi1ui1(t)+fi2u2(t) +…+fi (t) ……(11) (eim,fi は新たに求めた係数) 具体的な生産工程を例に取り、本発明に関わる出力状
態式の作成処理を説明する。なお、第5図は、ある糸製
造の全体工程および各工程における入力,工程,出力要
素の一例を示している。本例は説明のために要素数を少
なくしているが、実際のシステム運営用は多数の要素が
設けられている。
yi (t)= Ei1x1 (t)+ Ei2x2 (t)+ ... + eiqxq (t) + Eirur (t)… + Eimxm+ Fi1ui1 (t)+ Fi2u2 (t) + ... + fi u(T) …… (11) (eim, fi Is a newly obtained coefficient) The output status related to the present invention
The process of creating a formula will be described. In addition, FIG.
Input, process, and output requirements for the entire manufacturing process and each process
An example of a prime is shown. This example uses a small number of elements for explanation.
However, there are many factors for actual system operation.
Is provided.

たとえば、第1工程から第3工程までの生産状態式は
下記の通りである。
For example, the production state equations from the first step to the third step are as follows.

f1=A(1,3)X(t)+B(1,3)U(t) 本例では係数A,Bを算出するための制御プログラムを
コンピュータ1に内蔵しており、各制御プログラムを実
行して上記係数A,Bを算出することにより出力状態式
(第2演算式)f1を作成する。このような出力状態
式の作成手順をふまえ、以下、第7図のフローチャート
を参照して第2図の回路の動作を説明する。
f 13 = A (1,3) X (t) + B (1,3) U (t) In this example, a control program for calculating the coefficients A and B is built in the computer 1, and by executing each control program to calculate the coefficients A and B, an output state equation (second arithmetic equation) f Create 13 . The operation of the circuit shown in FIG. 2 will be described below with reference to the flowchart shown in FIG.

第2図において、入力、工程、出力要素についての実
測データが生産設備20およびキーボード入力装置3から
一定時間毎に入力されると、コンピュータ1は、ディス
ク記憶装置2に第3図に示すように実測データを記憶さ
せる。また制御または実測困難な要素の状態量を算出
し、見かけ上の実測値としてディスク記憶装置2に記憶
する。
In FIG. 2, when actual measurement data on input, process, and output elements is input from the production facility 20 and the keyboard input device 3 at regular intervals, the computer 1 stores the data in the disk storage device 2 as shown in FIG. The measured data is stored. In addition, the state quantity of an element that is difficult to control or measure is calculated and stored in the disk storage device 2 as an apparent measured value.

このとき、コンピュータ1は第1演算処理手段として
動作する。次に、コンピュータ1は出力状態式の係数、
A,Bを実測データ(見かけ上の実測データを含む)に基
づいて算出する(第7図のステップS10→S30)。
At this time, the computer 1 operates as a first arithmetic processing unit. Next, the computer 1 calculates the coefficient of the output state equation,
A and B are calculated based on the actual measurement data (including the apparent actual measurement data) (steps S10 → S30 in FIG. 7).

続いて、コンピュータ1は算出された係数A,Bの値を
用いて指定された出力状態式を用いてオンラインで実測
される新たな値を代入することにより徒弟時刻tにおけ
る入力の工程状態に対して、予想される出力予測状態量
を算出する。
Subsequently, the computer 1 substitutes a new value actually measured online using the output state formula specified using the calculated values of the coefficients A and B, thereby obtaining the input process state at the apprentice time t. Then, an expected output predicted state quantity is calculated.

次にコンピュータ1は算出された出力予測状態量を各
要素毎に規定値と比較して異常の有無を調べる監視処理
を実行する。
Next, the computer 1 executes a monitoring process for comparing the calculated output predicted state quantity with a specified value for each element to check for an abnormality.

また、上記分析処理において、異常が検出された場合
は、出力状態式の変更を行って異常原因を診断する。
If an abnormality is detected in the analysis processing, the output state formula is changed to diagnose the cause of the abnormality.

このために、運転条件、入力条件を修正した後、新し
い条件での生産状態の予測処理を行う(第7図のステッ
プS40)。
For this purpose, after correcting the operating conditions and the input conditions, the production state is predicted under the new conditions (step S40 in FIG. 7).

また、コンピュータ1は制御または実測困難な工程要
素についても閾値比較を行って異常の有無を調べる(第
7図のステップS50)。このとき、コンピュータ1は比
較手段として動作する。
The computer 1 also compares threshold values of process elements that are difficult to control or measure, and checks for abnormalities (step S50 in FIG. 7). At this time, the computer 1 operates as comparison means.

異常が検出された時はコンピュータ1により表示手段
に対して警告メッセージを表示させる(第7図のステッ
プS60)。この場合、表示手段が警告手段として動作す
る。
When an abnormality is detected, a warning message is displayed on the display means by the computer 1 (step S60 in FIG. 7). In this case, the display means operates as a warning means.

以上の手順を一定時間毎に繰り返し実行し、入力状態
量に対する出力状態量の予測および運転条件の監視を行
う。
The above procedure is repeatedly executed at regular intervals to predict the output state quantity with respect to the input state quantity and monitor the operating conditions.

本実施例の他に次の例が挙げられる。 The following examples are given in addition to this embodiment.

1)本実施例では制御または実測困難な工程要素につい
ては異常の有無のみを調べたが、制御またはオンライン
で実測困難な工程要素の状態量を算出する式を用いて、
状態量の予測を行ってもよい。
1) In the present embodiment, only the presence / absence of an abnormality is checked for a process element that is difficult to control or measure, but an equation for calculating a state quantity of a process element that is difficult to measure or control online or by using:
The state quantity may be predicted.

[発明の効果] 以上説明したように、本発明によれば、直接的には制
御困難または実測困難なな工程要素を出力状態量の算出
のための演算式の中に含めることができるので、出力状
態量の予測精度が高まる。
[Effects of the Invention] As described above, according to the present invention, it is possible to include a process element that is directly difficult to control or difficult to measure in an arithmetic expression for calculating an output state quantity. The prediction accuracy of the output state quantity increases.

また、直接的には制御困難または実測困難なな状態量
自体を把握できるので、環境の悪い場所には計測機器を
設置する必要はなく、設備運転者の安全性を高めること
が可能となる。
In addition, since it is possible to directly grasp the state quantity itself that is difficult to control or difficult to measure, it is not necessary to install a measuring device in a place with a bad environment, and it is possible to enhance the safety of the facility operator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例の基本構成を示すブロック図、 第2図は本発明実施例の具体例な回路構成を示すブロッ
ク図、 第3図および第4図は本発明実施例のディスク記憶装置
のディスク格納領域のアドレス構成を示すメモリマッ
プ、 第5図および第6図は本発明実施例の生産状態を示す説
明図、 第7図は本発明実施例のコンピュータ1が実行する制御
手順を示すフローチャートである。 1……コンピュータ、 2……ディスク記憶装置、 3……キーボード、 4……表示装置、 5……印刷装置、 20……生産設備。
1 is a block diagram showing a basic configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing a specific circuit configuration of the embodiment of the present invention, and FIGS. 3 and 4 are disk storages of the embodiment of the present invention. 5 and 6 are explanatory diagrams showing a production state of the embodiment of the present invention, and FIG. 7 is a control procedure executed by the computer 1 of the embodiment of the present invention. It is a flowchart shown. 1 ... computer, 2 ... disk storage device, 3 ... keyboard, 4 ... display device, 5 ... printing device, 20 ... production equipment.

フロントページの続き (72)発明者 馬場 和喜 神奈川県川崎市川崎区夜光1丁目3番1 号 旭エンジニアリング株式会社内 (56)参考文献 特開 平2−71961(JP,A) 実開 昭57−42404(JP,U) (58)調査した分野(Int.Cl.7,DB名) B23Q 41/00 B23Q 41/08 G06F 19/00 Continuation of the front page (72) Inventor Kazuki Baba 1-3-1 Yoko, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Asahi Engineering Co., Ltd. (56) References JP-A-2-71961 (JP, A) Japanese Utility Model Showa 57 −42404 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B23Q 41/00 B23Q 41/08 G06F 19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】生産設備における入力要素,工程要素およ
び出力要素についての各状態量を実測し、当該実測の状
態量により前記出力要素の状態量と、前記入力要素の状
態量ならびに前記工程要素の状態量との関係を表す第2
演算式を自動作成することにより、生産状態の解析を行
う生産状態量解析システムであって、 直接的には制御困難な工程要素またはオンラインで直接
的には実測困難な工程要素の状態量を実測可能な入力要
素および/または工程要素の状態量から推定するための
第1演算式を予め定め、当該第1演算式により制御困難
な工程要素またはオンラインで実測困難な工程要素の状
態量を算出する第1演算処理手段と、 該第1演算処理手段により算出された制御困難な工程要
素またはオンラインで実測困難な工程要素についての状
態量を見かけ上の実測の状態量として用いて当該制御困
難な工程要素またはオンラインで実測困難な工程要素を
含めた前記第2演算式を自動作成する第2演算処理手段
と を具えたことを特徴とする生産状態量解析システム。
1. A state quantity of an input element, a process element, and an output element in a production facility is actually measured, and the state quantity of the output element, the state quantity of the input element, and the state quantity of the process element are measured based on the actually measured state quantity. The second representing the relationship with the state quantity
This is a production state quantity analysis system that analyzes the production state by automatically creating arithmetic expressions, and measures the state quantities of process elements that are difficult to control directly or that are difficult to measure directly online. A first arithmetic expression for estimating from a possible input element and / or a state quantity of a process element is determined in advance, and the state quantity of a process element that is difficult to control or that is difficult to measure online is calculated by the first arithmetic equation. A first arithmetic processing unit, and a process element that is difficult to control calculated by the first arithmetic processing unit or a state quantity of a process element that is difficult to measure online is used as an apparent actually measured state quantity. A second operation processing means for automatically creating the second operation expression including a process element or a process element which is difficult to measure online. .
【請求項2】前記直接的には制御困難な工程要素または
オンラインで直接的には実測困難な工程要素の状態量に
ついて警告のための閾値を予め定め、前記第1演算処理
手段により算出された当該直接的には制御困難な工程要
素またはオンラインで直接的には実測困難な工程要素の
状態量を当該閾値と比較判定する比較手段と、該比較手
段の判定結果が当該閾値を超えたことを示すときは警告
を行う警告手段とをさらに具えたことを特徴とする請求
項1に記載の生産状態量解析システム。
2. The method according to claim 1, wherein a threshold value for warning is set in advance for a state quantity of the process element which is difficult to directly control or which is difficult to measure directly online. Comparing means for comparing the state quantity of the process element which is directly difficult to control or the process element which is difficult to measure directly online with the threshold value, and that the determination result of the comparison means exceeds the threshold value 2. The production state quantity analysis system according to claim 1, further comprising a warning means for giving a warning when indicated.
JP2097762A 1990-04-16 1990-04-16 Production quantity analysis system Expired - Lifetime JP3004029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097762A JP3004029B2 (en) 1990-04-16 1990-04-16 Production quantity analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097762A JP3004029B2 (en) 1990-04-16 1990-04-16 Production quantity analysis system

Publications (2)

Publication Number Publication Date
JPH042446A JPH042446A (en) 1992-01-07
JP3004029B2 true JP3004029B2 (en) 2000-01-31

Family

ID=14200882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097762A Expired - Lifetime JP3004029B2 (en) 1990-04-16 1990-04-16 Production quantity analysis system

Country Status (1)

Country Link
JP (1) JP3004029B2 (en)

Also Published As

Publication number Publication date
JPH042446A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
Lennox et al. Application of multivariate statistical process control to batch operations
CN112805728B (en) Machine fault diagnosis support system and machine fault diagnosis support method
CN111867806A (en) Method for automatic process monitoring and process diagnosis of piece-based processes (batch production), in particular injection molding processes, and machine for carrying out said processes or machine assembly for carrying out said processes
JP2002525757A (en) Multidimensional method and system for statistical process management
JP6702297B2 (en) Abnormal state diagnosis method and abnormal state diagnosis device
JP2005346655A (en) Process control system, process control method, process control program and recording medium for program
TWI710873B (en) Support device, learning device, and plant operating condition setting support system
US20210374634A1 (en) Work efficiency evaluation method, work efficiency evaluation apparatus, and program
JPH06101079B2 (en) Plant abnormality diagnosis device
EP3416012B1 (en) Monitoring device, and method for controlling monitoring device
JPH0652181B2 (en) Abnormality diagnosis device
JPH11161327A (en) Method and device for diagnosing abnormality of process
JP3004029B2 (en) Production quantity analysis system
JP2002251212A (en) Method for quality control and system for the same and recording medium with its program recorded
JP6885321B2 (en) Process status diagnosis method and status diagnosis device
JPH0664664B2 (en) Failure prediction device
JP3287889B2 (en) Quality control equipment
JP2005071200A (en) Manufacturing information management program
JPH05100890A (en) Diagnostic system for reliability of controller
JPH07225610A (en) Method and device for fault diagnosis
JP2803864B2 (en) Production quantity analysis system
US20230152759A1 (en) Information processing apparatus, information processing method, and computer program product
WO2021166232A1 (en) Programmable display, control system, and analysis method
JP2024028148A (en) Abnormality monitoring method and abnormality monitoring device
JPH07174617A (en) System for diagnosing soundness of rotary equipment

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11