JP3003665B2 - How to magnetize permanent magnets for motors - Google Patents

How to magnetize permanent magnets for motors

Info

Publication number
JP3003665B2
JP3003665B2 JP4331598A JP4331598A JP3003665B2 JP 3003665 B2 JP3003665 B2 JP 3003665B2 JP 4331598 A JP4331598 A JP 4331598A JP 4331598 A JP4331598 A JP 4331598A JP 3003665 B2 JP3003665 B2 JP 3003665B2
Authority
JP
Japan
Prior art keywords
magnetizing
permanent magnet
voltage
magnetization
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4331598A
Other languages
Japanese (ja)
Other versions
JPH11252873A (en
Inventor
勝高 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4331598A priority Critical patent/JP3003665B2/en
Publication of JPH11252873A publication Critical patent/JPH11252873A/en
Application granted granted Critical
Publication of JP3003665B2 publication Critical patent/JP3003665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動機用永久磁石
の着磁方法に関し、特に、回転圧縮機の駆動等に用いら
れる直流電動機の回転子を構成する永久磁石を着磁する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of magnetizing a permanent magnet for a motor, and more particularly to a method of magnetizing a permanent magnet constituting a rotor of a DC motor used for driving a rotary compressor. is there.

【0002】[0002]

【従来の技術】従来より、磁性材料からなる固定子コア
に装着された巻線への通電により回転磁界を発生する固
定子と、固定子コア内に回転可能に配置された、永久磁
石を有する回転磁石とを備えた直流電動機はよく知られ
ており、省エネルギー化の観点から、たとえば空気調和
機用の回転圧縮機の電動機として使用されている。この
ような直流電動機を備えた従来の回転圧縮機として、た
とえば図6に示す構造を有するものがある。
2. Description of the Related Art Conventionally, a stator has a stator that generates a rotating magnetic field by energizing a winding mounted on a stator core made of a magnetic material, and a permanent magnet rotatably disposed in the stator core. A DC motor having a rotating magnet is well known, and is used, for example, as a motor of a rotary compressor for an air conditioner from the viewpoint of energy saving. As a conventional rotary compressor provided with such a DC motor, there is one having, for example, a structure shown in FIG.

【0003】図6に示された回転式圧縮機においては、
密閉されかつ内部が高圧に保持されたケーシング1内
に、電動要素となるモータ2と、このモータ2によって
回転駆動される圧縮要素10とが配置されている。モー
タ2は、固定子3と回転子4とを有する。固定子3は、
ケーシング1の内壁に取付けられかつ磁束線を通しやす
い材料よりなる筒状のステータコア3aと、このステー
タコア3aの上下両端の各々に配設されたコイル3bと
を有する。回転子4は、固定子3の中央空間部にエアギ
ャップ5を介在して設けられている。回転子4にはクラ
ンク軸6が圧入されており、このクランク軸6を介して
モータ2と圧縮要素10とが連結される。また圧縮要素
10のシリンダには、ガス冷媒をシリンダ室内に送り込
むための吸入管14が接続され、ケーシング1上部に
は、高圧に圧縮されたガス冷媒を外部に吐出するための
吐出管16が取付けられている。また、ケーシング1の
底部には、圧縮要素10の下部が浸される油溜17があ
る。
In the rotary compressor shown in FIG.
A motor 2 as an electric element and a compression element 10 rotationally driven by the motor 2 are arranged in a casing 1 which is hermetically sealed and the inside of which is maintained at a high pressure. The motor 2 has a stator 3 and a rotor 4. The stator 3
The stator has a cylindrical stator core 3a attached to the inner wall of the casing 1 and made of a material that easily allows magnetic flux lines to pass therethrough, and coils 3b disposed at upper and lower ends of the stator core 3a. The rotor 4 is provided in the central space of the stator 3 with an air gap 5 interposed. A crankshaft 6 is press-fitted into the rotor 4, and the motor 2 and the compression element 10 are connected via the crankshaft 6. A suction pipe 14 for feeding gas refrigerant into the cylinder chamber is connected to the cylinder of the compression element 10, and a discharge pipe 16 for discharging gas refrigerant compressed to a high pressure to the outside is mounted on the upper part of the casing 1. Have been. At the bottom of the casing 1, there is an oil reservoir 17 into which the lower part of the compression element 10 is immersed.

【0004】このような回転圧縮機の組立て工程におい
て、モータ2における回転子4を固定子3内に嵌挿する
場合、回転子4を構成する永久磁石が予め着磁されてい
ると、その強力な磁力により回転子4が固定子コア3a
の内周面に吸い付いて移動不能にロックされることがあ
り、回転子を固定子3内に嵌挿することが困難となる。
そのため、従来より、回転子4を構成する永久磁石とな
る磁石材料を未着磁状態のままで、回転子4を固定子コ
ア3aに嵌挿し、その後に、固定子3の巻線に着磁電流
を印加して磁界を発生させ、その磁界によって永久磁石
を着磁する方法が用いられている。
In the process of assembling the rotary compressor, when the rotor 4 of the motor 2 is inserted into the stator 3, if the permanent magnets forming the rotor 4 are magnetized in advance, the strength of the rotor 4 is increased. The rotor 4 is fixed to the stator core 3a by a strong magnetic force.
May be stuck on the inner peripheral surface of the rotor 3 so as to be immovably locked, making it difficult to fit the rotor into the stator 3.
For this reason, conventionally, the rotor 4 is inserted into the stator core 3a while the magnet material serving as the permanent magnet constituting the rotor 4 is not magnetized, and thereafter, the winding of the stator 3 is magnetized. A method of applying a current to generate a magnetic field and magnetizing a permanent magnet by the magnetic field has been used.

【0005】このような着磁方法の一例として、図7
(a)に示すように、固定子3におけるu相,v相,w
相の3相の巻線の一端部同士を互いに接続し、各相の巻
線の他端部を電源入力端として、固定子巻線がいわゆる
Y結線(スター結線)20とされている場合、そのうち
の2相の巻線の他端部である電源入力端同士を短絡し、
その短絡部と残りの1相の巻線の他端部である電源入力
端との間に着磁用電源30によって着磁用の電圧を印加
する方法がある(たとえば特開平6−315252号公
報参照)。
FIG. 7 shows an example of such a magnetizing method.
As shown in (a), the u phase, v phase, w
When the three-phase windings of one phase are connected to each other, the other end of each phase winding is used as a power input terminal, and the stator winding is a so-called Y connection (star connection) 20, Short-circuit the power input terminals, which are the other ends of the two-phase windings,
There is a method in which a magnetizing voltage is applied between the short-circuited portion and a power input terminal which is the other end of the remaining one-phase winding by a magnetizing power supply 30 (for example, Japanese Patent Laid-Open No. 6-315252). reference).

【0006】また、このような着磁の他の方法として、
特開平9−182388号公報には、上述のY結線20
において、各相の巻線の電源入力端間に着磁用の電圧を
印加せずに、図7(b)に示すように、固定子巻線の中
性点21と1相の巻線の電源入力端との間に着磁用の電
圧を印加して永久磁石を着磁する方法が開示されてい
る。
As another method of such magnetization,
Japanese Patent Application Laid-Open No. 9-182388 discloses that the above-described Y connection 20 is used.
In FIG. 7, without applying a magnetizing voltage between the power input terminals of the windings of each phase, as shown in FIG. There is disclosed a method of applying a magnetizing voltage to a power input terminal to magnetize a permanent magnet.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記各
公報に記載の従来の着磁方法では、回転子4を固定子コ
ア3aに嵌挿した後に、一定の着磁電圧を固定子3の巻
線に印加して着磁電流を流すことにより磁界を発生させ
て永久磁石を着磁するため、次のような問題があった。
However, in the conventional magnetizing methods described in the above publications, a fixed magnetizing voltage is applied to the stator 3 after the rotor 4 is fitted into the stator core 3a. In this case, a magnetic field is generated by applying a magnetizing current to the permanent magnet to magnetize the permanent magnet.

【0008】回転子4の永久磁石を着磁する前の、電動
機の組立て工程においては、回転子4の焼嵌工程、固定
子3の焼嵌工程、CO2 溶接工程などのような熱を伴う
工程が存在するため、それらの工程において固定子3に
熱が伝わって、固定子3自体が発熱し、巻線の温度が上
昇する。巻線の抵抗値は、その温度が上昇するととも
に、図8に示すように、固定子3が低温(常温)の状態
(図8の点M)から最大温度上昇時(図8の点N)ま
で、ほぼ直線的に増加する。固定子3が低温の状態で回
転子4の永久磁石を着磁する場合としては、休止状態に
ある製造ラインにおいて、回転子3,固定子4等の組立
て工程を終えた着磁前の段階で、常温にまで冷えた状態
で待機している回転圧縮機に対して、製造ラインの駆動
を開始して着磁を施す場合が挙げられる。
[0008] Before the permanent magnets of the rotor 4 are magnetized, the assembling process of the motor involves heat such as the shrink-fitting process of the rotor 4, the shrink-fitting process of the stator 3, and the CO 2 welding process. Since there are steps, heat is transmitted to the stator 3 in those steps, and the stator 3 itself generates heat and the temperature of the windings rises. As shown in FIG. 8, the resistance value of the winding increases when the temperature of the stator 3 rises from the low temperature (normal temperature) (point M in FIG. 8) to the maximum temperature (point N in FIG. 8). Up almost linearly. When the stator 3 magnetizes the permanent magnet of the rotor 4 in a low temperature state, in a production line in a resting state, a stage before magnetizing after completing an assembly process of the rotor 3, the stator 4, and the like. In addition, there is a case where the driving of the production line is started to magnetize the rotary compressor that is waiting in a state of being cooled to room temperature.

【0009】このような製造ラインの駆動開始時におい
ては、固定子巻線の温度が最も高くなって定常状態とな
るまで、徐々に温度が上昇する。そのため、固定子3が
低温(温度t1 ℃)の状態では、図9において実線A1
で示すように、着磁電圧と着磁電流値との関係が直線的
に変化し、実線A2 で示すように着磁電圧と着磁率との
関係が曲線的に変化するのに対して、固定子3の最大温
度上昇時(温度t2 ℃)においては、それらの関係は、
図9において一点鎖線で示す直線B1 および曲線B2
ように変化する。
At the start of driving of such a manufacturing line, the temperature of the stator winding gradually increases until the temperature of the stator winding becomes the highest and becomes a steady state. Therefore, when the stator 3 is at a low temperature (temperature t 1 ° C), the solid line A 1 in FIG.
As shown by, the relationship between the magnetizing voltage and the magnetizing current value changes linearly, and the relationship between the magnetizing voltage and the magnetizing rate changes in a curve as shown by the solid line A 2 , At the time of the maximum temperature rise of the stator 3 (temperature t 2 ° C), their relationship is
9 changes as a straight line B 1 and curve B 2 indicated by a dashed line.

【0010】図9のグラフからわかるように、永久磁石
を100%着磁するために必要な最小着磁電流値i0
流すためには、固定子3の最大温度上昇時において、低
温状態の着磁電圧V1 (V)よりもΔV(V)だけ高い
2 (V)の着磁電圧を印加しなければならない。した
がって、固定子3の温度にかかわらず一定の着磁電圧で
永久磁石の100%着磁を得るためには、固定子3の最
大温度上昇時における100%着磁を確保するために、
低温状態においても少なくともV2 (V)以上の着磁電
圧を印加することが必要になる。ただし、実際の着磁に
おいては、永久磁石の確実な100%着磁を得るため
に、100%着磁に必要な最小電流値i0に必要な所定
の余裕代Δi0 を加えた着磁電流が流れるように、着磁
電圧が設定される。100%着磁に必要な最小電流値i
0 自体は温度依存性を有しないが、ある温度において着
磁電圧を設定すると、温度変化により固定子巻線の抵抗
値が変化するため、着磁電流も変化することになる。
As can be seen from the graph of FIG. 9, in order to flow the minimum magnetizing current value i 0 necessary for magnetizing the permanent magnet to 100%, when the maximum temperature of the stator 3 rises, It must be applied magnetizing voltage [Delta] V (V) higher by V 2 (V) than the magnetizing voltage V 1 (V). Therefore, in order to obtain 100% magnetization of the permanent magnet at a fixed magnetization voltage regardless of the temperature of the stator 3, in order to secure 100% magnetization at the time of the maximum temperature rise of the stator 3,
It is necessary to apply a magnetizing voltage of at least V 2 (V) even in a low temperature state. However, in actual magnetization, in order to obtain reliable 100% magnetization of the permanent magnet, the magnetization current obtained by adding a predetermined margin Δi 0 required for the minimum current value i 0 required for 100% magnetization. Is set so that the current flows. Minimum current value i required for 100% magnetization
Although 0 itself does not have temperature dependency, when a magnetizing voltage is set at a certain temperature, the resistance value of the stator winding changes due to a temperature change, so that the magnetizing current also changes.

【0011】次に、固定子巻線の温度にかかわらず着磁
電圧を一定に設定して着磁する従来の着磁方法におけ
る、巻線の温度と着磁電流値との関係を、図10を参照
して説明する。まず、固定子3が低温(温度t1 ℃)の
状態で、温度依存性のない100%着磁に必要な最小電
流値i0 に必要な所定の余裕代Δi0 を加えた着磁電流
が流れる(図10におけるMA 点)ように、一定の着磁
電圧を固定子巻線に印加した場合を考える。この場合、
固定子巻線の温度が上がると、図10に太い実線Aで示
すように着磁電流値が直線的に変化し、固定子3が最大
温度(温度t2 ℃)まで上昇した時点(図10における
A 点)では、100%着磁に必要な最小電流値i0
対して着磁電流値がΔi1 不足し、永久磁石の100%
着磁を行えないことになる。
Next, the relationship between the temperature of the winding and the value of the magnetizing current in the conventional magnetizing method in which the magnetizing voltage is set to be constant regardless of the temperature of the stator winding is shown in FIG. This will be described with reference to FIG. First, when the stator 3 is at a low temperature (temperature t 1 ° C), the magnetizing current obtained by adding a predetermined margin Δi 0 required for the minimum current value i 0 required for 100% magnetization without temperature dependence is obtained. flows as (M a point in FIG. 10), consider the case of applying a constant magnetizing voltage in the stator windings. in this case,
When the temperature of the stator winding rises, the magnetization current value changes linearly as shown by the thick solid line A in FIG. 10, and the time when the stator 3 rises to the maximum temperature (temperature t 2 ° C) (FIG. in N a point) of, magnetizing current value is insufficient .DELTA.i 1 for the minimum current value i 0 required 100% magnetized, 100% of the permanent magnet
Magnetization cannot be performed.

【0012】そこで、固定子巻線が最大温度(温度t2
℃)まで上昇した状態での100%着磁を確実に行なう
ためには、温度t2 ℃において100%着磁に必要な最
小電流値i0 に所定の余裕代Δi0 を加えた着磁電流が
流れる(図10におけるNB点)ように、一定の着磁電
圧を固定子巻線に印加する必要がある。従来の定電圧着
磁の場合の、固定子巻線の抵抗値と着磁電流値との関係
の実測データを図11に示している。このような一定の
着磁電圧を固定子巻線に印加した状態で、巻線温度が下
降すると、一点鎖線の太い直線Bで示すように直線的に
変化し、固定子巻線が低温(温度t1 ℃)の状態では、
A 点よりもΔim のマージン電流を加えた着磁電流i
1 が流れることになる。固定子巻線の抵抗値が温度に依
存してほぼ直線的に変化し、図10のグラフにおける直
線A,Bは互いに平行であることから、このマージン電
流値Δim は、NA 点における100%着磁に必要な最
小電流値i0 に対する不足電流値Δi1 に、余裕代Δi
0 を加えた値にほぼ等しくなる。
Then, the stator winding is heated to the maximum temperature (temperature t 2).
In order to reliably perform 100% magnetization in a state where the temperature has risen to the temperature of 2 ° C.), the magnetization current obtained by adding a predetermined margin Δi 0 to the minimum current value i 0 required for 100% magnetization at the temperature t 2 ° C. as (N B point in FIG. 10) which flows, it is necessary to apply a constant magnetizing voltage in the stator windings. FIG. 11 shows actual measurement data of the relationship between the resistance value of the stator winding and the magnetization current value in the case of the conventional constant voltage magnetization. When the winding temperature decreases while such a fixed magnetizing voltage is applied to the stator winding, the winding changes linearly as indicated by a thick straight line B indicated by a dashed line, and the stator winding is cooled to a low temperature (temperature t 1 ° C),
Magnetizing current i plus the margin current .DELTA.i m than M A point
1 will flow. The resistance of the stator winding depending on the temperature varies linearly almost straight line A in the graph of FIG. 10, since B are parallel to each other, the margin current values .DELTA.i m is 100 in N A point % to insufficient current .DELTA.i 1 with respect to the minimum current value i 0 necessary for magnetizing, allowance .DELTA.i
It is almost equal to the value obtained by adding 0 .

【0013】このように、低温時において過剰な電流が
流れると、固定子巻線にかかる衝撃力が大きくなって、
強いストレスにより巻線が破損するという問題があっ
た。また、そのような電流マージンを見込んだ過剰な電
圧が印加することにより、絶縁破壊が生じて、絶縁不良
の原因となるという問題もあった。
As described above, when an excessive current flows at a low temperature, the impact force applied to the stator winding increases,
There was a problem that the winding was damaged by strong stress. In addition, there is also a problem that application of an excessive voltage in consideration of such a current margin causes insulation breakdown, which causes insulation failure.

【0014】上記従来の問題点を解消するため本発明
は、マージンΔim を見込んだ着磁電圧の設定を不要に
するために、固定子巻線等の着磁電圧を印加する印加結
線の抵抗値の変化にかかわらず、100%着磁に必要な
最小電流値で着磁することを可能にする電動機用永久磁
石の着磁方法を提供することを目的とする。
[0014] The present order to solve the conventional problems the invention, in order to eliminate the need for setting the expected I magnetizing voltage margin .DELTA.i m, the application connection for applying a magnetizing voltage of the stator winding and the like resistance It is an object of the present invention to provide a method for magnetizing a permanent magnet for an electric motor, which enables magnetization with a minimum current value required for 100% magnetization regardless of a change in the value.

【0015】[0015]

【課題を解決するための手段】上記課題を解決する、請
求項1に記載の本発明の電動機用永久磁石の着磁方法
は、永久磁石を構成要素として含む電動機における永久
磁石を、所定の印加結線に着磁電圧を印加して着磁する
方法であって、永久磁石を100%着磁するために必要
な最小電流値(i0 )に所定の余裕代(Δi0 )を加え
た着磁電流値(iP )を設定する第1ステップ(S1)
と、印加結線温度が変化した場合における着磁前の印加
結線の抵抗値(r)と着磁の印加結線の抵抗値(R)
との関係を予め求めて、関係式を設定する第2ステップ
(S2)と、印加結線の着磁前の抵抗値(r)を測定す
る第3ステップ(S3)と、第3ステップ(S3)で求
めた印加結線の抵抗値(r)から、着磁時の印加結線の
抵抗値(R)を、第2ステップ(S2)で求められた関
係式により設定する第4ステップ(S4)と、第4ステ
ップ(S4)で設定した抵抗値(R)および第1ステッ
プ(S1)で設定した着磁電流値(iP )から、印加結
線に印加べき着磁電圧(V)を設定する第5ステップ
(S5)と、第5ステップ(S5)で設定した着磁電圧
を印加結線に印加することにより、永久磁石を着磁する
第6ステップ(S6,S7)とを備えている。
According to a first aspect of the present invention, there is provided a method for magnetizing a permanent magnet for an electric motor, comprising the steps of: applying a permanent magnet to an electric motor including the permanent magnet as a component; A magnetizing method in which a magnetizing voltage is applied to a connection to magnetize the permanent magnet, in which a predetermined margin (Δi 0 ) is added to a minimum current value (i 0 ) necessary for 100% magnetizing the permanent magnet. first step of setting a current value (i P) (S1)
When the resistance value of the applied connection of Chaku磁前when the application connection temperature changes (r) and the resistance value of the applied connection during magnetization (R)
And a third step (S3) of measuring the resistance value (r) of the applied connection before magnetization, and a third step (S3). A fourth step (S4) of setting the resistance value (R) of the applied connection at the time of magnetization from the resistance value (r) of the applied connection obtained in the above by the relational expression obtained in the second step (S2); From the resistance value (R) set in the fourth step (S4) and the magnetizing current value (i P ) set in the first step (S1), a magnetizing voltage (V) to be applied to the applied connection is set. It includes five steps (S5) and a sixth step (S6, S7) of magnetizing the permanent magnet by applying the magnetizing voltage set in the fifth step (S5) to the applied connection.

【0016】第4ステップ(S6,S7)は、請求項2
に記載のように、第3ステップ(S5)で設定した着磁
電圧(V)に基づいて所定の充電を行なうステップ(S
6)と、充電された電気を放電することにより、着磁電
圧を印加結線に印加するステップ(S7)とを含む。
The fourth step (S6, S7) is defined in claim 2
As described in step (S5), a step (S5) of performing predetermined charging based on the magnetizing voltage (V) set in the third step (S5)
6) and a step (S7) of applying the magnetizing voltage to the applied connection by discharging the charged electricity.

【0017】このような着磁方法によれば、印加結線の
抵抗値変化に応じて、永久磁石を100%着磁するため
に必要な最小電流値i0 を流すように着磁電圧(V)が
設定されるため、印加結線の抵抗値が温度変化などに起
因して個々の永久磁石の着磁ごとに変化する場合におい
ても、必要最小限の値に所定の余裕代を加えた着磁電圧
および着磁電流で、しかも着磁電流を変化させることな
く、永久磁石の確実な100%着磁を実現することがで
きる。そのため、印加結線の抵抗値が最も高い時の着磁
を基準に、一定の着磁電圧ですべての永久磁石の100
%着磁を確保する上記従来例の場合のような、印加結線
にマージンとしての過剰電圧、過剰電流が印加されるこ
とがなくなり、過剰電圧による印加結線のストレズや、
過剰電流による絶縁破壊等に起因する問題が解消する。
According to such a magnetizing process, in accordance with the resistance value change in the applied connection, the magnetizing voltage to flow a minimum current value i 0 needed to magnetizing the permanent magnet 100% (V) Therefore, even when the resistance value of the applied connection changes for each magnetization of each permanent magnet due to a temperature change or the like, the magnetization voltage obtained by adding a predetermined margin to the required minimum value In addition, it is possible to realize a reliable 100% magnetization of the permanent magnet with the magnetizing current and without changing the magnetizing current. Therefore, based on the magnetization at the time when the resistance value of the applied connection is the highest, 100% of all the permanent magnets at a fixed magnetization voltage.
As in the case of the above-described conventional example that secures the% magnetization, excessive voltage and excess current as a margin are not applied to the applied connection, and the stress of the applied connection due to the excessive voltage,
Problems caused by dielectric breakdown or the like due to excessive current are eliminated.

【0018】上記請求項1あるいは請求項2に記載の本
発明の着磁方法は、請求項3に記載のように、電動機
が、複数相の巻線を有し、回転磁界を発生する固定子
(3)と、回転磁界により回転駆動される、永久磁石を
含む回転子(4)とを備えており、永久磁石の着磁のた
めの印加結線として、複数相の巻線のうちの少なくとも
一部を用い、回転子(4)が固定子(3)に嵌挿された
組立て状態で第6ステップ(S6,S7)を行なうこと
により、回転圧縮機の回転子(4)の永久磁石の着磁に
おける不良品の発生が抑制され、回転圧縮機の製造工程
における歩留りを向上することができる。
According to a first aspect of the present invention, there is provided a magnetizing method according to the third aspect, wherein the motor has a plurality of phase windings and generates a rotating magnetic field. (3) and a rotor (4) including a permanent magnet, which is driven to rotate by a rotating magnetic field. As an application connection for magnetizing the permanent magnet, at least one of windings of a plurality of phases is provided. By performing the sixth step (S6, S7) in an assembled state in which the rotor (4) is inserted into the stator (3), the permanent magnet of the rotor (4) of the rotary compressor is mounted using the portion. The occurrence of defective products in magnetism is suppressed, and the yield in the manufacturing process of the rotary compressor can be improved.

【0019】本発明の着磁方法においては、請求項4に
記載のように、第3ないし第6ステップ(S3〜S7)
を、個々の永久磁石の着磁ごとに行なうことにより、個
々の永久磁石の各々の着磁電圧および着磁電流を確実に
必要最小限の値に設定することができる。ただし、印加
結線の抵抗値の変化が遅いために、所定個数の連続する
永久磁石の着磁工程の時間帯における印加結線の抵抗値
が実質的にほぼ一定であるとみなされる場合には、請求
項5に記載のように、順次着磁される永久磁石の所定数
の連続する永久磁石の着磁に際して、最初の1個の永久
磁石についてのみ第3ないし第5ステップ(S3〜S
5)を行なって着磁電圧(V)を設定し、該着磁電圧
(V)により、所定数の永久磁石の着磁のための第6ス
テップ(S6,S7)を行なうことも可能である。この
ようにすることによって、第3ないし第5ステップ(S
3〜S5)を大幅に省略可能となり、時間当たりの着磁
に要する時間が短縮されるため、スループットが向上す
るという利点がある。
In the magnetizing method of the present invention, the third to sixth steps (S3 to S7)
Is performed for each magnetization of the individual permanent magnets, so that the magnetization voltage and the magnetization current of each of the individual permanent magnets can be reliably set to minimum values. However, if the resistance of the applied connection is considered to be substantially constant during the time of the magnetizing step of a predetermined number of continuous permanent magnets because the resistance of the applied connection changes slowly, As described in Item 5, in magnetizing a predetermined number of continuous permanent magnets to be sequentially magnetized, the third to fifth steps (S3 to S5) are performed only on the first permanent magnet.
The magnetizing voltage (V) is set by performing 5), and the sixth step (S6, S7) for magnetizing a predetermined number of permanent magnets can be performed with the magnetizing voltage (V). . By doing so, the third to fifth steps (S
3 to S5) can be largely omitted, and the time required for magnetization per unit time is shortened, so that there is an advantage that the throughput is improved.

【0020】[0020]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて、図1〜図3に基づいて説明する。なお、本実施の
形態の電動機用永久磁石の着磁方法は、上記従来の技術
の項で説明した図6に示す従来の回転圧縮機に適用可能
であり、着磁電圧を印加する印加結線として、図7
(a)(b)に示す従来のものと同様のY結線を適用可
能であるため、本実施の形態の説明に際しては、適宜こ
れらの図を参照する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The method of magnetizing a permanent magnet for an electric motor according to the present embodiment is applicable to the conventional rotary compressor shown in FIG. 6 described in the section of the related art, and is applied as a connection for applying a magnetizing voltage. , FIG.
Since the same Y connection as the conventional one shown in (a) and (b) can be applied, these drawings will be appropriately referred to in the description of the present embodiment.

【0021】図1に、本発明の実施の形態における電動
機用永久磁石の着磁方法のフローチャートを示してい
る。本実施の形態においては、まず、図6における回転
子4を構成する永久磁石を100%着磁するために必要
な、着磁電圧を印加する印加結線となる固定子巻線の端
子間(図7における着磁電源30の電圧が印加される端
子間)に流すべき最小電流値i0 に所定の余裕代Δi0
を加えた着磁電流値iPを設定する(図1のステップS
1)。永久磁石を100%着磁するために必要な最小電
流値i0 は印加結線の抵抗値にかかわらず一定であり、
固定子巻線の温度に依存しないため、低温(常温)状態
で回転子4を構成する永久磁石材料の着磁特性(ヒステ
リシス曲線)を求めることにより特定するこが可能で
ある。
FIG. 1 shows a flowchart of a method for magnetizing a permanent magnet for an electric motor according to an embodiment of the present invention. In the present embodiment, first, between the terminals of the stator winding which is the connection for applying the magnetizing voltage, which is necessary for 100% magnetizing the permanent magnet constituting the rotor 4 in FIG. 7, the minimum current value i 0 to be passed between the terminals to which the voltage of the magnetizing power supply 30 is applied) is set to a predetermined margin Δi 0.
The magnetizing current value i is set to P plus (step of FIG. 1 S
1). The minimum current value i 0 required for 100% magnetizing the permanent magnet is constant irrespective of the resistance value of the applied connection,
Does not depend on the temperature of the stator winding, it is possible with certain child by obtaining a low-temperature magnetization characteristics of the permanent magnet material forming the rotor 4 (room temperature) state (hysteresis curve).

【0022】次に、着磁時の印加結線の抵抗値R(Ω)
と着磁前の印加結線の抵抗値r(Ω)との関係を設定す
る(図1のステップS2)。着磁前の印加結線の抵抗値
rは、図2(a)に示す通常の直流波形の電流が流れる
電圧を印加して測定した場合の抵抗値であり、抵抗値R
は、着磁時において図2(b)に示すパルス状の電流波
形が得られる直流電圧を印加して測定した場合の抵抗値
である。抵抗値rと抵抗値Rとは一定の相関があり、ほ
ぼ比例するが、印加電流の波形の相違に起因して互いに
相違するため、その関係を予め求めておくことが必要で
ある。このように、抵抗値rと抵抗値Rとが異なるの
は、抵抗値rが固定子巻線端子間の直流抵抗成分のみで
あるのに対して、図2(b)に示すパルス状の電流波形
が得られる直流電圧を印加した場合の抵抗値Rが、直流
抵抗成分に加えて固定子巻線のインダクタンスを考慮し
たインピーダンスとなるからである。
Next, the resistance value R (Ω) of the applied connection at the time of magnetization is
And the resistance value r (Ω) of the applied connection before magnetization is set (step S2 in FIG. 1). The resistance value r of the applied connection before magnetization is a resistance value measured when a voltage at which a current having a normal DC waveform shown in FIG.
Is a resistance value measured by applying a DC voltage at which a pulse-like current waveform shown in FIG. 2B is obtained during magnetization. The resistance value r and the resistance value R have a certain correlation and are almost proportional to each other, but they differ from each other due to the difference in the waveform of the applied current. Therefore, it is necessary to determine the relationship in advance. As described above, the difference between the resistance value r and the resistance value R is that the resistance value r is only the DC resistance component between the stator winding terminals, whereas the pulse-shaped current shown in FIG. This is because the resistance value R when a DC voltage for obtaining a waveform is applied becomes an impedance in consideration of the inductance of the stator winding in addition to the DC resistance component.

【0023】必要な関係式は、印加結線の温度を低温状
態から最大温度上昇時まで変化させな がら、各温度に
おける抵抗値rおよびRを測定してプロットした、図3
に示すような直線として求められる。図5(a)には、
抵抗値rおよびRの実測データを示している。
The necessary relational expression is obtained by measuring and plotting the resistance values r and R at each temperature while changing the applied connection temperature from a low temperature state to a maximum temperature rise time.
Is obtained as a straight line as shown in FIG. In FIG. 5A,
9 shows measured data of resistance values r and R.

【0024】このようにしてステップS1,S2におい
て予め設定された着磁電流値iP および関係式に基づい
て、以下個々の回転圧縮機の回転子4を構成する永久磁
石の着磁を順次行なう。この着磁工程においては、上記
従来例の場合と同様に、該永久磁石となる磁石材料を未
着磁状態のままで、回転子4を固定子コア3aに嵌挿
し、その後に、印加結線となる固定子巻線に着磁電流を
印加して磁界を発生させ、その磁界によって永久磁石を
着磁する。この個々の永久磁石の着磁に際して、まず、
着磁時の温度におる印加結線に通常の直流波形の電流を
流して、着磁直前の印加結線の抵抗値rを測定する(図
1のステップS3)。次に、実測した抵抗値rから、予
め設定した関係式を用いて着磁時の印加結線の抵抗値R
を設定する(図1のステップS4)。
Based on the magnetizing current value i P and the relational expression set in advance in steps S1 and S2, the permanent magnets constituting the rotor 4 of each rotary compressor are sequentially magnetized. . In this magnetizing step, the rotor 4 is inserted into the stator core 3a while the magnet material to be the permanent magnet is in a non-magnetized state, as in the case of the above-described conventional example, and thereafter, the applied connection is established. A magnetizing current is applied to the stator winding to generate a magnetic field, and the magnetic field magnetizes the permanent magnet. When magnetizing these individual permanent magnets, first,
A current having a normal DC waveform is applied to the applied connection at the temperature at the time of magnetization, and the resistance value r of the applied connection immediately before magnetization is measured (step S3 in FIG. 1). Next, based on the actually measured resistance value r, the resistance value R of the applied connection at the time of magnetization is determined using a preset relational expression.
Is set (step S4 in FIG. 1).

【0025】このようにして設定した抵抗値Rと、ステ
ップS1において設定した着磁電流値iP から、確実に
100%着磁するために印加結線の端子間に印加すべ
き、所定の余裕度を含む最小の着磁電圧値V(=iP
R)を設定する(図1のステップS5)。次に、着磁電
源に設けられた充電器に、設定された着磁電圧値のパル
ス電圧を得るための充電を行なう(図1のステップS
6)。この着磁電圧値は、図2(b)に示すように、着
磁電流のパルス波形のピーク値が設定された着磁電流値
P に等しくなるように設定する。
From the resistance value R set in this way and the magnetization current value i P set in step S1, a predetermined margin to be applied between the terminals of the application connection in order to ensure 100% magnetization. The minimum magnetizing voltage value V (= i P *
R) is set (step S5 in FIG. 1). Next, charging is performed to obtain a pulse voltage having a set magnetization voltage value in a charger provided in the magnetization power supply (step S in FIG. 1).
6). This magnetizing voltage value is set such that the peak value of the pulse waveform of the magnetizing current is equal to the magnetizing current value i P set as shown in FIG. 2B.

【0026】その後、充電された電気を印加結線に対し
てパルス放電することにより磁界を発生させて、回転子
4を構成する永久磁石を100%着磁する(図1のステ
ップS7)。以降、固定子3,回転子4等の組立て工程
を経て製造ラインを流れる個々の回転圧縮機ごとに、ス
テップS3〜S7が順次繰り返される。
Thereafter, a magnetic field is generated by pulse-discharging the charged electricity to the applied connection, and the permanent magnets constituting the rotor 4 are magnetized to 100% (step S7 in FIG. 1). Thereafter, steps S3 to S7 are sequentially repeated for each of the rotary compressors flowing through the production line through the assembly process of the stator 3, the rotor 4, and the like.

【0027】このように、個々の回転圧縮機ごとにステ
ップS3〜S7が順次繰り返されることにより、各々の
回転圧縮機の回転子4の永久磁石の着磁に際して、温度
変化に起因する印加結線の抵抗値の変化にかかわらず、
常に、確実な100%着磁のために印加結線の端子間に
印加すべき、所定の余裕度を含む最小の着磁電圧値Vが
印加される。したがって、低温時の着磁電圧として、上
記従来の技術における着磁方法のようなマージンを見込
む必要がなくなり、低温時においても過剰な着磁電流を
流すことなく、所定の余裕度を含む必要最小限の着磁電
圧で、すべての温度状態において一定電流で確実な10
0%着磁を行なうことができる。その結果、過剰電流に
よるストレスの発生による固定子巻線の破損や、過剰電
圧による絶縁破壊などの不都合な現象の発生が抑制され
る。
As described above, steps S3 to S7 are sequentially repeated for each of the rotary compressors, so that when the permanent magnet of the rotor 4 of each rotary compressor is magnetized, the applied connection caused by a temperature change is generated. Regardless of the change in resistance,
The minimum magnetizing voltage value V including a predetermined margin, which should be applied between the terminals of the connection for reliable 100% magnetization, is always applied. Therefore, there is no need to allow for a margin as in the magnetizing method in the above-described conventional technique as the magnetizing voltage at a low temperature, and a necessary minimum including a predetermined margin without flowing an excessive magnetizing current even at a low temperature. With a constant magnetizing voltage and a constant current in all temperature conditions.
0% magnetization can be performed. As a result, occurrence of inconvenient phenomena such as breakage of the stator winding due to generation of stress due to excessive current and insulation breakdown due to excessive voltage is suppressed.

【0028】本実施の形態による着磁方法を用いた場合
の固定子巻線の温度と着磁電流値および着磁前の固定子
巻線の抵抗値rとの関係は、図4のグラフの直線D,E
のように表せ、抵抗値rが低温(温度t1 ℃)の点E1
から最大温度上昇時(温度t2℃)のときの点E2に変化
しているのに対して、着磁電流値は、低温時の点D1か
ら最大温度上昇時の点D2まで、100%着磁に必要な
最小電流値i0 に所定の余裕代Δi0 を加えた一定の値
となる。本実施の形態の着磁方法を実施した際の、印加
結線としての固定子巻線の抵抗値と、着磁電流値および
着磁電圧値との関係の実測データを図5(b)に示して
いる。この実測データから、本実施の形態の着磁方法に
より、固定子巻線の抵抗値にかかわらず、100%着磁
に必要な最小電流値に余裕代を加えた、一定の電流値に
なっていることがわかる。
The relationship between the temperature of the stator winding, the magnetizing current value, and the resistance value r of the stator winding before magnetizing when the magnetizing method according to the present embodiment is used is shown in the graph of FIG. Straight lines D, E
The point E1 where the resistance value r is low (temperature t 1 ° C)
To the point E2 at the time of the maximum temperature rise (temperature t 2 ° C), while the magnetization current value is 100% from the point D1 at the low temperature to the point D2 at the maximum temperature rise. It is a constant value obtained by adding a predetermined margin Δi 0 to the minimum current value i 0 required for magnetism. FIG. 5B shows measured data of the relationship between the resistance value of the stator winding as an applied connection, the magnetization current value, and the magnetization voltage value when the magnetization method according to the present embodiment is performed. ing. From the measured data, the magnetization method according to the present embodiment provides a constant current value obtained by adding a margin to the minimum current value required for 100% magnetization regardless of the resistance value of the stator winding. You can see that there is.

【0029】なお、上記実施の形態においては、個々の
回転圧縮機の着磁工程ごとに図1におけるステップS3
〜S7を繰り返したが、温度上昇の速度が比較的遅いた
めに所定数の回転圧縮機を着磁する時間帯における温度
変化が微小で、この時間帯にの印加結線の抵抗値が実質
的にほぼ一定とみなせる場合には、その所定数の回転圧
縮機の着磁工程においては、最初の1個のみについてス
テップS3〜S5を行なって着磁電圧を設定し、他の回
転圧縮機の着磁に際してはこの着磁電圧を共通に用いて
ステップS6およびS7を行なうことも可能である。こ
のように、ステップS3〜S5を所定個数の回転圧縮機
ごとに行なうことにより、着磁電流値は多少周期的に変
化するが、着磁電圧および着磁電流のマージンが小さい
ために、過剰な着磁電流によるストレスや過剰な着磁電
圧による絶縁破壊などを抑制するという本発明の目的を
達成することができる。
In the above embodiment, step S3 in FIG. 1 is performed for each magnetizing step of each rotary compressor.
S7 was repeated, but the rate of temperature rise was relatively slow, so the temperature change during the time period when the predetermined number of rotary compressors were magnetized was very small, and the resistance value of the applied connection during this time period was substantially reduced. If it can be regarded as substantially constant, in the magnetizing process of the predetermined number of rotary compressors, steps S3 to S5 are performed on only the first one to set the magnetizing voltage, and the magnetizing voltages of the other rotary compressors are set. In this case, steps S6 and S7 can be performed using the magnetizing voltage in common. As described above, by performing steps S3 to S5 for each of the predetermined number of rotary compressors, the magnetizing current value changes somewhat periodically. However, since the magnetizing voltage and the margin of the magnetizing current are small, excessive It is possible to achieve the object of the present invention of suppressing the stress caused by the magnetizing current and the dielectric breakdown caused by the excessive magnetizing voltage.

【0030】また、上記実施の形態では、回転圧縮機の
固定子巻線を印加結線とする着磁方法に本発明を適用す
る場合について述べたが、本発明の考え方は、回転圧縮
機のケーシングの周囲の固定子近傍を囲うように軟磁性
体のヨークを設け、このヨークに巻線を施して印加結線
として回転子の永久磁石を着磁する、いわゆるヨーク着
磁においても同様に適用可能である。このようなヨーク
着磁に適用する場合には、固定子巻線をヨークの巻線に
置き換えて、図1のフローチャートに示したステップS
1〜S7を行なうことにより、定電圧,定電流による着
磁を実現することができる。
In the above-described embodiment, the case where the present invention is applied to the magnetizing method in which the stator winding of the rotary compressor is applied and connected is described. A yoke of a soft magnetic material is provided so as to surround the vicinity of the stator around the yoke, and a winding is applied to this yoke to magnetize the permanent magnet of the rotor as an applied connection. is there. When applied to such yoke magnetization, the stator winding is replaced with a yoke winding, and step S shown in the flowchart of FIG.
By performing steps 1 to S7, it is possible to realize magnetization by constant voltage and constant current.

【0031】なお、上記各実施の形態の開示は例示に過
ぎないものであって、本発明の範囲を制限するものでは
なく、本発明の範囲は特許請求の範囲によって示され、
特許請求の範囲に均等の意味および範囲内でのすべての
変更が含まれることが意図される。
The disclosure of each of the above embodiments is merely an example, and does not limit the scope of the present invention. The scope of the present invention is defined by the claims,
It is intended that the appended claims include all modifications that come within the meaning and range of equivalent meaning.

【0032】[0032]

【発明の効果】以上説明したように、請求項1〜5に記
載の本発明の電動機用永久磁石の着磁方法によれば、印
加結線の抵抗値変化に応じて、永久磁石を100%着磁
するために必要な最小電流値i0 に所定の余裕代Δi0
を加えた着磁電流を流すように着磁電圧(V)が設定さ
れるため、印加結線にマージンとしての過剰電圧、過剰
電流が印加されることがなくなり、過剰電圧による印加
結線のストレズや、過剰電流による絶縁破壊等に起因す
る問題が解消する。したがって、たとえば請求項3に記
載のように回転圧縮機の回転子を構成する永久磁石の着
磁に適用することにより、着磁工程における不良品の発
生が抑制され、製造工程における歩留りが向上するとい
う特有の効果を有する。
As described above, according to the method for magnetizing a permanent magnet for an electric motor according to the present invention, 100% of the permanent magnet is attached according to the change in the resistance value of the applied connection. A minimum allowance Δi 0 is added to the minimum current value i 0 required for magnetizing.
Since the magnetizing voltage (V) is set so as to flow the magnetizing current to which the voltage is added, excess voltage and excess current as a margin are not applied to the applied connection, and the stress of the applied connection due to the excess voltage, Problems caused by dielectric breakdown or the like due to excessive current are eliminated. Therefore, for example, by applying the present invention to the magnetization of the permanent magnet constituting the rotor of the rotary compressor, occurrence of defective products in the magnetization process is suppressed, and the yield in the manufacturing process is improved. It has a unique effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態における電動機用永久磁
石の着磁方法のフローチャート図である。
FIG. 1 is a flowchart of a method of magnetizing a permanent magnet for an electric motor according to an embodiment of the present invention.

【図2】(a)は、この発明の実施の形態のステップS
3において回転子の永久磁石を着磁する前の印加結線の
抵抗値rを測定する時に印加結線の端子間に印加され
る、通常の直流電流の波形を示す図、(b)は、この発
明の実施の形態のステップS7において回転子の永久磁
石を着磁する際に印加結線の端子間に印加される、パル
ス状の着磁電流の波形を示す図である。
FIG. 2A shows step S in the embodiment of the present invention.
3 shows a waveform of a normal DC current applied between the terminals of the applied connection when measuring the resistance value r of the applied connection before the permanent magnet of the rotor is magnetized, and FIG. FIG. 10 is a diagram showing a waveform of a pulse-shaped magnetizing current applied between terminals of an application connection when magnetizing a permanent magnet of a rotor in step S7 of the embodiment.

【図3】この発明の実施の形態のステップS2において
関係式を設定するための、着磁前の印加結線端子間の抵
抗値rと着磁時の印加結線端子間の抵抗値R関係を示す
図である。
FIG. 3 shows a relationship between a resistance value r between applied connection terminals before magnetization and a resistance value R between applied connection terminals during magnetization for setting a relational expression in step S2 of the embodiment of the present invention. FIG.

【図4】この発明の実施の形態の着磁方法によって得ら
れる、固定子巻線の温度と着磁電流値および着磁前の印
加結線の抵抗値との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a temperature of a stator winding, a magnetization current value, and a resistance value of an applied connection before magnetization obtained by a magnetization method according to an embodiment of the present invention.

【図5】(a)は、この発明の実施の形態のステップS
2において関係式を設定するために、着磁前の印加結線
端子間の抵抗値rと着磁時の印加結線端子間の抵抗値R
を変化させて測定してプロットした実測データ示す図、
(b)は、この発明の実施の形態の着磁方法により得ら
れた、固定子巻線の抵抗値と着磁電流値および着磁電圧
値との関係の実測データを示す図である。
FIG. 5A is a diagram illustrating step S in the embodiment of the present invention;
In order to set the relational expression in Fig. 2, the resistance value r between the applied connection terminals before magnetization and the resistance value R between the applied connection terminals during magnetization are set.
Figure showing measured data plotted by changing the
(B) is a diagram showing measured data of the relationship between the resistance value of the stator winding, the magnetizing current value, and the magnetizing voltage value obtained by the magnetizing method according to the embodiment of the present invention.

【図6】本発明の電動機用永久磁石の着磁方法が適用可
能な従来の回転圧縮機の縦断面構造を示す図である。
FIG. 6 is a view showing a longitudinal sectional structure of a conventional rotary compressor to which the method of magnetizing a permanent magnet for a motor according to the present invention is applicable.

【図7】(a)は、たとえば特開平6−315252号
公報に示された電動機用永久磁石の着磁において適用さ
れた、固定子のY結線20と着磁用電源30との結線の
態様を模式的に示す図、(b)は、特開平9−1823
88号公報に示された電動機用永久磁石の着磁において
適用された、固定子のY結線20と着磁用電源30との
結線の態様を模式的に示す図である。
FIG. 7 (a) is a diagram showing a connection mode between a Y connection 20 of a stator and a power supply 30 for magnetization applied in, for example, the magnetization of a permanent magnet for an electric motor disclosed in Japanese Patent Application Laid-Open No. 6-315252. FIG. 2B is a diagram schematically showing the configuration shown in FIG.
FIG. 9 is a diagram schematically illustrating a connection mode between a Y connection of a stator and a power supply for magnetization 30 applied to the magnetization of a permanent magnet for a motor disclosed in Japanese Patent Publication No. 88;

【図8】巻線の温度変化と抵抗値変化との関係を示す図
である。
FIG. 8 is a diagram showing a relationship between a temperature change of a winding and a resistance value change.

【図9】低温時および最大温度上昇時の、着磁電圧と着
磁率および着磁電流との関係を示す図である。
FIG. 9 is a diagram showing a relationship between a magnetizing voltage, a magnetizing rate, and a magnetizing current at a low temperature and at a maximum temperature rise.

【図10】従来の一定電圧着磁を用いた着磁方法によ
る、巻線温度と着磁電流値との関係を示す図である。
FIG. 10 is a diagram illustrating a relationship between a winding temperature and a magnetizing current value according to a conventional magnetizing method using constant voltage magnetization.

【図11】着磁前の印加結線間の抵抗値と、着磁時の印
加結線間の抵抗値との関係の実測データをプロットした
グラフを示す図である。
FIG. 11 is a diagram showing a graph in which measured data of a relationship between a resistance value between applied connections before magnetization and a resistance value between applied connections during magnetization is plotted.

【符号の説明】[Explanation of symbols]

2 モータ(電動要素) 3 固定子 4 回転子 10 圧縮要素 20 Y結線(印加結線) 30 着磁用電源 2 Motor (Electric Element) 3 Stator 4 Rotor 10 Compression Element 20 Y Connection (Applied Connection) 30 Power Supply for Magnetization

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 永久磁石を構成要素として含む電動機に
おける永久磁石を、所定の印加結線に着磁電圧を印加し
て着磁する方法であって、 前記永久磁石を100%着磁するために必要な最小電流
値(i0 )に所定の余裕代(Δi1 )を加えた着磁電流
値(iP )を設定する第1ステップ(S1)と、印加結線温度が変化した場合における 着磁前の印加結線
の抵抗値(r)と着磁の印加結線の抵抗値(R)との
関係を予め求めて、関係式を設定する第2ステップ(S
2)と、 印加結線の着磁前の抵抗値(r)を測定する第3ステッ
プ(S3)と、 前記第3ステップ(S3)で求めた前記印加結線の抵抗
値(r)から、着磁時の前記印加結線の抵抗値(R)
を、第2ステップ(S2)で求められた関係式により設
定する第4ステップ(S4)と、 前記第4ステップ(S4)で設定した抵抗値(R)およ
び前記着磁電流値(iP )から、前記印加結線に着磁電
圧(V)を設定する第5ステップ(S5)と、 前記第5ステップ(S5)で設定した着磁電圧を前記印
加結線に印加することにより、前記永久磁石を着磁する
第6ステップ(S6,S7)とを備えた、電動機用永久
磁石の着磁方法。
1. A method of magnetizing a permanent magnet in an electric motor including a permanent magnet as a component by applying a magnetizing voltage to a predetermined connection, which is necessary for 100% magnetizing the permanent magnet. A first step (S1) of setting a magnetizing current value (i P ) obtained by adding a predetermined margin allowance (Δi 1 ) to a minimum current value (i 0 ), and before magnetizing when the applied connection temperature changes. seeking the resistance of the applied connection (r) and the resistance value of the applied connection when magnetizing the relationship between the (R) in advance, a second step of setting a relational expression (S
2), a third step (S3) of measuring the resistance value (r) of the applied connection before magnetization, and magnetizing from the resistance value (r) of the applied connection obtained in the third step (S3). Resistance value of the applied connection at the time (R)
In the fourth step (S4), and the resistance value (R) and the magnetizing current value (i P ) set in the fourth step (S4). A fifth step (S5) of setting a magnetizing voltage (V) to the applied connection; and applying the magnetizing voltage set in the fifth step (S5) to the applied connection, thereby setting the permanent magnet. A method for magnetizing a permanent magnet for an electric motor, comprising: a sixth step of magnetizing (S6, S7).
【請求項2】 前記第6ステップ(S6,S7)が、前
記第5ステップ(S5)で設定した着磁電圧(V)に基
づいて所定の充電を行なうステップ(S6)と、充電さ
れた電気を放電することにより、着磁電圧を前記印加結
線に印加するステップ(S7)とを含む、請求項1記載
の電動機用永久磁石の着磁方法。
2. The sixth step (S6, S7) includes a step (S6) of performing a predetermined charge based on the magnetizing voltage (V) set in the fifth step (S5), and And applying a magnetizing voltage to the applied connection by discharging (S7). 2. The method according to claim 1, further comprising the step of:
【請求項3】 前記電動機が、複数相の巻線を有し、回
転磁界を発生する固定子(3)と、前記回転磁界により
回転駆動される、永久磁石を含む回転子(4)とを備え
ており、前記永久磁石の着磁のための印加結線として、
前記複数相の巻線のうちの少なくとも一部を用い、前記
回転子(4)が前記固定子(3)に嵌挿された組立て状
態で前記第6ステップ(S6,S7)を行なう、請求項
1または2に記載の電動機用永久磁石の着磁方法。
3. A motor comprising: a stator having windings of a plurality of phases and generating a rotating magnetic field; and a rotor including a permanent magnet driven to rotate by the rotating magnetic field. Provided, as an applied connection for magnetizing the permanent magnet,
The sixth step (S6, S7) is performed by using at least a part of the windings of the plurality of phases and in an assembled state in which the rotor (4) is inserted into the stator (3). 3. The method for magnetizing a permanent magnet for an electric motor according to 1 or 2.
【請求項4】 前記第3ないし第6ステップ(S3〜S
7)を、個々の永久磁石の着磁ごとに行なう、請求項1
ないし3のいずれか1項に記載の電動機用永久磁石の着
磁方法。
4. The third to sixth steps (S3 to S)
7. The method according to claim 1, wherein step 7) is performed for each magnetization of the individual permanent magnet.
4. The method for magnetizing a permanent magnet for an electric motor according to any one of claims 3 to 3.
【請求項5】 順次着磁される永久磁石の所定数の連続
する永久磁石の着磁に際して、最初の1個の永久磁石に
ついてのみ前記第3ないし第5ステップ(S3〜S5)
を行なって着磁電圧(V)を設定し、該着磁電圧(V)
により、前記所定数の永久磁石の着磁のための前記第6
ステップ(S6,S7)を行なう、請求項1ないし3の
いずれか1項に記載の電動機用永久磁石の着磁方法。
5. The third to fifth steps (S3 to S5) for only a first permanent magnet when a predetermined number of continuous permanent magnets are sequentially magnetized.
To set the magnetizing voltage (V), and set the magnetizing voltage (V)
As a result, the sixth magnet for magnetizing the predetermined number of permanent magnets
The method for magnetizing a permanent magnet for an electric motor according to any one of claims 1 to 3, wherein steps (S6, S7) are performed.
JP4331598A 1998-02-25 1998-02-25 How to magnetize permanent magnets for motors Expired - Fee Related JP3003665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331598A JP3003665B2 (en) 1998-02-25 1998-02-25 How to magnetize permanent magnets for motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331598A JP3003665B2 (en) 1998-02-25 1998-02-25 How to magnetize permanent magnets for motors

Publications (2)

Publication Number Publication Date
JPH11252873A JPH11252873A (en) 1999-09-17
JP3003665B2 true JP3003665B2 (en) 2000-01-31

Family

ID=12660383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331598A Expired - Fee Related JP3003665B2 (en) 1998-02-25 1998-02-25 How to magnetize permanent magnets for motors

Country Status (1)

Country Link
JP (1) JP3003665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677121B2 (en) * 2001-04-27 2011-04-27 キヤノン株式会社 Magnetization distribution calculation apparatus and calculation method
CN102760550B (en) * 2012-08-03 2016-09-07 杭州嘉拓科技有限公司 Magnetization method and device
JP6140236B2 (en) * 2015-09-30 2017-05-31 ファナック株式会社 Machine learning device and magnetizing device for electric motor

Also Published As

Publication number Publication date
JPH11252873A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
Labak et al. Designing and prototyping a novel five-phase pancake-shaped axial-flux SRM for electric vehicle application through dynamic FEA incorporating flux-tube modeling
US8913353B2 (en) Method and system for detecting fault of serial coil type permanent magnet motor
EP2704296B1 (en) Electric motor and electric device provided with same
US9071090B2 (en) Motor and electric device including the same
EP2741417A2 (en) Method and system for detecting a fault in the stator windings of a permanent magnet motor (PMSM)
CN101362250A (en) Welding set and welding method thereof, as well as electric rotating machine
KR101500369B1 (en) Stator core iron loss measuring structure of motor
US20130134818A1 (en) Three-phase axial flux motor and magnetic path adjusting method thereof
Ugale et al. A new rotor structure for line start permanent magnet synchronous motor
Dorrell et al. Effects of rotor eccentricity on torque in switched reluctance machines
JP3003665B2 (en) How to magnetize permanent magnets for motors
WO2005109623A1 (en) Adaptive system for optimizing excitation current waveform profiles for electric motors
US9602037B2 (en) Motor drive device and motor drive system
US20220376638A1 (en) Methods of magnetizing and controlling a variable-flux memory motor
Gómez et al. Methodology to study demagnetization risk in permanent magnet machines by finite element method
Torkaman et al. Dynamic eccentricity fault diagnosis in switched reluctance motor
US7081732B2 (en) Induction motor controller
Liew et al. An investigation of advanced magnetic materials for axial field brushless permanent magnet motor drives for automotive applications
JP6951008B1 (en) Rotor position detection method for sensorless motor and sensorless motor drive method
Estenlund et al. Dovetail Design for Direct Cooled Rotor: Design and Manufacturing
US7084599B2 (en) Induction motor controller
Ning et al. Design and finite element analysis of a hybrid excitation synchronous machine
KR20190011529A (en) Temperature Measuring Apparatus Of Motor
Gómez Serna et al. Methodology to Study Demagnetization Risk in Permanent Magnet Machines by Finite Element Method
Yaojing et al. A two-pole high-power line-start permanent magnet synchronous motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees