JP3003294B2 - Method for producing bisphenol A - Google Patents

Method for producing bisphenol A

Info

Publication number
JP3003294B2
JP3003294B2 JP3187625A JP18762591A JP3003294B2 JP 3003294 B2 JP3003294 B2 JP 3003294B2 JP 3187625 A JP3187625 A JP 3187625A JP 18762591 A JP18762591 A JP 18762591A JP 3003294 B2 JP3003294 B2 JP 3003294B2
Authority
JP
Japan
Prior art keywords
bpa
acetone
reaction
heteropolyacid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3187625A
Other languages
Japanese (ja)
Other versions
JPH0532576A (en
Inventor
寛 岩根
貴博 菅原
公子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3187625A priority Critical patent/JP3003294B2/en
Publication of JPH0532576A publication Critical patent/JPH0532576A/en
Application granted granted Critical
Publication of JP3003294B2 publication Critical patent/JP3003294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アセトンとフェノール
(以下PLと略記する)とを反応させて、ビスフェノー
ルA(2,2−ビス(4−ヒドロキシフェニル)プロパ
ン、以下4,4’−BPAと略記する)を製造する方法
に関する。4,4’−BPAは、ポリカーボネート、ポ
リエステル、エポキシ樹脂や感熱紙用顕色剤の中間原料
などとして有用な化合物である。
The present invention relates to a reaction between acetone and phenol (hereinafter abbreviated as PL) to form bisphenol A (2,2-bis (4-hydroxyphenyl) propane, hereinafter 4,4'-BPA). Abbreviated as). 4,4′-BPA is a compound useful as an intermediate material of polycarbonate, polyester, epoxy resin, and a developer for thermal paper.

【0002】[0002]

【従来の技術】4,4’−BPAは通常、PLとアセト
ンとを酸性縮合剤の存在下で反応させることにより合成
され、助触媒としてメチルメルカプタンなどのイオウ化
合物を添加する場合がある。酸性触媒としては、通常塩
化水素が用いられているが、腐食性が大きいため、実際
の製造に当たっては高価な材質を用いた反応装置が必要
であり、さらに反応混合物から触媒を除去するための精
製工程が必要であるなどの問題点があった。
2. Description of the Related Art 4,4'-BPA is usually synthesized by reacting PL with acetone in the presence of an acidic condensing agent, and a sulfur compound such as methyl mercaptan may be added as a co-catalyst. Hydrogen chloride is usually used as an acidic catalyst, but because of its high corrosiveness, a reactor using expensive materials is required for actual production, and purification for removing the catalyst from the reaction mixture is required. There was a problem that a process was required.

【0003】また、酸性イオン交換樹脂を触媒として用
いる方法(特開昭36−23334号公報)は、反応で
生成する水によって活性が低下するという欠点があり、
水を除去しながら反応を行う方法も検討されているが
(特開昭61−78741号公報)、イオン交換樹脂
は、樹脂の寿命が短く、コストが高いという問題点があ
った。
Further, the method using an acidic ion exchange resin as a catalyst (Japanese Patent Application Laid-Open No. 36-23334) has a drawback that the activity is reduced by water generated by the reaction.
Although a method of carrying out the reaction while removing water has been studied (Japanese Patent Application Laid-Open No. 61-78741), the ion exchange resin has a problem that the life of the resin is short and the cost is high.

【0004】一方、特開平2−45439号公報には、
PL類とケトンをヘテロポリ酸を酸性縮合剤として用い
るビスフェノール類を製造する方法が開示されている
が、例えば、PLとアセトンとの反応において、ヘテロ
ポリ酸中の結晶水が多い場合には、60℃、4時間でア
セトン転化率2.5%、収率2.0%と非常に反応が遅
くなるという欠点があり、水が生成する本反応では工業
的製造触媒とは言いがたかった。
On the other hand, JP-A-2-45439 discloses that
A method for producing a bisphenol using a heteropolyacid as an acidic condensing agent using a PL and a ketone is disclosed. For example, in a reaction between PL and acetone, when a large amount of water of crystallization is contained in the heteropolyacid, a temperature of 60 ° C. There is a drawback that the reaction is very slow with an acetone conversion rate of 2.5% and a yield of 2.0% in 4 hours. This reaction, in which water is produced, was not considered to be an industrially produced catalyst.

【0005】[0005]

【発明が解決しようとする課題】本発明は、PLとアセ
トンから4,4’−BPAを製造する際に、反応器に特
殊な材質を用いる事なく、短時間で高選択率、高収率で
4,4’−BPAを製造する方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention relates to a process for producing 4,4'-BPA from PL and acetone without using a special material for the reactor, and in a short time, high selectivity and high yield. It is an object of the present invention to provide a method for producing 4,4′-BPA by the method described above.

【0006】[0006]

【課題を解決するための手段】本発明者らは、アセトン
とPLとを、ヘテロポリ酸及びメルカプト基を有する有
機化合物の存在下に反応させることにより、腐食性の塩
化水素を使用することなく、反応で生成する水の影響を
受けにくく、短時間で位置選択率良く高収率で4,4’
−BPAを製造する方法を見い出した。また、ヘテロポ
リ酸塩を用いると、通常のヘテロポリ酸に比べ表面積が
大きくなり活性が上がるため、さらに短時間で反応が進
む事を見い出し本発明に至った。
The present inventors have made it possible to react acetone and PL in the presence of a heteropolyacid and an organic compound having a mercapto group without using corrosive hydrogen chloride. Hardly affected by water generated by the reaction, 4,4 '
-A method for producing BPA has been found. In addition, when a heteropolyacid salt is used, the surface area is increased as compared with a normal heteropolyacid, and the activity is increased. Therefore, it has been found that the reaction proceeds in a shorter time, and the present invention has been achieved.

【0007】すなわち本発明は、アセトンとPLとを反
応させて4,4’−BPAを製造する方法において、ヘ
テロポリ酸またはその塩及びメルカプト基を有する有機
化合物の存在下に反応させることを特徴とする4,4’
−BPAの製造方法である。 (アセトン)本発明で用いるアセトンは、蒸留精製した
ものに限らず、キュメン法フェノールプロセスにおける
蒸留塔底液から得られる粗アセトン等でも使用可能であ
る。 (ヘテロポリ酸またはヘテロポリ酸塩)本発明において
用いるヘテロポリ酸は、モリブデン、タングステン、バ
ナジウムから選ばれた少なくとも1種の酸化物とリン、
ケイ素、ヒ素及びゲルマニウムから選ばれたオキシ酸が
縮合した構造で、後者に対する前者の原子比が2.5〜
12である。これらのヘテロポリ酸としては、例えばリ
ンタングステン酸、リンモリブデン酸、リンモリブドタ
ングステン酸、リンモリブドバナジン酸、リンモリブド
タングストバナジン酸、リンタングストバナジン酸、リ
ンモリブドニオブ酸、ケイタングステン酸、ケイモリブ
デン酸、ケイモリブドタングステン酸、ケイモリブドタ
ングストバナジン酸、ゲルマニウムタングステン酸、ヒ
素モリブデン酸、ヒ素タングステン酸などが挙げられ
る。
That is, the present invention provides a method for producing 4,4′-BPA by reacting acetone and PL, wherein the reaction is carried out in the presence of a heteropolyacid or a salt thereof and an organic compound having a mercapto group. 4,4 '
-A method for producing BPA. (Acetone) The acetone used in the present invention is not limited to one purified by distillation, but may be crude acetone obtained from the distillation column bottom in the cumen phenol process. (Heteropolyacid or heteropolyacid salt) The heteropolyacid used in the present invention is at least one oxide selected from molybdenum, tungsten, and vanadium, and phosphorus,
A structure in which an oxyacid selected from silicon, arsenic and germanium is condensed, and the atomic ratio of the former to the latter is 2.5 to
Twelve. As these heteropolyacids, for example, phosphotungstic acid, phosphomolybdic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdung tungstovanadic acid, phosphorus tungstovanadic acid, phosphomolybdniobic acid, silicotungstic acid, Examples include silicomolybdic acid, silicomolybdotungstic acid, silicomolybdo tungstovanadic acid, germanium tungstic acid, arsenic molybdic acid, arsenic tungstic acid, and the like.

【0008】またこれらのヘテロポリ酸のナトリウム、
カリウム、セシウムなどのアルカリ金属塩、アンモニウ
ム塩も用いる事ができ、その中でも特にセシウム塩が有
効である。これらのヘテロポリ酸またはヘテロポリ酸塩
はそのまま用いることができるが、活性炭、アルミナ、
シリカ−アルミナ、ケイソウ土などの担体に担持したも
のを用いてもよい。
Further, sodium of these heteropoly acids,
Alkali metal salts such as potassium and cesium, and ammonium salts can also be used, and among them, cesium salts are particularly effective. These heteropolyacids or heteropolyacid salts can be used as they are, but activated carbon, alumina,
Those supported on a carrier such as silica-alumina and diatomaceous earth may be used.

【0009】ヘテロポリ酸またはヘテロポリ酸塩の使用
量は、アセトン1モルに対し好ましくは0.01〜0.
5モル、特に好ましくは0.05〜0.3モルの範囲で
ある。 (メルカプト基を有する有機化合物)メルカプト基を有
する有機化合物としては、具体的にはエチルメルカプタ
ン、プロピルメルカプタン、ブチルメルカプタンなどの
アルキルメルカプタン類;メルカプトプロピオン酸、メ
ルカプト酢酸などのメルカプトカルボン酸類;メルカプ
トエタノール、メルカプトブタノールなどのメルカプト
アルコール類;メルカプトピリジン、メルカプトニコチ
ン酸、メルカプトピリジノオキサイド、メルカプトピリ
ジノールなどのメルカプトピリジン類;チオフェノー
ル、チオクレゾールなどのチオフェノール類などが挙げ
られるが、アルキルメルカプタン類やメルカプトカルボ
ン酸類が特に好ましい。
The amount of the heteropolyacid or heteropolyacid salt used is preferably from 0.01 to 0.1 mol per mol of acetone.
5 mol, particularly preferably in the range of 0.05 to 0.3 mol. (Organic compound having a mercapto group) Specific examples of the organic compound having a mercapto group include alkyl mercaptans such as ethyl mercaptan, propyl mercaptan, and butyl mercaptan; mercapto carboxylic acids such as mercapto propionic acid and mercapto acetic acid; mercapto ethanol; Mercapto alcohols such as mercaptobutanol; mercaptopyridines such as mercaptopyridine, mercaptonicotinic acid, mercaptopyridinoxide, and mercaptopyridinol; thiophenols such as thiophenol and thiocresol; and alkyl mercaptans and the like. Mercaptocarboxylic acids are particularly preferred.

【0010】メルカプト基を有する有機化合物の使用量
はアセトンに対し、好ましくは0.1〜50重量%、特
に好ましくは0.5〜30重量%である。 (反応条件)PLの使用量はアセトン1モルに対して2
モル以上であるが、好ましくは3〜20モルである。P
Lの使用量が2モル以下だと、反応が遅い上に目的とす
る4,4’−BPAの他に、2−(2−ヒドロキシフェ
ニル)−2−(4−ヒドロキシフェニル)プロパン(以
下2,4’−BPAと略記する)などの副生物が多くな
るので好ましくなく、また20モル以上使用すると反応
速度が向上するが、未反応PLの回収量が増大し生産性
が低下するので実用的でない。
The amount of the organic compound having a mercapto group is preferably 0.1 to 50% by weight, particularly preferably 0.5 to 30% by weight, based on acetone. (Reaction conditions) The amount of PL used was 2 per mol of acetone.
It is at least 3 moles, but preferably 3 to 20 moles. P
When the amount of L used is 2 mol or less, the reaction is slow and, in addition to the target 4,4′-BPA, 2- (2-hydroxyphenyl) -2- (4-hydroxyphenyl) propane (hereinafter referred to as 2 , 4'-BPA) is not preferred because it increases the amount of by-products, and the use of more than 20 moles increases the reaction rate, but increases the amount of unreacted PL recovered and decreases the productivity, which is practical. Not.

【0011】反応温度は30−150℃、好ましくは4
0−120℃である。反応時間は触媒量、反応温度にも
よるが、通常は2−12時間である。
The reaction temperature is 30-150 ° C., preferably 4
0-120 ° C. The reaction time depends on the amount of the catalyst and the reaction temperature, but is usually 2 to 12 hours.

【0012】[0012]

【発明の効果】本発明の方法によれば、塩化水素のよう
な腐食性の強い触媒を用いず、また生成する水の影響を
ほとんど受けることなく、短時間で4,4’−BPAを
高収率、高選択率で製造することができる。
According to the method of the present invention, 4,4'-BPA can be produced in a short time without using a highly corrosive catalyst such as hydrogen chloride and hardly affected by generated water. It can be produced with high yield and high selectivity.

【0013】[0013]

【実施例】以下に実施例及び比較例を挙げ、本発明をさ
らに具体的に説明する。なお、文中の転化率、収率及び
選択率は次式によって定義され、4,4’−BPA等の
定量は高速液体クロマトグラフィーで、アセトンとフェ
ノールの定量はガスクロマトグラフィーで行った。
The present invention will be described more specifically with reference to the following examples and comparative examples. The conversion, yield and selectivity in the text are defined by the following equations. Quantification of 4,4′-BPA and the like was performed by high performance liquid chromatography, and quantification of acetone and phenol was performed by gas chromatography.

【0014】[0014]

【数1】 アセトン転化率(%) =(反応したアセトン量(モル)÷仕込みアセトン量(モル))×100## EQU1 ## Acetone conversion (%) = (Amount of reacted acetone (mol) / Amount of acetone charged (mol)) × 100

【0015】[0015]

【数2】 4,4’−BPA収率(%) =(生成した4,4’−BPA量(モル)÷仕込みアセトン量(モル)) ×100## EQU2 ## 4,4'-BPA yield (%) = (amount of 4,4'-BPA produced (mol) / amount of acetone charged (mol)). Times.100

【0016】[0016]

【数3】 4,4’−BPA選択率(%) =(4,4’−BPA収率(%)÷アセトン転化率(%))×1003,4′-BPA selectivity (%) = (4,4′-BPA yield (%) ÷ acetone conversion (%)) × 100

【0017】[0017]

【数4】 4,4’−BPA位置選択率(%) ={4,4’−BPA(モル) ÷(4,4′−BPA+2,4′−BPA(モル))}×100 (実施例1)温度計、還流冷却器及び攪拌器を備えた1
00ml三つ口フラスコに、フェノール30.1g(3
20mmol)、アセトン1.85g(32.0mmo
l)及びブチルメルカプタン0.14gを仕込み、10
0℃で減圧乾燥し結晶水を1分子当たり6分子としたケ
イタングステン酸(H4 SiW1240・6H2 O)9.
2g(3.2mmol)を加え、60℃で6時間反応さ
せた。その結果、アセトンの転化率は94.7%、4,
4’−BPAの収率は93.1%、4,4’−BPA選
択率は98.3%、4,4’−BPA位置選択率は9
8.5%であった。 (実施例2)ヘテロポリ酸として、1個のプロトンをセ
シウムで置換し、100℃で減圧乾燥し結晶水をヘテロ
ポリ酸1分子当たり7分子としたリンタングステン酸セ
シウム塩9.6g(3.2mmol)を用いたこと以外
は実施例1と全く同じ方法で反応を行なった。その結
果、アセトンの転化率は100%、4,4’−BPAの
収率は97.2%、4,4’−BPA選択率は97.2
%、4,4’−BPA位置選択率は97.3%であっ
た。 (実施例3)ヘテロポリ酸として、市販のケイタングス
テン酸9.0g(2.7mmol)を減圧乾燥せずにそ
のまま用いたこと以外は実施例1と全く同じ方法で反応
を行なった。その結果、アセトンの転化率は98.8
%、4,4’−BPAの収率は86.0%、4,4’−
BPA選択率は87.0%、4,4’−BPA位置選択
率は95.7%であった。 (比較例1)ブチルメルカプタンを添加せず、触媒の減
圧乾燥を行わなかった以外は、実施例1と同様な条件で
反応を行った。その結果、アセトンの転化率は65.8
%、4,4’−BPAの収率は36.4%、4,4’−
BPA選択率は55.3%、4,4’−BPA位置選択
率は89.5%であった。 (比較例2)ブチルメルカプタンを添加せず、4時間反
応を行ったこと以外は、実施例1と同様な条件で反応を
行った。アセトンの転化率は11.2%、4,4’−B
PAの収率は9.5%、4,4’−BPA選択率は8
4.8%、4,4’−BPA位置選択率は85.7%で
あった。 (比較例3)ヘテロポリ酸の代わりに80℃、5時間真
空乾燥した強酸性陽イオン交換樹脂(アンバーリスト1
5、ローム&ハース社製)を0.3g用いたこと以外
は、実施例1と同様の条件で反応を行った。アセトンの
転化率は47.9%、4,4’−BPAの収率は46.
2%、4,4’−BPA選択率は96.5%、4,4’
−BPA位置選択率は98.9%であった。
4,4′-BPA position selectivity (%) = {4,4′-BPA (mol)) (4,4′-BPA + 2,4′-BPA (mol))} × 100 (Example) 1) 1 equipped with thermometer, reflux condenser and stirrer
In a 00 ml three-necked flask, 30.1 g of phenol (3
20 mmol), 1.85 g of acetone (32.0 mmol
l) and 0.14 g of butyl mercaptan
8. Silicotungstic acid (H 4 SiW 12 O 40 .6H 2 O) which was dried at 0 ° C. under reduced pressure to make crystal water 6 molecules per molecule.
2 g (3.2 mmol) was added and reacted at 60 ° C. for 6 hours. As a result, the conversion of acetone was 94.7%,
The yield of 4′-BPA is 93.1%, the selectivity of 4,4′-BPA is 98.3%, and the selectivity of 4,4′-BPA is 9%.
8.5%. (Example 2) 9.6 g (3.2 mmol) of a cesium phosphotungstate salt in which one proton was replaced with cesium as a heteropolyacid and dried under reduced pressure at 100 ° C. to make 7 molecules of crystallization water per one molecule of the heteropolyacid. The reaction was carried out in exactly the same manner as in Example 1 except that As a result, the conversion of acetone was 100%, the yield of 4,4′-BPA was 97.2%, and the selectivity of 4,4′-BPA was 97.2.
%, 4,4′-BPA position selectivity was 97.3%. Example 3 A reaction was carried out in exactly the same manner as in Example 1 except that 9.0 g (2.7 mmol) of commercially available silicotungstic acid was used as a heteropolyacid without drying under reduced pressure. As a result, the conversion of acetone was 98.8.
%, 4,4′-BPA yield was 86.0%,
The BPA selectivity was 87.0%, and the 4,4′-BPA position selectivity was 95.7%. (Comparative Example 1) A reaction was carried out under the same conditions as in Example 1 except that butyl mercaptan was not added and the catalyst was not dried under reduced pressure. As a result, the conversion of acetone was 65.8.
%, The yield of 4,4′-BPA was 36.4%,
The BPA selectivity was 55.3% and the 4,4'-BPA position selectivity was 89.5%. (Comparative Example 2) A reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out for 4 hours without adding butyl mercaptan. Acetone conversion is 11.2%, 4,4'-B
PA yield was 9.5% and 4,4′-BPA selectivity was 8
4.8% and 4,4′-BPA position selectivity were 85.7%. (Comparative Example 3) A strongly acidic cation exchange resin (Amberlyst 1) vacuum-dried at 80 ° C for 5 hours instead of the heteropolyacid
The reaction was carried out under the same conditions as in Example 1 except that 0.3 g of Rohm & Haas Co., Ltd.) was used. The conversion of acetone was 47.9%, and the yield of 4,4'-BPA was 46.
2%, 4,4′-BPA selectivity is 96.5%, 4,4 ′
-BPA position selectivity was 98.9%.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−145039(JP,A) 特開 平2−45439(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 37/20 C07C 39/16 C07B 61/00 300 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-145039 (JP, A) JP-A-2-45439 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 37/20 C07C 39/16 C07B 61/00 300

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アセトンとフェノールとを反応させてビ
スフェノールAを製造する方法において、ヘテロポリ酸
またはヘテロポリ酸塩及びメルカプト基を有する有機化
合物の存在下に反応させることを特徴とするビスフェノ
ールAの製造方法。
1. A method for producing bisphenol A by reacting acetone and phenol, wherein the reaction is carried out in the presence of a heteropolyacid or a heteropolyacid salt and an organic compound having a mercapto group. .
JP3187625A 1991-07-26 1991-07-26 Method for producing bisphenol A Expired - Fee Related JP3003294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3187625A JP3003294B2 (en) 1991-07-26 1991-07-26 Method for producing bisphenol A

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3187625A JP3003294B2 (en) 1991-07-26 1991-07-26 Method for producing bisphenol A

Publications (2)

Publication Number Publication Date
JPH0532576A JPH0532576A (en) 1993-02-09
JP3003294B2 true JP3003294B2 (en) 2000-01-24

Family

ID=16209387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3187625A Expired - Fee Related JP3003294B2 (en) 1991-07-26 1991-07-26 Method for producing bisphenol A

Country Status (1)

Country Link
JP (1) JP3003294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671231B2 (en) * 2005-06-16 2011-04-13 田岡化学工業株式会社 Method for producing fluorene derivative
JP5240934B2 (en) * 2009-03-25 2013-07-17 田岡化学工業株式会社 Method for producing cyclic hydrocarbon derivative
JP7206796B2 (en) * 2017-11-02 2023-01-18 三菱ケミカル株式会社 Method for producing bisphenol compound

Also Published As

Publication number Publication date
JPH0532576A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US3394089A (en) Ion exchange catalyst for the preparation of bisphenols
US4822923A (en) Isomerization of by-products of bis-phenol synthesis
JP4723105B2 (en) Method for producing bisphenol A
EP0313165B1 (en) A process for isomerizing the by-products of the bis-phenol synthesis
US4825010A (en) Isomerization of by-products of bi-phenol synthesis
US3470239A (en) Process for preparing methacrylic acid and its esters from isobutane
US4625059A (en) Process for purification of 1,2-unsaturated carboxylic acids and/or esters thereof
JP3003294B2 (en) Method for producing bisphenol A
AU731025B2 (en) Catalytic hydrolysis of alkylene oxides
JP2818652B2 (en) Method for producing isobornyl (meth) acrylate
US5001281A (en) Isomerization of bis-phenols
JPH0632756A (en) Production of bis@(3754/24)hydroxyphenyl)methanes
US6784324B2 (en) Process for producing bisphenol A
EP0169254B1 (en) Process for purification of 1,2-unsaturated carboxylic acids and/or esters thereof
JP3326530B2 (en) Catalyst and method for isomerization of bisphenols
AU735822B2 (en) Process for the preparation of N-hydrocarbyl-substituted amides such as Tert-butylacrylamide via the Ritter reaction using solid heteropolyacid catalyst
JPH05279297A (en) Production of aliphatic carboxylic acid ester
JP2008031139A (en) Method for producing bisphenol
JPH04145039A (en) Production of 4,4'-(1-phenylethylidene)bisphenol
JP3858384B2 (en) Ion exchange resin and method for producing bisphenols using the same
JP2008120791A (en) Method for producing bisphenol
WO2002085830A1 (en) Process for producing bisphenol a
CA1270858A (en) Process for the synthesis of 2,2-dialkoxy-propanes
JP2524739B2 (en) Method for producing 2-alkyl-resorcinol
JP4586504B2 (en) Method for producing aromatic ester compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees