JP3001912B2 - Attitude control device - Google Patents

Attitude control device

Info

Publication number
JP3001912B2
JP3001912B2 JP1288008A JP28800889A JP3001912B2 JP 3001912 B2 JP3001912 B2 JP 3001912B2 JP 1288008 A JP1288008 A JP 1288008A JP 28800889 A JP28800889 A JP 28800889A JP 3001912 B2 JP3001912 B2 JP 3001912B2
Authority
JP
Japan
Prior art keywords
earth
attitude
orbit
sensor
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1288008A
Other languages
Japanese (ja)
Other versions
JPH03153496A (en
Inventor
広志 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1288008A priority Critical patent/JP3001912B2/en
Publication of JPH03153496A publication Critical patent/JPH03153496A/en
Application granted granted Critical
Publication of JP3001912B2 publication Critical patent/JP3001912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業の利用分野) この発明は、例えばロケットにより地球周回軌道の遷
移軌道(トランスファ軌道)に投入され、姿勢制御を行
いながらアポジエンジン等の推進機を用いて静止軌道に
投入される人工衛星に係り、特に、その姿勢制御装置に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial application field) The present invention is applied to a transition orbit (transfer orbit) of an orbit around the earth by a rocket, for example, and a propulsion device such as an apogee engine while performing attitude control. The present invention relates to an artificial satellite to be put into a geosynchronous orbit by using a satellite, and particularly to an attitude control device for the satellite.

(従来の技術) 軌道投入時の三軸姿勢制御を行う方法として、三軸と
も光学センサ(太陽センサ+地球センサ)により姿勢角
を検出して制御する方法と、慣性基準装置により慣性基
準を得て制御する方法がある。前者の場合、衛星のコン
フィギュレレーションから地球センサは、静止軌道定常
制御用と兼用することが難しく、軌道変更専用の地球セ
ンサが必要となり、重量の増加を招く。
(Prior art) As a method of controlling the three-axis attitude at the time of orbit insertion, a method of detecting and controlling the attitude angle of all three axes by an optical sensor (sun sensor + earth sensor) and obtaining an inertia reference by an inertia reference device There is a way to control. In the former case, it is difficult to use the earth sensor for stationary geosynchronous orbital control because of the configuration of the satellite, and a dedicated earth sensor for changing the orbit is required, resulting in an increase in weight.

後者は、ジャイロの慣性基準を基に、ジャイロ出力を
積分して衛星10(第3図参照)のロール(X),ピッチ
(Y),ヨー(Z)軸回りの姿勢角φ,θ,ψを求めて
該衛星の姿勢制御を行う。そして、このような姿勢制御
装置にあっては、そのジャイロ自体にドリフトレートが
あるために、軌道投入時に高精度の姿勢制御を達成する
には、初期・再捕捉用の太陽センサ及び静止軌道姿勢制
御用の地球センサの出力を選択的に用いて地球捕捉及び
ドリフト補正を行う必要がある。このドリフト補正及び
地球捕捉は、第4図に示すように地球11を周回する遷移
軌道12における地球センサの地球観測可能なAB区間で地
球センサ及び太陽センサの検出値に対応して姿勢制御用
のアクチュエータが駆動されて行われる。その後、ドリ
フトレートを補正された慣性基準装置の慣性基準を基に
求めた姿勢角φ,θ,ψに対応して軌道変更姿勢制御が
行われ、遷移軌道上におけるアポジ点(軌道変更地点
O)に到達した状態で、アポジキックエンジン等の搭載
推進機10aが駆動されて静止軌道に投入される。
The latter integrates the gyro output based on the gyro inertia criterion and integrates the attitude angles φ, θ, ψ around the roll (X), pitch (Y), and yaw (Z) axes of the satellite 10 (see FIG. 3). To control the attitude of the satellite. In such an attitude control device, since the gyro itself has a drift rate, in order to achieve high-accuracy attitude control at the time of orbit insertion, a sun sensor for initial and reacquisition and a stationary orbit attitude are required. It is necessary to selectively use the output of the control earth sensor to perform earth acquisition and drift correction. As shown in FIG. 4, the drift correction and the earth capture are performed for attitude control in accordance with the detection values of the earth sensor and the sun sensor in the AB section where the earth sensor can observe the earth in the transition orbit 12 orbiting the earth 11. This is performed by driving the actuator. Thereafter, orbit change attitude control is performed in accordance with the attitude angles φ, θ, and た obtained based on the inertia reference of the inertia reference apparatus whose drift rate has been corrected, and an apogee point (orbit change point O) on the transition orbit is performed. , The on-board propulsion device 10a such as an apogee kick engine is driven and put into a geostationary orbit.

しかしながら、上記姿勢制御装置では、地球捕捉及び
ドリフト補正の双方を地球センサの地球観測可能なAB区
間の短い期間で実施しなければならないことにより、そ
の捕捉及び補正作業が非常に煩雑で、姿勢精度の劣化を
招く虞を有していた。
However, in the above attitude control device, since both the earth capture and the drift correction must be performed in a short period of the AB section where the earth sensor can observe the earth, the capture and correction work is very complicated, and the attitude accuracy is high. There is a risk of causing deterioration of the

特に、スキャン型地球センサでは、A点付近で地球像
が大きくなり、地球が視野ないにあっても捕捉できない
ことを認識できない区間があり、地球捕捉に多くの時間
を要するために、ドリフト補正できる時間となり、高精
度な軌道投入が困難となる問題を有していた。
In particular, in the scanning type earth sensor, the earth image becomes large in the vicinity of the point A, and there is a section where it is not possible to recognize that the earth cannot be captured even if the earth is out of sight. It was time-consuming and had a problem that it was difficult to insert the track with high accuracy.

(発明が解決しようとする課題) 以上述べたように、従来の姿勢制御装置では、地球捕
捉及びドリフト補正作業が非常に煩雑で、姿勢精度が劣
化する虞を有していた。
(Problems to be Solved by the Invention) As described above, in the conventional attitude control device, the operations of capturing the earth and correcting the drift are extremely complicated, and there is a possibility that the attitude accuracy is deteriorated.

この発明は上記の事情に鑑みてなされたもので、簡易
な構成で、確実に地球捕捉及びドリフト補正を実現し得
るようにして、姿勢精度の高精度化を図り得るようにし
た姿勢制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a posture control device that can achieve high accuracy of posture accuracy with a simple configuration, capable of reliably realizing earth capture and drift correction. The purpose is to provide.

[発明の構成] (課題を解決するための手段) この発明は、遷移軌道に投入された後、搭載推進機を
用いて静止軌道に軌道変更される衛星を慣性基準装置の
慣性基準を基に姿勢駆動用アクチュエータを駆動制御し
て姿勢を制御する姿勢制御装置において、太陽を観測し
て前記衛星の軌道制御又は姿勢制御に対する初期/再捕
捉時の姿勢角を検出する太陽センサと、 前記静止軌道上で地球を観測して前記衛星の姿勢角を
検出するように配備された地球センサと、前記衛星の遷
移軌道から静止軌道への軌道変更時、前記地球センサが
前記遷移軌道上で、前記地球を観測可能な第1の区間で
前記地球センサの検出値と前記太陽センサの検出値に基
づいて前記アクチュエータを駆動して地球捕捉を実行し
た後、前記遷移軌道上における前記地球センサの地球観
測が可能な第2の区間に至るまでの間を、前記慣性基準
装置の慣性基準より求めたロール姿勢情報及び前記太陽
センサの検出値に基づいて前記アクチュエータを駆動制
御して姿勢を制御し、前記第2の区間に到達した状態で
前記太陽センサ及び前記地球センサの検出値に基づいて
前記慣性基準装置のドリフト補正を実行し、その後、ド
リフト補正した前記慣性基準装置の慣性基準に基づいて
前記アクチュエータを駆動制御して姿勢を制御する制御
手段とを備えて構成したものである。
[Constitution of the Invention] (Means for Solving the Problems) The present invention is based on the inertia criterion of an inertial criterion device for a satellite which is put into a transition orbit and then changed into a geostationary orbit by using an onboard propulsion device. In a posture control device that controls a posture by driving and controlling a posture driving actuator, a sun sensor that observes the sun and detects a posture angle at the time of initial / recapture for the orbit control of the satellite or the posture control, and the geostationary orbit. An earth sensor arranged to detect the attitude angle of the satellite by observing the earth above, and when changing the orbit of the satellite from a transition orbit to a geosynchronous orbit, the earth sensor is on the transition orbit and the earth In the first section in which the earth sensor can be observed, the actuator is driven on the basis of the detection value of the earth sensor and the detection value of the sun sensor to execute earth capture, and then the earth sensor on the transition orbit is executed. Until the second section in which earth observation is possible, the attitude is controlled by driving and controlling the actuator based on the roll attitude information obtained from the inertia reference of the inertia reference apparatus and the detection value of the sun sensor. And performing drift correction of the inertial reference device based on the detection values of the sun sensor and the earth sensor in a state in which the second section has been reached, and then performing drift correction based on the inertia reference of the inertial reference device. And control means for controlling the attitude by driving and controlling the actuator.

(作用) 上記構成によれば、衛星は遷移軌道上における地球観
測区間と略対称の区間で、まず地球捕捉が行われた後、
慣性基準装置の慣性基準を基に求めたロール姿勢情報に
対応して姿勢が制御され、地球観測区間で前記慣性基準
装置のドリフト補正がなされて補正された慣性基準装置
を基に姿勢制御を行いつつ、軌道変更が行われる。従っ
て、衛星の軌道変更が、地球捕捉及びドリフト補正が確
実に行われた状態で行われ、軌道変更時における高精度
な姿勢精度が確保される。
(Operation) According to the above configuration, a satellite is firstly captured in the earth in a transition orbit in a section substantially symmetric to the earth observation section,
The attitude is controlled in accordance with the roll attitude information obtained based on the inertial reference of the inertial reference apparatus, and the attitude is controlled based on the corrected inertial reference apparatus in which the drift correction of the inertial reference apparatus is performed in the earth observation section. Meanwhile, the orbit change is performed. Therefore, the orbit change of the satellite is performed in a state where the earth capture and the drift correction have been performed reliably, and a high-accuracy attitude accuracy at the time of the orbit change is ensured.

(実施例) 以下、この発明の実施例について、図面を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る姿勢制御装置を示
すもので、慣性基準装置、例えばジャイロ20の出力端に
は姿勢制御部21が接続される。この姿勢制御部21には初
期/再補足時における姿勢角を検出する太陽センサ22及
び静止軌道定常制御時における姿勢角を検出する地球セ
ンサ23の各出力端が接続される。姿勢制御部21はジャイ
ロ20の慣性基準を基に、ジャイロ出力を積分して姿勢角
を求めて駆動信号Tcx,Tcy,Tczを生成して姿勢制御用ア
クチュエータ24を駆動制御して衛星(前記第3図参照)
の姿勢制御を実現する。この際、姿勢制御部21は、ジャ
イロ20より求めた姿勢角Δφ,Δθ,Δψより初期・再
捕捉用の太陽センサ22及び静止軌道姿勢制御用の地球セ
ンサ23の出力φ,θ,ψを選択的に用いて地球捕捉及び
ドリフト補正を行う。
FIG. 1 shows an attitude control device according to an embodiment of the present invention. An attitude control unit 21 is connected to an output end of an inertial reference device, for example, a gyro 20. The output terminals of a sun sensor 22 for detecting the attitude angle at the time of initial / resupplement and an earth sensor 23 for detecting the attitude angle at the time of the stationary orbit steady control are connected to the attitude control unit 21. The attitude control unit 21 integrates the gyro output based on the inertia reference of the gyro 20, obtains an attitude angle, generates drive signals T cx , T cy , and T cz to drive and control the attitude control actuator 24 to control the satellite. (See Fig. 3)
Realize the attitude control of At this time, the attitude control unit 21 selects the outputs φ, θ, の of the sun sensor 22 for initial / recapture and the earth sensor 23 for geostationary orbit attitude control based on the attitude angles Δφ, Δθ, Δψ obtained from the gyro 20. Used for earth capture and drift correction.

上記構成において、第2図に示すように遷移軌道12上
に投入された衛星10を静止軌道に投入する場合は、衛星
10が遷移軌道12における地球11に対して地球センサ23の
地球観測可能なAB区間に略対称なCD区間のC地点に到達
すると、姿勢制御部21は地球センサ23の検出値φより地
球捕捉値を求め、この捕捉値及び太陽センサ22より求め
た姿勢角に対応したTcx,Tcy,Tczでアクチュエータ24を
駆動制御して衛星10の姿勢を制御して地球捕捉を行う。
この際、地球センサ23は、例えば周知のスキャン型を用
いた場合においてもスキャンが地球内部に埋もれること
なく、確実な捕捉が実現される。
In the above configuration, when the satellite 10 inserted on the transition orbit 12 as shown in FIG.
When 10 reaches the point C in the CD section substantially symmetrical to the AB section of the earth sensor 23 that can be observed with respect to the earth 11 in the transition orbit 12, the attitude control unit 21 calculates the earth capture value from the detection value φ of the earth sensor 23. Then, the actuator 24 is driven and controlled by T cx , T cy , and T cz corresponding to the captured value and the attitude angle obtained from the sun sensor 22, thereby controlling the attitude of the satellite 10 to capture the earth.
At this time, the earth sensor 23 realizes reliable capture without the scan being buried inside the earth even when a known scan type is used, for example.

そして、姿勢制御部21は、地球捕捉完了すると、ロー
ルについては、その時点におけるジャイロ20の慣性基準
を基にジャイロ出力を積分して姿勢角Δφを求め、以後
ロール姿勢をφ、姿勢決定初期値をφ=φ−φ
cal、ジャイロ出力積分姿勢角増分値(制御演算サイク
ル間)をΔφgyro、捕捉完了時における地球センサ出力
をφとして、 φ=φi-1+Δφgyro …(1) の演算を行ってロール姿勢を算出し、このロール姿勢情
報に対応したTcx,でアクチュエータ24を駆動制御して遷
移軌道12におけるDA区間のロール姿勢を制御する。この
際、ジャイロ20のドリフトを有し、現実には若干の誤差
が生じているが、この間、ピッチ/ヨーの姿勢は、太陽
センサ22による姿勢検出角を基に姿勢制御される。その
誤差は地球センサ視野に比して非常に小さいことによ
り、遷移軌道12のA地点における地球11の捕捉を行うの
に支障を来すことがない程度となる。
Then, when the attitude control unit 21 completes capturing the earth, for the roll, the gyro output is integrated based on the inertia reference of the gyro 20 at that time to obtain an attitude angle Δφ, and thereafter, the roll attitude is φ i , and the initial attitude determination is performed. The value is φ o = φ E −φ
Assuming that cal , the gyro output integration attitude angle increment value (during the control calculation cycle) is Δφ gyro , and the earth sensor output at the time of completion of capturing is φ E , the following calculation is performed: φ i = φ i-1 + Δφ gyro (1) The posture is calculated, and the drive of the actuator 24 is controlled by T cx , corresponding to the roll posture information, to control the roll posture in the DA section on the transition trajectory 12. At this time, the gyro 20 has a drift, and a slight error actually occurs. During this time, the attitude of the pitch / yaw is controlled based on the angle detected by the sun sensor 22. Since the error is very small as compared with the field of view of the earth sensor, it does not hinder the acquisition of the earth 11 at the point A of the transition orbit 12.

なお、上記姿勢決定初期値φは地球11を指向した場
合、CD区間とAB区間とで、ロール姿勢がφcalだけ異な
ることからDA区間でφ−φcalとなる。
Incidentally, the attitude determination initial value phi o If you pointing to the earth 11, in the CD section and AB interval, and phi E -.phi cal in DA interval since the roll attitude differ by phi cal.

次に、衛星10が遷移軌道12上における地球観測可能な
AB区間のA地点に到達すると、姿勢制御部21は太陽セン
サ22及び地球センサ23の出力φ,θ,ψに対応してジャ
イロ20のドリフト補正を行い、B地点に到達した状態
で、ドリフト補正されたジャイロ20の慣性基準を基に、
ジャイロ出力より姿勢角Δφ,Δθ,Δψを求めて、こ
の姿勢角Δφ,Δθ,Δψに対応したTcx,Tcy,Tczでア
クチュエータ24を駆動制御して衛星10の姿勢を制御す
る。そして、衛星10が遷移軌道12における軌道変更地点
Oに到達した状態で、衛星10に搭載推進機10aが駆動さ
れて静止軌道に軌道変更される。
Next, the satellite 10 can observe the earth on the transition orbit 12
When the vehicle reaches the point A in the AB section, the attitude control unit 21 performs drift correction of the gyro 20 in accordance with the outputs φ, θ, and 太陽 of the sun sensor 22 and the earth sensor 23. Based on the gyro 20 inertia standard,
The attitude angles Δφ, Δθ, Δψ are obtained from the gyro output, and the actuator 24 is drive-controlled by T cx , T cy , T cz corresponding to the attitude angles Δφ, Δθ, Δψ to control the attitude of the satellite 10. Then, with the satellite 10 reaching the orbit change point O in the transition orbit 12, the onboard propulsion device 10a is driven by the satellite 10 to change the orbit to the geosynchronous orbit.

このように、上記姿勢制御装置は、衛星10の軌道変更
時、遷移軌道12における姿勢角検出用の地球センサ23の
地球観測可能なAB区間と略対称のCD区間で地球センサ23
の検出値に対応してアクチュエータ24を駆動制御して地
球捕捉を行った後、地球観測可能なAB区間までジャイロ
20の慣性基準を基に求めたロール姿勢情報でアクチュエ
ータ24を駆動制御してロール姿勢を制御し、地球観測可
能なAB区間で姿勢角検出用の太陽センサ22及び地球セン
サ23の検出値に対応してアクチュエータ24を駆動制御し
てジャイロ20のドリフト補正を行うように構成した。こ
れによれば、地球捕捉及びドリフト補正が遷移軌道12上
の異なるCD及びAB区間でそれぞれ行われることにより、
それぞれが時間的余裕をもって確実に行うことが可能と
なるため、軌道変更時における高精度な姿勢精度が確保
されて、正確な軌道変更の実現に寄与される。
As described above, when the orbit of the satellite 10 is changed, the attitude control device detects the earth sensor 23 in the CD section that is substantially symmetric with the AB section in which the earth sensor 23 for attitude angle detection in the transition orbit 12 can observe the earth.
After driving the actuator 24 in accordance with the detected value of, the earth is captured and the gyro is moved to the AB section where the earth can be observed.
The roll attitude is controlled by driving and controlling the actuator 24 based on the roll attitude information obtained based on 20 inertia criteria, and corresponds to the detection values of the sun sensor 22 and the earth sensor 23 for attitude angle detection in AB section where the earth can be observed Then, the drive of the actuator 24 is controlled to perform drift correction of the gyro 20. According to this, the earth capture and drift correction are performed in different CD and AB sections on the transition orbit 12, respectively,
Since each of these operations can be performed reliably with sufficient time, a high-accuracy posture accuracy at the time of orbit change is ensured, which contributes to the realization of an accurate orbit change.

なお、この発明は上記実施例に限ることなく、その
他、この発明の要旨を逸脱しない範囲で種々の変形を実
施し得ることは勿論のことである。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明によれば、簡易な構成
で、確実に地球捕捉及びドリフト補正を実現し得るよう
にして、姿勢精度の高精度化を図り得るようにした姿勢
制御装置を提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to reliably realize the earth capture and drift correction with a simple configuration, and to achieve high accuracy of attitude. An attitude control device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に係る姿勢制御装置を示す
ブロック図、第2図は第1図の動作を説明するために示
した図、第3図はこの発明の適用される衛星を示す図、
第4図は従来の姿勢制御装置の問題点を説明するために
示した図である。 10……衛星、10a……搭載推進機、11……地球、12……
遷移軌道、20……ジャイロ、21……姿勢制御部、22……
太陽センサ、23……地球センサ、24……アクチュエー
タ。
FIG. 1 is a block diagram showing an attitude control device according to an embodiment of the present invention, FIG. 2 is a diagram showing the operation of FIG. 1, and FIG. Diagram,
FIG. 4 is a view for explaining a problem of the conventional attitude control device. 10 ... satellite, 10a ... onboard propulsion, 11 ... earth, 12 ...
Transition trajectory, 20 ... Gyro, 21 ... Attitude control unit, 22 ...
Sun sensor, 23 ... Earth sensor, 24 ... Actuator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遷移軌道に投入された後、搭載推進機を用
いて静止軌道に軌道変更される衛星を慣性基準装置の慣
性基準を基に姿勢駆動用アクチュエータを駆動制御して
姿勢を制御する姿勢制御装置において、 太陽を観測して前記衛星の軌道制御又は姿勢制御に対す
る初期/再捕捉時の姿勢角を検出する太陽センサと、 前記静止軌道上で地球を観測して前記衛星の姿勢角を検
出するように配備された地球センサと、 前記衛星の遷移軌道から静止軌道への軌道変更時、前記
地球センサが前記遷移軌道上で、前記地球を観測可能な
第1の区間で前記地球センサの検出値と前記太陽センサ
の検出値に基づいて前記アクチュエータを駆動して地球
捕捉を実行した後、前記遷移軌道上における前記地球セ
ンサの地球観測が可能な第2の区間に至るまでの間を、
前記慣性基準装置の慣性基準より求めたロール姿勢情報
及び前記太陽センサの検出値に基づいて前記アクチュエ
ータを駆動制御して姿勢を制御し、前記第2の区間に到
達した状態で前記太陽センサ及び前記地球センサの検出
値に基づいて前記慣性基準装置のドリフト補正を実行
し、その後、ドリフト補正した前記慣性基準装置の慣性
基準に基づいて前記アクチュエータを駆動制御して姿勢
を制御する制御手段と を具備したことを特徴とする姿勢制御装置。
A satellite which is orbitally changed into a geosynchronous orbit after being put into a transition orbit by an onboard propulsion device is driven and controlled by an attitude driving actuator based on an inertia reference of an inertial reference device to control an attitude. In the attitude control device, a sun sensor for observing the sun and detecting the attitude angle at the time of initial / recapture for the orbit control or attitude control of the satellite, and observing the earth in the geosynchronous orbit to determine the attitude angle of the satellite An earth sensor arranged to detect, when the orbit changes from a transition orbit of the satellite to a geosynchronous orbit, the earth sensor in the first section where the earth sensor can observe the earth on the transition orbit. After driving the actuator based on the detection value and the detection value of the sun sensor to execute the earth capture, and before reaching the second section where the earth sensor of the earth sensor can be observed on the transition orbit. The,
The attitude control is performed by driving and controlling the actuator based on the roll attitude information obtained from the inertia reference of the inertia reference apparatus and the detection value of the sun sensor, and the sun sensor and the Control means for performing drift correction of the inertial reference device based on the detection value of the earth sensor, and thereafter controlling the attitude by driving and controlling the actuator based on the inertia reference of the inertial reference device subjected to the drift correction. An attitude control device characterized in that:
JP1288008A 1989-11-07 1989-11-07 Attitude control device Expired - Lifetime JP3001912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288008A JP3001912B2 (en) 1989-11-07 1989-11-07 Attitude control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288008A JP3001912B2 (en) 1989-11-07 1989-11-07 Attitude control device

Publications (2)

Publication Number Publication Date
JPH03153496A JPH03153496A (en) 1991-07-01
JP3001912B2 true JP3001912B2 (en) 2000-01-24

Family

ID=17724612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288008A Expired - Lifetime JP3001912B2 (en) 1989-11-07 1989-11-07 Attitude control device

Country Status (1)

Country Link
JP (1) JP3001912B2 (en)

Also Published As

Publication number Publication date
JPH03153496A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
EP0460935B1 (en) Attitude control system for momentum-biased spacecraft
JP2844090B2 (en) Attitude control system for geosynchronous satellite
US7546983B2 (en) Spacecraft power acquisition method for wing-stowed configuration
US5459669A (en) Control system and method for spacecraft attitude control
US7874519B2 (en) Spacecraft three-axis attitude acquisition from sun direction measurement
US5277385A (en) Method of attitude reacquisition for three-axis stabilized satellites using star recognition
US20120097797A1 (en) Spacecraft momentum management
KR101765318B1 (en) System and method for measurement of angular orientation of aerospace platforms
US6142422A (en) Method to reorient a spacecraft using only initial single axis attitude knowledge
CN111897357A (en) Attitude tracking control method for satellite earth scanning
JPH06510502A (en) Measurement equipment used in attitude control of a 3-axis stable satellite, accompanying evaluation method, control system, and control method
US7996119B2 (en) Method for determining the position of a spacecraft with the aid of a direction vector and an overall spin measurement
JPH0774739B2 (en) Spacecraft, three-dimensional reference coordinate system realignment method, and navigation system calibration method
JPH08253200A (en) Control method of attitude of spaceship by scanning of earth sensor
US5687933A (en) Attitude control for spacecraft with movable appendages such as solar panels
CN110816897A (en) Multi-mode switching control method based on CMG system
EP0544296B1 (en) Three axes stabilized spacecraft and method of sun acquisition
JPH0619278B2 (en) How to calibrate the gyroscope of a triaxial stable satellite
US8608113B2 (en) Method for capturing a container of planet-ground samples traveling in open space
JP3001912B2 (en) Attitude control device
US5865402A (en) Triaxially stabilized, earth-oriented satellite and corresponding sun and earth acquisition process using a magnetometer
JP4271264B2 (en) Image capture method using oversampled push bloom scanning
US20040133381A1 (en) Control scheme for spatial and level searching of a panoramic stabilized periscope
JP3135645B2 (en) Attitude control device
JPH07257496A (en) Attitude control device