JP3001164B2 - Heating device with solid heat storage block - Google Patents

Heating device with solid heat storage block

Info

Publication number
JP3001164B2
JP3001164B2 JP2180773A JP18077390A JP3001164B2 JP 3001164 B2 JP3001164 B2 JP 3001164B2 JP 2180773 A JP2180773 A JP 2180773A JP 18077390 A JP18077390 A JP 18077390A JP 3001164 B2 JP3001164 B2 JP 3001164B2
Authority
JP
Japan
Prior art keywords
heated
heat storage
heating
storage block
solid heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2180773A
Other languages
Japanese (ja)
Other versions
JPH0468295A (en
Inventor
忠二 岡村
逸治 渡辺
正雄 西岡
征寿 米澤
久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hakusan Seisakusho Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hakusan Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hakusan Seisakusho Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2180773A priority Critical patent/JP3001164B2/en
Publication of JPH0468295A publication Critical patent/JPH0468295A/en
Application granted granted Critical
Publication of JP3001164B2 publication Critical patent/JP3001164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば金属の鍛造加工、非鉄金属の加
工、金属の熱処理、窯業等の工程において被加熱材料を
加熱するのに用いられる加熱装置に関し、詳しくは、蓄
熱性固体素材を利用した加熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heating apparatus used for heating a material to be heated in processes such as metal forging, non-ferrous metal processing, metal heat treatment, and ceramics. More specifically, the present invention relates to a heating device using a heat storage solid material.

〔従来の技術〕[Conventional technology]

例えば金属の型鍛造ラインでは、第10図に示すよう
に、順次加熱工程R−S、鍛造工程S−T、トリミング
工程T−Uを経るようになっている。
For example, in a metal die forging line, as shown in FIG. 10, a heating step RS, a forging step ST, and a trimming step TU are sequentially performed.

詳細に説明すると、被加熱材料8は材料供給装置100
によって加熱炉102に供給され、加熱炉102で例えば金属
材料の鍛造加工温度である1250℃に加熱される。加熱さ
れた被加熱材料8は加熱炉102から排出されて鍛造プレ
ス104に送られ、プレス成型後チェーンコンベア106等の
搬送手段でトリミング装置108に導かれて仕上げられ
る。この後、熱処理工程を経て検査工程に導かれるよう
になっている。
More specifically, the material to be heated 8 is supplied to the material supply device 100.
Is supplied to the heating furnace 102, and is heated in the heating furnace 102 to, for example, 1250 ° C. which is a forging temperature of a metal material. The heated material to be heated 8 is discharged from the heating furnace 102 and sent to the forging press 104. After the press forming, the material 8 is guided to a trimming device 108 by a conveying means such as a chain conveyor 106 to be finished. Thereafter, the heat treatment process is followed by an inspection process.

加熱炉102としては従来、燃焼炉や誘導加熱装置が用
いられ、近時においては誘導加熱装置が大部分を占める
ようになっている。
Conventionally, a combustion furnace or an induction heating device is used as the heating furnace 102, and the induction heating device occupies a large portion in recent years.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述のように、加熱工程に誘導加熱装置を使用する場
合には、就業時間の形態から昼間の負荷率が大半又は10
0%で、夜間では軽負荷又は負荷率ゼロ%となってお
り、このため、昼間と夜間との間で電力負荷のアンバラ
ンスが生じ、鍛造業界等では消費電力単価の上昇を招来
している。
As described above, when an induction heating device is used in the heating process, the daytime load factor is mostly or
At 0%, the light load or the load factor is 0% at night, so that the power load is unbalanced between daytime and nighttime, which leads to an increase in the unit price of power consumption in the forging industry and the like. .

ところで、例えば金属鍛造等の場合、kWh単価の安い
夜間電力によって材料を鍛造加工温度の中温度域に予熱
・保温して昼間の鍛造加工時に追加熱を行う手法が取ら
れるならば著しい省エネルギー化を期待できる。
By the way, for example, in the case of metal forging etc., significant energy savings can be achieved if a method is used in which the material is preheated and kept warm in the middle temperature range of the forging process temperature by night power with a low kWh unit price and additional heat is applied during the daytime forging process. Can be expected.

また、黄銅、アルミ等の非鉄金属鍛造の場合には鍛造
加工温度が鉄鋼鍛造の場合の中温度域にほぼ等しいた
め、夜間電力による予熱・保温のみで昼間追加熱を要す
ることなく鍛造加工でき、省エネルギー効率をさらにア
ップさせることができる。
In addition, in the case of forging non-ferrous metals such as brass and aluminum, the forging temperature is almost equal to the middle temperature range in the case of steel forging, so forging can be performed without requiring additional heat in the daytime only by preheating and keeping heat by night power, Energy saving efficiency can be further improved.

そこでこの発明は、夜間の電力を有効に利用でき、こ
れに伴う電力負荷率の改善によって消費電力単価の低減
を図るに好適な固体蓄熱ブロックを備えた加熱装置の提
供をその目的とする。
Accordingly, an object of the present invention is to provide a heating device including a solid heat storage block suitable for effectively using nighttime electric power and reducing the unit cost of power consumption by improving an electric power load factor accompanying the electric power.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は、上記目的を達成すべく創案されたもの
で、その特徴は、蓄熱材で形成されるブロックに被加熱
材料を収容するための材料収容部が形成されているとと
もに加熱用ヒータが埋設されて固体蓄熱ブロックが形成
され、上記固体蓄熱ブロックの外面は断熱材で覆われて
いる構成にある。
The present invention has been devised to achieve the above-described object, and is characterized in that a block formed of a heat storage material has a material storage portion for storing a material to be heated, and a heater for heating is embedded. Thus, a solid heat storage block is formed, and an outer surface of the solid heat storage block is covered with a heat insulating material.

また、この発明によれば、上記材料収容部に被加熱材
料を供給するとともに加熱後の被加熱材料を排出する材
料搬送装置が備えられている構成とすることもできる。
Further, according to the present invention, it is possible to provide a configuration in which a material conveying device that supplies the material to be heated to the material storage section and discharges the material to be heated after heating is provided.

〔作 用〕 この発明によれば、固体蓄熱ブロックの材料収容部に
被加熱材料が収容され、加熱用ヒータによって固体蓄熱
ブロックとともに加熱される。加熱用ヒータによる顕熱
は固体蓄熱ブロックに蓄熱され、断熱部材によって放熱
を抑制される。
[Operation] According to the present invention, the material to be heated is accommodated in the material accommodating portion of the solid heat storage block, and is heated together with the solid heat storage block by the heater for heating. The sensible heat from the heating heater is stored in the solid-state heat storage block, and heat dissipation is suppressed by the heat insulating member.

被加熱材料は加熱された後、材料収容部から排出され
て例えば鍛造加工工程に供給され、誘導加熱装置等で鍛
造加工温度に満たない分を追加熱される。
After the material to be heated is heated, it is discharged from the material storage section and supplied to, for example, a forging process, and is additionally heated by an induction heating device or the like for a portion below the forging temperature.

また、この発明によれば、被加熱材料の供給、排出が
材料搬送装置によって画一的になされる。
Further, according to the present invention, the supply and discharge of the material to be heated are uniformly performed by the material transport device.

〔実施例〕〔Example〕

第1図乃至第8図はこの発明の一実施例を示す。 1 to 8 show an embodiment of the present invention.

第1図に示すように、加熱装置2には固体蓄熱ブロッ
ク4が備えられており、材料搬送装置6によって被加熱
材料8が固体蓄熱ブロック4に自動的且つ画一的に供給
されるとともに、加熱後排出されるようになっている。
As shown in FIG. 1, the heating device 2 is provided with a solid heat storage block 4, and the material to be heated 8 is automatically and uniformly supplied to the solid heat storage block 4 by the material conveying device 6. It is designed to be discharged after heating.

固体蓄熱ブロック4の外面は放熱抑制のために、例え
ば2層の断熱材10,12で覆う構造にでき、また、安定し
た設置状態が得られるように、固体蓄熱ブロック4の底
面は例えば耐火レンガ等の硬質の断熱材14で支持する構
造にできる。さらにまた、最外面を鉄皮等の補強部材16
で覆う構造とすることができる。
The outer surface of the solid heat storage block 4 can be covered with, for example, two layers of heat insulating materials 10 and 12 to suppress heat radiation. In order to obtain a stable installation state, the bottom surface of the solid heat storage block 4 is made of, for example, a firebrick. It can be structured to be supported by a hard heat insulator 14 such as. Further, the outermost surface is made of a reinforcing member 16
It can be a structure covered with.

固体蓄熱ブロック4は、その主体となるブロック18が
蓄熱材で直方体状に形成されており、ブロック18内に
は、材料収容部20が等間隔に複数形成されているととも
に、適当間隔をもって顕熱源としての加熱用ヒータ22が
埋設されている。この例では蓄熱材として、比熱、密
度、熱伝導性、コスト等の観点から、酸化マグネシウム
(MgO)、二酸化珪素(SiO2)を主成分とするマグネシ
ア系キャスタブルを採用した。なお、この例における固
体蓄熱ブロック4、断熱材10,12、加熱用ヒータ22等の
仕様は表1に示す通りである。
The solid heat storage block 4 has a main block 18 formed of a heat storage material in a rectangular parallelepiped shape. In the block 18, a plurality of material accommodating portions 20 are formed at equal intervals, and a sensible heat source is provided at appropriate intervals. The heater 22 for heating is embedded. In this example, a magnesia castable containing magnesium oxide (MgO) and silicon dioxide (SiO 2 ) as main components was used as the heat storage material from the viewpoint of specific heat, density, thermal conductivity, cost, and the like. The specifications of the solid heat storage block 4, the heat insulating materials 10, 12 and the heater 22 in this example are as shown in Table 1.

内層の断熱材10には、高温下での高断熱性、安全性、
コスト等を考慮してマイクロサーム(商標、日本アエロ
ジル株式会社製)を、また、外層の断熱材12には、繊維
質のカオーウール(商標、イソライト工業株式会社製)
を採用した。無論、2層構造並びに上記材質に限られる
ものではなく、高断熱性を維持できる範囲で種々選定で
きる。
The inner layer insulation 10 has high thermal insulation under high temperature, safety,
Microtherm (trademark, manufactured by Nippon Aerosil Co., Ltd.) is used in consideration of cost, and fibrous kao wool (trademark, manufactured by Isolite Industry Co., Ltd.)
It was adopted. Of course, the material is not limited to the two-layer structure and the above-mentioned materials, and various materials can be selected as long as high heat insulation can be maintained.

材料収容部20は、例えばブロック18内に熱伝導性の良
いパイプ部材24を埋設することによって形成することが
でき、パイプ部材24はブロック18の両端から断熱材10,1
2と補強部材16の厚み分突出する寸法を有する。固体蓄
熱ブロック4は例えば第3図に示すように、鋼板等の支
持プレート26に必要数のパイプ部材24と、加熱用ヒータ
22を通して骨組みを形成し、型枠にセットした後キャス
タブルを鋳込むことによって形成することができる。
The material accommodating section 20 can be formed, for example, by embedding a pipe member 24 having good heat conductivity in the block 18, and the pipe member 24 is provided with heat insulating materials 10, 1 from both ends of the block 18.
2 and a dimension protruding by the thickness of the reinforcing member 16. As shown in FIG. 3, for example, a solid heat storage block 4 includes a support plate 26 such as a steel plate and a required number of pipe members 24 and a heater for heating.
It can be formed by forming a skeleton through 22, setting it in a mold, and then casting a castable.

材料搬送装置6は、固定脚部28と、この固定脚部28に
支持され固体蓄熱ブロック4の高さ方向と巾方向に移動
可能な可動台30と、この可動台30に取付けられる空気圧
シリンダ等のプッシャー32とから概略構成される。
The material transfer device 6 includes a fixed leg 28, a movable base 30 supported by the fixed leg 28 and movable in the height direction and the width direction of the solid heat storage block 4, a pneumatic cylinder mounted on the movable base 30, and the like. And a pusher 32.

材料搬送装置6に対応して固体蓄熱ブロック4側に
は、被加熱材料8の供給を案内するとともに供給時及び
排出時の放熱を抑制するために、シャッター機構34が設
けられている。シャッター機構34は、例えば補強部材16
の上面に設置されるモータ36と、モータ36で駆動される
ドラム38と、ドラム38に巻かれ材料収容部20の開口部を
閉塞する閉塞プレート40と、閉塞プレート40に取付けら
れる材料ガイド42とから構成することができる。図示し
ない供給ロボットで被加熱材料8が材料ガイド42にセッ
トされると、プッシャー32の伸縮ロッド44によって被加
熱材料8が材料収容部20へ押し込まれ供給される。
A shutter mechanism 34 is provided on the side of the solid thermal storage block 4 corresponding to the material transfer device 6 to guide the supply of the material to be heated 8 and to suppress heat radiation during supply and discharge. The shutter mechanism 34 includes, for example, the reinforcing member 16
A motor 36 installed on the upper surface of the drum, a drum 38 driven by the motor 36, a closing plate 40 wound around the drum 38 to close the opening of the material storage portion 20, and a material guide 42 attached to the closing plate 40. Can be composed of When the material to be heated 8 is set on the material guide 42 by a supply robot (not shown), the material to be heated 8 is pushed into the material storage section 20 by the telescopic rod 44 of the pusher 32 and supplied.

例えば最上列の材料収容部20への供給が完了すると、
シャッター機構34の動作で材料ガイド42が次列に対応
し、最上列の材料収容部20の延長開口端45は閉塞プレー
ト40で閉塞されて放熱を抑制される。シャッター機構34
は、単一の駆動源で巾方向全体に亘る材料ガイド42を駆
動する構成としてもよく、また、列毎にモータ36、ドラ
ム38等を対応させる構成とすることもできる。
For example, when the supply to the material storage unit 20 in the top row is completed,
The operation of the shutter mechanism 34 causes the material guides 42 to correspond to the next row, and the extended opening end 45 of the material storage section 20 in the uppermost row is closed by the closing plate 40 to suppress heat radiation. Shutter mechanism 34
May be configured to drive the material guides 42 over the entire width direction by a single driving source, or may be configured to correspond the motor 36, the drum 38, and the like for each row.

被加熱材料8が所定温度に加熱された後は、シャッタ
ー機構34の逆動作によって下段の列から順次材料収容部
20の延長開口端が開放され、プッシャー32の伸縮ロッド
44の進入で被加熱材料8は裏面側の延長開口端47から突
き落とされて排出される。被加熱材料8の排出時におけ
る裏面側の延長開口端47からの放熱を抑制するため、例
えば第5図に示すように、各開口端に対応して断熱扉46
を設けることができる。各断熱扉46は、例えば補強部材
16に固定される弾性支持片48と、弾性支持片48の自由端
に取付けられる扉本体50とから構成できる。扉本体50は
排出時以外は常時補強部材16の側面に密着するように付
勢され、排出時は伸縮ロッド44の押圧力で回動するとと
もに被加熱材料8の排出後自動復帰するようになってい
る。
After the material to be heated 8 is heated to a predetermined temperature, the material storage unit is sequentially operated from the lower row by the reverse operation of the shutter mechanism 34.
20 extension open ends are opened, pusher 32 telescopic rod
With the entry of 44, the material to be heated 8 is pushed down from the extended opening end 47 on the back side and discharged. In order to suppress heat radiation from the extended opening end 47 on the back side when the heated material 8 is discharged, for example, as shown in FIG.
Can be provided. Each insulation door 46 is, for example, a reinforcing member
The elastic support piece 48 can be fixed to the door 16 and a door body 50 attached to a free end of the elastic support piece 48. The door body 50 is always urged so as to be in close contact with the side surface of the reinforcing member 16 except at the time of discharging, and at the time of discharging, rotates by the pressing force of the telescopic rod 44 and automatically returns after the heated material 8 is discharged. ing.

次に被加熱材料8として径が28mmで長さが200mmサイ
ズの鍛造用鋼材を仕様した加熱工程のサイクルを説明す
る。但し、材料搬送装置6の供給機能は4sec/本で、排
出機能は15sec/本に設定した場合である。
Next, a description will be given of a cycle of a heating step in which a forging steel material having a diameter of 28 mm and a length of 200 mm is used as the material to be heated 8. However, the supply function of the material transfer device 6 is set to 4 sec / unit, and the discharge function is set to 15 sec / unit.

第6図に示すように、初回加熱工程F−Gでは常温か
ら鍛造加工温度の中温度域である750℃への加熱がなさ
れる。次に材料排出工程B−Cで被加熱材料8の排出が
なされ、材料供給工程C−Dで加熱材料8の供給がなさ
れる。次に2回目の加熱工程D−Eに入り、順次繰り返
される。各工程において費やした時間は、初回加熱工程
F−Gが10時間、材料排出工程B−Cが2.5時間、材料
供給工程C−Dが0.5時間で、2回目の加熱工程D−E
が5時間であった。
As shown in FIG. 6, in the initial heating step FG, heating is performed from room temperature to 750 ° C., which is a middle temperature range of the forging temperature. Next, the material to be heated 8 is discharged in a material discharging step BC, and the heating material 8 is supplied in a material supplying step CD. Next, a second heating step DE is started, and is sequentially repeated. The time spent in each step is as follows: the initial heating step FG is 10 hours, the material discharging step BC is 2.5 hours, the material supplying step CD is 0.5 hours, and the second heating step DE is performed.
Was 5 hours.

実験の結果、初回加熱工程F−Gにおける熱収支は表
2に示すような値となり、熱効率は24%であるが、2回
目以降の加熱工程D−Eにおける熱収支は表3に示す通
りであり、熱効率は前工程の残蓄熱量が利用できるため
56.3%に改善される。
As a result of the experiment, the heat balance in the first heating step FG is a value as shown in Table 2, and the thermal efficiency is 24%. However, the heat balance in the second and subsequent heating steps DE is as shown in Table 3. Yes, the thermal efficiency is based on the amount of residual heat stored in the previous process.
It is improved to 56.3%.

なお、表2、表3において熱量の算出方法は、 Q1;投入電力量(測定値)×860 Q2,Q3,Q4;比熱×重量×加熱温度(測定値) Q5;Q1−(Q2+Q3+Q4)である。 Incidentally, Table 2, heat calculation method of the Table 3, Q 1; amount input power (measured value) × 860 Q 2, Q 3 , Q 4; specific heat × weight × heating temperature (measured value) Q 5; Q 1 − (Q 2 + Q 3 + Q 4 ).

なお、初回加熱工程F−Gにおける固体蓄熱ブロック
4並びに被加熱材料8の温度分布は表4に示す通りで、
温度センサによる各測定場所TC1〜TC8のうち、例えばブ
ロック温度TC4でブロク全体を一括制御する一括温度制
御方式(第7図)では、固体蓄熱ブロック4と被加熱材
料8において、最大温度差がそれぞれ、125℃、130℃で
あるが、第8図に示すように、第1ゾーンと第2ゾーン
に分割してそれぞれTC1、TC4の値で各ゾーンを制御する
2分割温度制御方式では、固体蓄熱ブロック4並びに被
加熱材料8の最大温度差はそれぞれ、20℃、10℃となる
ことが実験により確認された。このため、本例では2分
割温度制御方式を採用した。
The temperature distribution of the solid heat storage block 4 and the material to be heated 8 in the initial heating step FG is as shown in Table 4,
Of the measurement locations TC 1 to Tc 8 by the temperature sensor, for example, the bulk temperature control method that collectively controls the entire Buroku at block temperature TC 4 (Figure 7), a solid heat storage block 4 in the material to be heated 8, the maximum temperature difference respectively, 125 ° C., but it is 130 ° C., as shown in FIG. 8, the first zone and the second divided temperature control for controlling each zone in each value of TC 1, TC 4 is divided into a second zone In the method, it was confirmed by experiments that the maximum temperature differences between the solid thermal storage block 4 and the material to be heated 8 were 20 ° C. and 10 ° C., respectively. For this reason, in this example, a two-part temperature control method was adopted.

1250℃の鋼の比熱を0.162(kcal/kg℃)とすると、常
温から1250℃に加熱するための必要熱量はQ(1250)=0.1
62(kcal/kg℃)×1250℃×103(kg)=202500(kcal/t
on)。kWh=860(kcal)より、鋼の理論電力量はWh
(1250)=202500(kcal/ton)×(1/860)=235(kWh/to
n)。従って、誘導加熱装置の昼間使用における実電力
使用量Wh1は、誘導加熱装置の熱効率を45%とすると、W
h1=235(kWh/ton)×(1/0.45)=525(kWh/ton)とな
る。
Assuming that the specific heat of 1250 ° C steel is 0.162 (kcal / kg ° C), the required heat quantity for heating from room temperature to 1250 ° C is Q (1250) = 0.1
62 (kcal / kg ° C) x 1250 ° C x 10 3 (kg) = 202500 (kcal / t
on). From kWh = 860 (kcal), the theoretical electric energy of steel is Wh
(1250) = 202500 (kcal / ton) x (1/860) = 235 (kWh / to
n). Therefore, the actual power consumption Wh 1 in daytime use of the induction heating device is W, given that the thermal efficiency of the induction heating device is 45%.
h 1 = 235 (kWh / ton) × (1 / 0.45) = 525 (kWh / ton).

これに対して常温から750℃に加熱するに必要な理論
電力量は同様の算出方法でWh(750)=130(kWh/ton)と
なり、固体蓄熱ブロック4を備えた加熱装置2の夜間使
用における実電力使用量は固体蓄熱ブロック4の熱効率
をほぼ60%とすると、Wh2=130(kWh/ton)×(1/0.6
0)=217(kWh/ton)となる。
On the other hand, the theoretical electric energy required for heating from room temperature to 750 ° C. becomes Wh (750) = 130 (kWh / ton) by the same calculation method, and the heating device 2 including the solid heat storage block 4 is used at night. Assuming that the thermal efficiency of the solid thermal storage block 4 is approximately 60%, the actual power consumption is Wh 2 = 130 (kWh / ton) × (1 / 0.6
0) = 217 (kWh / ton).

また、750℃から1250℃に加熱するための理論電力量
は、Wh(750-1250)=Wh(1250)−Wh(750)=105(kWh/to
n)となり、誘導加熱装置による実電力使用量は、Wh3
105(kWh/ton)×(1/0.45)=233(kWh/ton)となる。
The theoretical electric energy for heating from 750 ° C to 1250 ° C is Wh ( 750-1250 ) = Wh (1250) -Wh (750) = 105 (kWh / to
n), and the actual power consumption by the induction heating device is Wh 3 =
105 (kWh / ton) x (1 / 0.45) = 233 (kWh / ton).

従って、被加熱材料8を夜間において本例に係る加熱
装置2で鍛造加工温度の中温度域に予熱・保温し、昼間
の鍛造加工時に追加熱を行う手法を取る場合、省エネル
ギー効果εは、 またこの場合、夜間の電力負荷率はμは、 従って、昼間と夜間の電力負荷率をほぼ同等にでき、
よって消費電力単価の低減を図ることができる。
Therefore, when taking a method of preheating and keeping the material to be heated 8 in the middle temperature range of the forging temperature by the heating device 2 according to the present embodiment at night and performing additional heat at the time of forging in the daytime, the energy saving effect ε is as follows. Also in this case, the nighttime power load factor mu 1 is Therefore, the daytime and nighttime power load factors can be made almost equal,
Therefore, the power consumption unit price can be reduced.

また、黄銅、アルミ等の非鉄金属鍛造の場合には鍛造
加工温度が鉄鋼鍛造の場合の中温度域にほぼ等しいた
め、加熱工程に限れば夜間の電力負荷率を100パーセン
トにでき、よってより一層の省エネルギー化を図ること
ができる。
In addition, in the case of forging non-ferrous metals such as brass and aluminum, the forging temperature is almost equal to the medium temperature range in the case of steel forging. Energy saving can be achieved.

また、鍛造工程に限らず、金属の熱処理、窯業等にお
いても適用でき、同様に消費電力単価の低減ひいては生
産コストの低減を図ることができるものである。
Further, the present invention can be applied not only to the forging process but also to metal heat treatment, ceramic industry, and the like, and similarly, it is possible to reduce the unit cost of power consumption and, consequently, the production cost.

なお、この例に係る加熱装置2では、加熱工程におけ
る酸化スケールによる目減り率は表5に示す通りであ
り、従来の燃焼炉が2.5%であるのに対して極めて低い
値となることが確認された。また、コスト高となるもの
の、アルゴン(Ar)等の不活性ガス雰囲気中では空気中
に比べて目減り率をさらに抑制することができる。
In addition, in the heating device 2 according to this example, the reduction rate due to the oxide scale in the heating step is as shown in Table 5, and it was confirmed that the value was extremely low compared to 2.5% in the conventional combustion furnace. Was. Although the cost is high, the loss rate can be further suppressed in an atmosphere of an inert gas such as argon (Ar) as compared with that in the air.

また、黄銅等の軟質素材を対象とする場合には、例え
ば第9図に示すように、材料収容部20にスキットレール
52,52を設けて被加熱材料8の転動阻止と接触面積の縮
小化を図ることにより、供給・排出工程におけるキズ等
の損傷を回避することができ、製品の品質低下を防止す
ることができる。
When a soft material such as brass is to be used, for example, as shown in FIG.
By providing the 52, 52 to prevent rolling of the material to be heated 8 and reduce the contact area, it is possible to avoid damage such as scratches in the supply / discharge process, and to prevent deterioration in product quality. it can.

〔発明の効果〕〔The invention's effect〕

この発明によれば、金属の鍛造加工や熱処理工程にお
ける被加熱材料を夜間電力を利用して加熱し、昼間にお
いて鍛造加工温度等に満たない分を追加熱して加工工程
に供給する加工形態とすることができるので、昼間と夜
間との電力負荷率のアンバランスを改善でき、消費電力
単価の低減ひいては生産コストの低減を図ることができ
る。
According to this invention, a material to be heated in a metal forging process or a heat treatment process is heated using nighttime electric power, and a portion less than the forging temperature or the like is additionally heated in the daytime and supplied to the processing process. Therefore, it is possible to improve the imbalance of the power load ratio between the daytime and the nighttime, and to reduce the unit cost of power consumption and the production cost.

また、この発明によれば、材料搬送装置によって固体
蓄熱ブロックの材料収容部へ被加熱材料を迅速に供給で
きるとともに、加熱された被加熱材料を迅速に排出でき
るので、作業能率の向上を図れるとともに、供給・排出
時の放熱による熱効率の低下を制御することができる。
According to the present invention, the material to be heated can be quickly supplied to the material storage section of the solid heat storage block by the material transfer device, and the heated material to be heated can be quickly discharged, so that the working efficiency can be improved. In addition, it is possible to control a decrease in thermal efficiency due to heat radiation during supply and discharge.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る固体蓄熱ブロックを備えた加熱
装置の一実施例を示す図で、(A)は一部断面の平面
図、(B)は一部断面の側面図、第2図は固体蓄熱ブロ
ックの要部断面斜視図、第3図は固体蓄熱ブロックの骨
組を示す概要斜視図、第4図は固体蓄熱ブロックを示す
図で、(A)はその正面図、(B)は(A)のIV−IV線
での断面図、第5図は加熱装置の背面側における部分斜
視図、第6図は加熱サイクルにおいて温度と時間の関係
を示すグラフ、第7図及び第8図は固体蓄熱ブロックの
温度制御方式を示す図、第9図は材料収容部の他の例を
示す一部切欠斜視図、第10図は従来の鍛造加工のライン
を示す図である。 2……固体蓄熱ブロックを備えた加熱装置 4……固体蓄熱ブロック 6……材料搬送装置 8……被加熱材料 10,12……断熱材 18……ブロック 20……材料収容部 22……加熱用ヒータ
FIG. 1 is a view showing one embodiment of a heating device provided with a solid heat storage block according to the present invention, wherein (A) is a partial cross-sectional plan view, (B) is a partial cross-sectional side view, and FIG. Fig. 3 is a perspective view showing a main part of the solid heat storage block, Fig. 3 is a schematic perspective view showing a frame of the solid heat storage block, Fig. 4 is a view showing the solid heat storage block, (A) is a front view thereof, and (B) is a front view. FIG. 5A is a cross-sectional view taken along line IV-IV, FIG. 5 is a partial perspective view on the back side of the heating device, FIG. 6 is a graph showing the relationship between temperature and time in a heating cycle, FIG. 7 and FIG. FIG. 9 is a view showing a temperature control system of the solid heat storage block, FIG. 9 is a partially cutaway perspective view showing another example of the material storage section, and FIG. 10 is a view showing a conventional forging line. 2 ... Heating device with solid heat storage block 4 ... Solid heat storage block 6 ... Material transfer device 8 ... Material to be heated 10,12 ... Insulation material 18 ... Block 20 ... Material storage part 22 ... Heating Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 正雄 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 米澤 征寿 東京都港区芝1丁目8番19号 株式会社 白山製作所内 (72)発明者 吉田 久 東京都港区芝1丁目8番19号 株式会社 白山製作所内 (58)調査した分野(Int.Cl.7,DB名) F27D 11/02 C21D 1/40 B21J 17/02 H05B 3/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masao Nishioka 1-3-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo Inside Tokyo Electric Power Company (72) Inventor Seiji Yonezawa 1-8-19 Shiba, Minato-ku, Tokyo Stock (72) Inventor Hisashi Yoshida 1-8-19 Shiba, Minato-ku, Tokyo Inside Hakusan Manufacturing Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) F27D 11/02 C21D 1 / 40 B21J 17/02 H05B 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱材で形成されるブロックに被加熱材料
を収容するための材料収容部が形成されているとともに
加熱用ヒータが埋設されて固体蓄熱ブロックが形成さ
れ、上記固体蓄熱ブロックの外面は断熱材で覆われてい
る固体蓄熱ブロックを備えた加熱装置。
1. A solid heat storage block is formed by forming a material storage portion for storing a material to be heated in a block formed of a heat storage material, and a heating heater is embedded therein. Is a heating device with a solid heat storage block covered with heat insulating material.
【請求項2】上記材料収容部に被加熱材料を供給すると
ともに加熱後の被加熱材料を排出する材料搬送装置が備
えられている請求項1記載の固体蓄熱ブロックを備えた
加熱装置。
2. A heating apparatus having a solid heat storage block according to claim 1, further comprising a material transfer device for supplying the material to be heated to said material storage section and discharging the heated material after heating.
JP2180773A 1990-07-09 1990-07-09 Heating device with solid heat storage block Expired - Lifetime JP3001164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180773A JP3001164B2 (en) 1990-07-09 1990-07-09 Heating device with solid heat storage block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180773A JP3001164B2 (en) 1990-07-09 1990-07-09 Heating device with solid heat storage block

Publications (2)

Publication Number Publication Date
JPH0468295A JPH0468295A (en) 1992-03-04
JP3001164B2 true JP3001164B2 (en) 2000-01-24

Family

ID=16089077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180773A Expired - Lifetime JP3001164B2 (en) 1990-07-09 1990-07-09 Heating device with solid heat storage block

Country Status (1)

Country Link
JP (1) JP3001164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615235A (en) * 2012-04-23 2012-08-01 彭亦楚 Forge heating furnace
CN110883304A (en) * 2019-11-13 2020-03-17 徐州泓吉环锻科技有限公司 Energy-saving heating equipment for continuous forging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723858B2 (en) * 2005-01-10 2010-05-25 New World Generation Inc. Power plant having a heat storage medium and a method of operation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615235A (en) * 2012-04-23 2012-08-01 彭亦楚 Forge heating furnace
CN102615235B (en) * 2012-04-23 2014-08-13 彭亦楚 Forge heating furnace
CN110883304A (en) * 2019-11-13 2020-03-17 徐州泓吉环锻科技有限公司 Energy-saving heating equipment for continuous forging

Also Published As

Publication number Publication date
JPH0468295A (en) 1992-03-04

Similar Documents

Publication Publication Date Title
JP5376631B2 (en) Vertical firing furnace for powder firing
US2944500A (en) Machine for forming sheet metal
JP3001164B2 (en) Heating device with solid heat storage block
CA2292529A1 (en) Refractory wall structure
JPH02111636A (en) Method and apparatus for forming curved surface to glass plate by heating
JP5103475B2 (en) Conveying device that keeps temperature of slab taken out from continuous casting equipment
JPH027860Y2 (en)
US4832887A (en) Process for firing green moldings of ceramic pastes
JPS5822077Y2 (en) High temperature high purity gas atmosphere furnace
JPH064970Y2 (en) Insulation cover for hot steel
JPH037463B2 (en)
KR20200066630A (en) Hot rolling online mobile heat insulation heat treatment process, and heat treatment line
SU1108015A1 (en) Process line for manufacturing three-dimensional concrete articles
JPS6125767B2 (en)
JPH0437898Y2 (en)
US3142717A (en) Apparatus for producing quartz
JPS61253322A (en) Induction heating and annealing device for iron core of electrical apparatus
JPH03217785A (en) Batch type calcining furnace
JPS6256211B2 (en)
JPS59138885A (en) Tunnel furnace
SU116436A1 (en) Electric two-floor stove
JPS621753Y2 (en)
JPS6038656Y2 (en) Hearth structure of billet heating furnace
SU742688A1 (en) Continuous-periodic action apparatus for heat-treating of articles
SU1428898A1 (en) Arrangement for annealing fused-moulded articles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11