JP2998739B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2998739B2
JP2998739B2 JP14236298A JP14236298A JP2998739B2 JP 2998739 B2 JP2998739 B2 JP 2998739B2 JP 14236298 A JP14236298 A JP 14236298A JP 14236298 A JP14236298 A JP 14236298A JP 2998739 B2 JP2998739 B2 JP 2998739B2
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
pipe
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14236298A
Other languages
Japanese (ja)
Other versions
JPH11325636A (en
Inventor
幹彦 黒田
隆志 土野
敦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP14236298A priority Critical patent/JP2998739B2/en
Publication of JPH11325636A publication Critical patent/JPH11325636A/en
Application granted granted Critical
Publication of JP2998739B2 publication Critical patent/JP2998739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷暖運転に加え
て再熱ドライ運転が可能な空気調和機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of performing a reheating dry operation in addition to a cooling / heating operation.

【0002】[0002]

【従来の技術】例えばセパレート形空気調和機は、圧縮
機に室内熱交換器、減圧機構、室外熱交換器を順次接続
して冷媒循環回路を形成し、圧縮機からの吐出冷媒を室
内熱交換器から室外熱交換器へと回流させることで暖房
運転が、また、室外熱交換器から室内熱交換器へと回流
させることで冷房運転が行われる。この場合に、室内熱
交換器を第1室内熱交換器と第2室内熱交換器とに分割
構成すると共に、これら両熱交換器間に除湿用の減圧機
構を介在させることで、室温低下を抑えた除湿運転が可
能になる。
2. Description of the Related Art For example, in a separate type air conditioner, an indoor heat exchanger, a decompression mechanism, and an outdoor heat exchanger are sequentially connected to a compressor to form a refrigerant circulation circuit, and refrigerant discharged from the compressor is subjected to indoor heat exchange. The heating operation is performed by circulating the air from the heat exchanger to the outdoor heat exchanger, and the cooling operation is performed by circulating the air from the outdoor heat exchanger to the indoor heat exchanger. In this case, the indoor heat exchanger is divided into a first indoor heat exchanger and a second indoor heat exchanger, and a decompression mechanism for dehumidification is interposed between these two heat exchangers to reduce the room temperature. Dehumidification operation can be suppressed.

【0003】このような空気調和機の一例が特公昭53
−3580号公報に開示されている。図4に示すこの空
気調和機においては、室外ファン51の回転数を低速に
し、減圧機構52に並列接続された第1開閉弁53を開
弁すると共に、第1・第2室内熱交換器54・55間の
第2開閉弁56を閉弁し、図中実線矢印で示すように冷
媒を循環させて除湿運転が行われる。このとき、圧縮機
57の吐出冷媒は、室外熱交換器58を通過して第1室
内熱交換器54で放熱凝縮し、除湿用減圧機構59で減
圧された後、第2室内熱交換器55で吸熱蒸発する。
An example of such an air conditioner is disclosed in
No. 3580. In the air conditioner shown in FIG. 4, the rotation speed of the outdoor fan 51 is reduced, the first opening / closing valve 53 connected in parallel to the pressure reducing mechanism 52 is opened, and the first and second indoor heat exchangers 54 are provided. The second on-off valve 56 between 55 is closed, and the refrigerant is circulated as shown by the solid line arrow in the figure to perform the dehumidification operation. At this time, the refrigerant discharged from the compressor 57 passes through the outdoor heat exchanger 58, is radiated and condensed in the first indoor heat exchanger 54, is decompressed by the dehumidifying decompression mechanism 59, and is then decompressed. Endothermic evaporation.

【0004】したがって、室内機内における空気の通気
方向に沿って第2室内熱交換器55・第1室内熱交換器
54の順で配置しておくことで、室内空気は、まず、第
2室内熱交換器55通過時に冷却され、このとき水分が
結露して除湿される。次いで、第1室内熱交換器54通
過時に再熱され室内に吹き出されることになって、室温
低下を抑えた除湿運転(以下、再熱ドライ運転という)
が可能になる。
Therefore, by arranging the second indoor heat exchanger 55 and the first indoor heat exchanger 54 in this order along the direction of air flow in the indoor unit, the indoor air firstly becomes the second indoor heat exchanger. When passing through the exchanger 55, it is cooled, and at this time, moisture is dewed and dehumidified. Next, the air is reheated and blown into the room when passing through the first indoor heat exchanger 54, and the dehumidifying operation in which a decrease in room temperature is suppressed (hereinafter, referred to as a reheating dry operation).
Becomes possible.

【0005】上記構成の空気調和機においては、圧縮機
57の吐出冷媒を室外側から室内側に循環させる冷房サ
イクルで除湿運転が行われる。これに対し、圧縮機から
の吐出冷媒を室内側から室外側に循環させる暖房サイク
ルで、上記同様の再熱ドライ運転を行うようにした空気
調和機の例が特公昭61−533号公報に開示されてい
る。
[0005] In the air conditioner having the above configuration, the dehumidifying operation is performed in a cooling cycle in which the refrigerant discharged from the compressor 57 is circulated from the outside to the inside of the room. On the other hand, Japanese Patent Publication No. 61-533 discloses an example of an air conditioner that performs a reheat dry operation similar to the above in a heating cycle in which refrigerant discharged from a compressor is circulated from the indoor side to the outdoor side. Have been.

【0006】図5に示すこの空気調和機においては、第
1室内熱交換器61・第2室内熱交換器62間の開閉弁
63を閉弁し、図中実線矢印で示すように冷媒を循環さ
せて除湿運転が行われる。このとき、圧縮機64の吐出
冷媒は、四路切換弁65を通して第1室内熱交換器61
に供給され、この熱交換器61で凝縮する。次いで、除
湿用減圧機構66で減圧された後、第2室内熱交換器6
2で蒸発する。その後、暖房用減圧機構67を通過後に
室外熱交換器68でさらに蒸発して圧縮機64に返流さ
れる。したがって、この場合には、第2室内熱交換器6
2から第1室内熱交換器61を順次室内空気が通過する
ように構成することで、前記同様の再熱ドライ運転が行
われる。
In the air conditioner shown in FIG. 5, the on-off valve 63 between the first indoor heat exchanger 61 and the second indoor heat exchanger 62 is closed, and the refrigerant circulates as shown by the solid arrow in the figure. Then, the dehumidifying operation is performed. At this time, the refrigerant discharged from the compressor 64 passes through the four-way switching valve 65 to the first indoor heat exchanger 61.
And is condensed in this heat exchanger 61. Next, after being depressurized by the dehumidifying decompression mechanism 66, the second indoor heat exchanger 6
Evaporate at 2. Then, after passing through the heating pressure reducing mechanism 67, it is further evaporated in the outdoor heat exchanger 68 and returned to the compressor 64. Therefore, in this case, the second indoor heat exchanger 6
By configuring the indoor air to sequentially pass through the first indoor heat exchanger 61 from the second, the reheat dry operation similar to the above is performed.

【0007】なお、この空気調和機においては、冷暖切
換用の四路切換弁65によって冷房サイクルへの切換え
も可能であるが、この冷房サイクルで除湿運転を行おう
としても、室内機内の通気方向上流側の第2室内熱交換
器62が凝縮器、下流側の第1室内熱交換器61が蒸発
器として機能することになるため、上記したような再熱
ドライ運転は行えない。
In this air conditioner, it is possible to switch to a cooling cycle by a four-way switching valve 65 for switching between cooling and heating. However, even if an attempt is made to perform a dehumidifying operation in this cooling cycle, the direction of air flow in the indoor unit is reduced. Since the second indoor heat exchanger 62 on the upstream side functions as a condenser and the first indoor heat exchanger 61 on the downstream side functions as an evaporator, the reheat dry operation as described above cannot be performed.

【0008】すなわち、従来の空気調和機においては、
四路切換弁を設けて冷暖の切換えが可能な構成であって
も、室内機内における通気方向下流側の熱交換器が圧縮
機側に、上流側の熱交換器が室外熱交換器側に配管接続
された構成であれば、暖房サイクルでの再熱ドライ運転
しか行えず、また、前記図4に示したように、通気方向
下流側の熱交換器が室外熱交換器側に、上流側の熱交換
器が圧縮機側に配管接続された構成であれば、冷房サイ
クルでの再熱ドライ運転しか行えないものとなってい
る。
That is, in a conventional air conditioner,
Even if a four-way switching valve is provided to enable switching between cooling and heating, the heat exchanger on the downstream side in the ventilation direction in the indoor unit is connected to the compressor, and the upstream heat exchanger is connected to the outdoor heat exchanger. If connected, only the reheat dry operation in the heating cycle can be performed, and as shown in FIG. 4, the heat exchanger on the downstream side in the ventilation direction is on the outdoor heat exchanger side, and the upstream side is on the upstream side. If the heat exchanger is configured so as to be connected to the compressor by pipes, only the reheat dry operation in the cooling cycle can be performed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ように暖房サイクルと冷房サイクルとのいずれか一方で
しか再熱ドライ運転を行えない従来の空気調和機におい
ては、外気温度等の環境変化の影響を受けて、室内温度
の低下や除湿効率の低下を生じ易いという問題を有して
いる。
However, as described above, in the conventional air conditioner in which the reheat dry operation can be performed only in one of the heating cycle and the cooling cycle, the influence of the environmental change such as the outside air temperature. Accordingly, there is a problem that the indoor temperature and the dehumidifying efficiency are likely to be lowered.

【0010】つまり、前記図4を参照して説明したよう
な冷房サイクルでの除湿運転では、室外ファン51を低
速回転状態や停止状態としても、外気温が低いとき等に
は室外熱交換器58での凝縮量が多くなる。このときの
モリエル線図の一例を図3(c)に示している。同図の
ように、室外熱交換器58通過時に凝縮が生じると、室
内側での凝縮熱量が低下し、また、室外熱交換器58か
ら室内側に至る間で圧損が生じると、室内側での凝縮圧
力・凝縮温度の低下が生じる。このため、室内側での再
熱熱量が確保されなくなって、室内機からの空気の吹出
温度の低下が生じてしまう。
That is, in the dehumidifying operation in the cooling cycle as described with reference to FIG. 4, even when the outdoor fan 51 is in a low-speed rotation state or a stopped state, the outdoor heat exchanger 58 is used when the outside air temperature is low. Increases the amount of condensation at An example of a Mollier diagram at this time is shown in FIG. As shown in the figure, when condensation occurs when passing through the outdoor heat exchanger 58, the amount of heat of condensation on the indoor side decreases, and when pressure loss occurs from the outdoor heat exchanger 58 to the indoor side, the indoor side The condensation pressure and the condensation temperature decrease. For this reason, the amount of reheat heat on the indoor side cannot be ensured, and the temperature of the air blown out from the indoor unit decreases.

【0011】一方、図5を参照して説明したような暖房
サイクルでの除湿運転では、例えば外気温が高い場合に
は室外熱交換器68での冷媒蒸発温度が高くなり、これ
に伴って、暖房用減圧機構67で減圧される前の第2室
内熱交換器62での蒸発温度はさらに高くなる。この結
果、室内空気の充分な温度低下が生じずに、除湿量が小
さくなって除湿効率が低下する。
On the other hand, in the dehumidifying operation in the heating cycle as described with reference to FIG. 5, for example, when the outside air temperature is high, the refrigerant evaporation temperature in the outdoor heat exchanger 68 becomes high. The evaporation temperature in the second indoor heat exchanger 62 before the pressure is reduced by the heating pressure reducing mechanism 67 is further increased. As a result, the temperature of the room air does not drop sufficiently, and the amount of dehumidification is reduced, and the dehumidification efficiency is reduced.

【0012】さらに、従来の暖房サイクル除湿運転が可
能なセパレート形空気調和機では、室外機と室内機とを
相互に接続する連絡配管が長くなったときに、ここでの
圧損が大きくなり、これによって除湿効率が低下すると
いう問題も有している。
Further, in the conventional separate type air conditioner capable of performing the heating cycle dehumidifying operation, when the connecting pipe for interconnecting the outdoor unit and the indoor unit becomes long, the pressure loss at this point increases. Therefore, there is also a problem that the dehumidifying efficiency is reduced.

【0013】すなわち、例えば図5に示した空気調和機
の場合、第1室内熱交換器61がガス側連絡配管を介し
て四路切換弁65に、第2室内熱交換器62が液側連絡
配管を介して室外熱交換器68側に接続されるが、この
とき、ガス側連絡配管が例えば外径3/8インチの管か
ら成る場合、液側連絡配管としては例えば外径1/4イ
ンチの管が使用される。つまり、液側連絡配管には、通
常、ガス側連絡配管よりも小径の管が用いられる。この
ような配管接続状態で暖房サイクル除湿運転が行われる
と、第2室内熱交換器62で蒸発した低圧のガス冷媒或
いは気液混合冷媒が、径の小さな液側連絡配管を通過す
ることになるため、この間での圧損が大きくなって除湿
効率が低下する。
That is, for example, in the case of the air conditioner shown in FIG. 5, the first indoor heat exchanger 61 is connected to the four-way switching valve 65 via the gas side communication pipe, and the second indoor heat exchanger 62 is connected to the liquid side. The pipe is connected to the outdoor heat exchanger 68 via a pipe. At this time, when the gas-side communication pipe is formed of, for example, a pipe having an outer diameter of 3/8 inch, the liquid-side communication pipe is, for example, an outer diameter of 1/4 inch. Tubes are used. That is, a pipe having a smaller diameter than the gas-side communication pipe is usually used for the liquid-side communication pipe. When the heating cycle dehumidifying operation is performed in such a pipe connection state, the low-pressure gas refrigerant or the gas-liquid mixed refrigerant evaporated in the second indoor heat exchanger 62 passes through the small-diameter liquid-side connection pipe. Therefore, the pressure loss during this period increases, and the dehumidifying efficiency decreases.

【0014】この発明は、上記した問題点に鑑みなされ
たもので、その目的は、再熱能力や除湿効率が良好な再
熱ドライ運転を室外環境に影響されずに安定して行わせ
ることが可能な空気調和機を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to stably perform a reheat dry operation with good reheat capability and dehumidifying efficiency without being affected by an outdoor environment. It is to provide a possible air conditioner.

【0015】[0015]

【課題を解決するための手段】そこで請求項1の空気調
和機は、圧縮機3の吐出側と吸込側とが1次側ポートに
各々接続された四路切換弁7の2次側ポートに、順次、
第1ガス管8、室内側熱交換器20、第1液管11、減
圧機構39、第2液管13、室外熱交換器15、第2ガ
ス管9を接続して冷媒循環回路を形成し、上記室内側熱
交換器20を第1ガス管8側の第1室内熱交換器21と
第1液管11側の第2室内熱交換器22とに分割構成す
ると共に、第1室内熱交換器21と第2室内熱交換器2
2との間に、除湿運転時に除湿用減圧機構として介在さ
れる絞り手段23を設け、圧縮機3の吐出冷媒を第1ガ
ス管8に供給し第1・第2室内熱交換器21・22を凝
縮器、室外熱交換器15を蒸発器として機能させて暖房
運転を行う一方、圧縮機3の吐出冷媒を第2ガス管9に
供給し室外熱交換器15を凝縮器、第1・第2室内熱交
換器21・22を蒸発器として機能させて冷房運転を行
う空気調和機であって、第1ガス管8と第1液管11と
の間に、圧縮機3の吐出冷媒を第2ガス管9に供給して
行う冷房サイクル除湿運転時には、第1液管11が第2
室内熱交換器22に、第1室内熱交換器21が第1ガス
管8に各々接続された上記冷暖運転時の接続状態を保持
する一方、圧縮機3の吐出冷媒を第1ガス管8に供給し
て行う暖房サイクル除湿運転時に、第1ガス管8が第2
室内熱交換器22に、第1室内熱交換器21が第1液管
11に各々接続された接続状態に切換える接続状態切換
手段10を設けていることを特徴としている。
Therefore, the air conditioner according to the present invention is arranged such that the discharge side and the suction side of the compressor 3 are connected to the secondary side port of the four-way switching valve 7 in which the primary side port is connected respectively. , Sequentially,
The first gas pipe 8, the indoor heat exchanger 20, the first liquid pipe 11, the pressure reducing mechanism 39, the second liquid pipe 13, the outdoor heat exchanger 15, and the second gas pipe 9 are connected to form a refrigerant circulation circuit. The indoor heat exchanger 20 is divided into a first indoor heat exchanger 21 on the first gas pipe 8 side and a second indoor heat exchanger 22 on the first liquid pipe 11 side. Unit 21 and second indoor heat exchanger 2
And a throttle means 23 interposed as a dehumidifying depressurizing mechanism during the dehumidifying operation, and supplies the refrigerant discharged from the compressor 3 to the first gas pipe 8 to supply the first and second indoor heat exchangers 21 and 22 Is used as a condenser and the outdoor heat exchanger 15 functions as an evaporator to perform the heating operation, while the refrigerant discharged from the compressor 3 is supplied to the second gas pipe 9 and the outdoor heat exchanger 15 is used as the condenser, An air conditioner that performs a cooling operation by making the two indoor heat exchangers 21 and 22 function as an evaporator, and discharges refrigerant discharged from the compressor 3 between the first gas pipe 8 and the first liquid pipe 11. In the cooling cycle dehumidifying operation performed by supplying the gas to the second gas pipe 9, the first liquid pipe 11
In the indoor heat exchanger 22, the first indoor heat exchanger 21 maintains the connection state at the time of the cooling / heating operation in which the first indoor heat exchanger 21 is connected to the first gas pipe 8, while the refrigerant discharged from the compressor 3 is connected to the first gas pipe 8. During the heating cycle dehumidifying operation performed by supplying, the first gas pipe 8
The indoor heat exchanger 22 is provided with a connection state switching means 10 for switching to a connection state in which the first indoor heat exchanger 21 is connected to each of the first liquid tubes 11.

【0016】このような構成によれば、冷房サイクル除
湿運転時と暖房サイクル除湿運転時とのいずれにおいて
も、圧縮機3からの吐出冷媒は、第2室内熱交換器22
に流入し凝縮した後、第1室内熱交換器21で蒸発す
る。したがって、室内機内における空気の通気方向に沿
って上流側に第1室内熱交換器21、下流側に第2室内
熱交換器22を配置しておくことで、冷房サイクルと暖
房サイクルとのいずれによっても再熱ドライ運転を行う
ことができる。これにより、例えば外気温等の環境変化
に応じて、冷房サイクル除湿運転と暖房サイクル除湿運
転とを適宜選択することで、再熱能力や除湿効率が良好
な再熱ドライ運転をより安定して行わせることができ
る。
According to such a configuration, in both the cooling cycle dehumidifying operation and the heating cycle dehumidifying operation, the refrigerant discharged from the compressor 3 is supplied to the second indoor heat exchanger 22.
And condenses, and evaporates in the first indoor heat exchanger 21. Therefore, by arranging the first indoor heat exchanger 21 on the upstream side and the second indoor heat exchanger 22 on the downstream side along the direction of air flow in the indoor unit, either the cooling cycle or the heating cycle Even reheat dry operation can be performed. Thereby, for example, by appropriately selecting the cooling cycle dehumidifying operation and the heating cycle dehumidifying operation according to environmental changes such as the outside air temperature, the reheating dry operation with good reheating capability and dehumidifying efficiency is more stably performed. Can be made.

【0017】また上記では、例えば連絡配管を用いて室
外機と室内機とを相互に接続して構成する場合、第1室
内熱交換器21にガス側連絡配管、第2室内熱交換器2
2に液側連絡配管をそれぞれ接続することで、冷房サイ
クルと暖房サイクルとのいずれの除湿運転時にも、第1
室内熱交換器21で蒸発した低圧のガス冷媒はガス側連
絡配管を通して室外機側に送られることになる。したが
って、液側連絡配管がガス側連絡配管より小径であって
も、従来の暖房サイクル除湿運転で生じていた連絡配管
での低圧損失が少なくなり、これによって、蒸発温度の
上昇が抑えられるので除湿効率が向上する。
In the above description, for example, when the outdoor unit and the indoor unit are connected to each other using a communication pipe, the first indoor heat exchanger 21 is connected to the gas-side communication pipe, and the second indoor heat exchanger 2 is connected.
By connecting the liquid-side communication pipes to each other, the first cycle can be performed during the dehumidifying operation in both the cooling cycle and the heating cycle.
The low-pressure gas refrigerant evaporated in the indoor heat exchanger 21 is sent to the outdoor unit through the gas-side connecting pipe. Therefore, even if the liquid-side connecting pipe is smaller in diameter than the gas-side connecting pipe, the low pressure loss in the connecting pipe, which has occurred in the conventional heating cycle dehumidifying operation, is reduced. Efficiency is improved.

【0018】 さらに上記に加えて請求項1の空気調和
機は、上記第1室内熱交換器21における冷媒の流路断
面積を第2室内熱交換器22の流路断面積よりも大きく
していることを特徴としている。
In addition to the above, in the air conditioner of the first aspect, the flow path cross-sectional area of the refrigerant in the first indoor heat exchanger 21 is made larger than the flow path cross-sectional area of the second indoor heat exchanger 22. It is characterized by having.

【0019】この構成においては、冷暖能力や除湿効率
の向上を図ることができる。すなわち、暖房運転時に
は、第1室内熱交換器21に流入した高圧ガス冷媒が第
1室内熱交換器21と第2室内熱交換器22とを順次通
過する間に次第に凝縮して液冷媒となり、冷房運転時に
は、第2室内熱交換器22に流入した液冷媒が次第に蒸
発してガス冷媒となるが、これらガス冷媒の割合が多い
側の第1室内熱交換器21の流路断面積を大きくしてい
ることによって、この冷暖運転時におけるこれら第1・
第2室内熱交換器21・22通過時の圧損が小さくな
る。これにより、冷暖能力が向上する。
In this configuration, the cooling / heating capability and the dehumidifying efficiency can be improved. That is, during the heating operation, the high-pressure gas refrigerant flowing into the first indoor heat exchanger 21 gradually condenses into a liquid refrigerant while sequentially passing through the first indoor heat exchanger 21 and the second indoor heat exchanger 22, During the cooling operation, the liquid refrigerant flowing into the second indoor heat exchanger 22 gradually evaporates to become a gas refrigerant, but the flow path cross-sectional area of the first indoor heat exchanger 21 on the side where the proportion of the gas refrigerant is large is increased. By doing this, the first
Pressure loss when passing through the second indoor heat exchangers 21 and 22 is reduced. Thereby, the cooling / heating capability is improved.

【0020】一方、冷房サイクルと暖房サイクルとのい
ずれの除湿運転においても、第2室内熱交換器22には
高圧ガス冷媒が流入して凝縮し、第1室内熱交換器21
には除湿用電動膨張弁23で減圧された低圧液冷媒が流
入して蒸発する。したがって、この場合には、低圧の液
冷媒やガス冷媒が流通する第1室内熱交換器21の流路
断面積が第2室内熱交換器22よりも大きいことで、こ
の第1室内熱交換器21通過時の低圧損失が小さくな
る。これによって、除湿効率も向上する。
On the other hand, in any of the dehumidifying operation of the cooling cycle and the heating cycle, the high-pressure gas refrigerant flows into the second indoor heat exchanger 22 and condenses, and the first indoor heat exchanger 21
The low-pressure liquid refrigerant depressurized by the electric expansion valve 23 for dehumidification flows into and evaporates. Therefore, in this case, the flow path cross-sectional area of the first indoor heat exchanger 21 through which the low-pressure liquid refrigerant or the gas refrigerant flows is larger than that of the second indoor heat exchanger 22, so that the first indoor heat exchanger 22 The low pressure loss at the time of passage 21 decreases. Thereby, the dehumidifying efficiency is also improved.

【0021】 請求項の空気調和機は、第1室内熱交
換器21に、冷媒が分流して流れる互いに並列な冷媒流
路を、その合計の流路断面積が第2室内熱交換器22の
流路断面積よりも大きくなるように複数設けていること
を特徴としている。
In the air conditioner of the second aspect , the first indoor heat exchanger 21 is provided with the refrigerant flow paths which are parallel to each other and flows through the first indoor heat exchanger 21. Are provided so as to be larger than the cross-sectional area of the flow path.

【0022】つまり、第1・第2室内熱交換器21・2
2の各流路断面積を異ならせる場合、例えばクロスフィ
ンチューブ型熱交換器では、冷媒が流通する伝熱管の管
径を相違させて構成することも可能であるが、上記のよ
うに、互いに並列な冷媒流路の数、すなわちパス数を異
ならせることで、第1・第2室内熱交換器21・22と
で同一径の伝熱管を用いることができる。したがって、
この場合の第1・第2室内熱交換器21・22の製作に
当たっては、組立の最終段階で冷媒出入り口に所望のパ
ス数に応じたヘッダを各々取付ければ、それまでの製作
組立は第1・第2室内熱交換器21・22で互いに同様
に行うことができるので製作が容易になる。
That is, the first and second indoor heat exchangers 21 and 2
In the case where the cross-sectional areas of the respective flow paths 2 are different, for example, in a cross-fin tube type heat exchanger, it is possible to configure the heat transfer pipes through which the refrigerant flows with different pipe diameters. By making the number of parallel refrigerant flow paths, that is, the number of paths different, it is possible to use heat transfer tubes having the same diameter as the first and second indoor heat exchangers 21 and 22. Therefore,
In manufacturing the first and second indoor heat exchangers 21 and 22 in this case, if a header corresponding to a desired number of passes is attached to each of the refrigerant ports at the final stage of the assembly, the manufacturing and assembly up to that point is the first.・ Since the operations can be performed in the second indoor heat exchangers 21 and 22 similarly to each other, the production becomes easy.

【0023】[0023]

【発明の実施の形態】次に、この発明の空気調和機の具
体的な実施形態について、図面を参照しつつ詳細に説明
する。
Next, a specific embodiment of the air conditioner of the present invention will be described in detail with reference to the drawings.

【0024】図1は、室外機1に室内機2を接続して構
成されたセパレート形空気調和機の冷媒回路図である。
室外機1には圧縮機3が内装されており、この圧縮機3
の吐出配管4と、アキュームレータ5・5が介設された
吸込配管6とは、それぞれ第1四路切換弁7の1次側ポ
ートに各々接続されている。
FIG. 1 is a refrigerant circuit diagram of a separate type air conditioner configured by connecting an indoor unit 2 to an outdoor unit 1.
The outdoor unit 1 includes a compressor 3 therein.
The discharge pipe 4 and the suction pipe 6 in which the accumulators 5 are interposed are respectively connected to the primary port of the first four-way switching valve 7.

【0025】この第1四路切換弁7の2次側ポートには
第1ガス管8と第2ガス管9とがそれぞれ接続され、第
1ガス管8は、第2四路切換弁(接続状態切換手段)1
0における一方の1次側ポートに接続されている。そし
て、この第2四路切換弁10の他方の1次側ポートに第
1液管11が接続され、この第1液管11に、順次、後
述する逆止弁ブリッジ回路12・第2液管13・室外フ
ァン14の付設された室外熱交換器15が接続され、こ
の室外熱交換器15に第2ガス管9が接続されている。
A first gas pipe 8 and a second gas pipe 9 are respectively connected to the secondary port of the first four-way switching valve 7, and the first gas pipe 8 is connected to a second four-way switching valve (connection port). State switching means) 1
0 is connected to one primary port. A first liquid pipe 11 is connected to the other primary port of the second four-way switching valve 10, and a check valve bridge circuit 12 and a second liquid pipe (described later) are sequentially connected to the first liquid pipe 11. 13. An outdoor heat exchanger 15 provided with an outdoor fan 14 is connected, and the second gas pipe 9 is connected to the outdoor heat exchanger 15.

【0026】上記第2四路切換弁10の2次側ポートに
はガス側中継管16と液側中継管17とが接続され、こ
れら中継管16・17に、ガス側連絡配管18および液
側連絡配管19を介して、室内機2に内装された室内側
熱交換器20が接続されている。
A gas-side relay pipe 16 and a liquid-side relay pipe 17 are connected to the secondary port of the second four-way switching valve 10, and a gas-side connecting pipe 18 and a liquid-side relay pipe 16 are connected to these relay pipes 16. An indoor heat exchanger 20 provided inside the indoor unit 2 is connected via the communication pipe 19.

【0027】この室内側熱交換器20は、ガス側連絡配
管18に接続された第1室内熱交換器21と、液側連絡
配管19に接続された第2室内熱交換器22とに分割構
成され、これら室内熱交換器21・22は、除湿用電動
膨張弁(絞り手段)23が介設された中間配管24を介
して相互に接続されている。また、これら室内熱交換器
21・22は、室内ファン25を作動したときに室内機
2内に吸い込まれる室内空気の通気経路に沿って、第1
室内熱交換器21・第2室内熱交換器22の順でそれぞ
れ室内機2内に設置されている。
The indoor heat exchanger 20 is divided into a first indoor heat exchanger 21 connected to the gas communication pipe 18 and a second indoor heat exchanger 22 connected to the liquid communication pipe 19. The indoor heat exchangers 21 and 22 are connected to each other via an intermediate pipe 24 provided with an electric expansion valve (throttle means) 23 for dehumidification. Further, these indoor heat exchangers 21 and 22 are provided along the ventilation path of the indoor air sucked into the indoor unit 2 when the indoor fan 25 is operated.
The indoor heat exchanger 21 and the second indoor heat exchanger 22 are installed in the indoor unit 2 in this order.

【0028】また、図2に示すように、第2室内熱交換
器22は、液側連絡配管19側に1系統の冷媒流通路2
2aを、また、中間配管24側に互いに並列な2系統の
冷媒分流通路22b・22bをそれぞれ内部に備えるパ
ス取り形状で構成されている。一方、第1室内熱交換器
21は、その全体にわたって、互いに並列な3系統の冷
媒分流通路21a…を有するパス取り形状で形成されて
いる。
As shown in FIG. 2, the second indoor heat exchanger 22 is provided with one system of refrigerant flow passages 2 on the liquid side communication pipe 19 side.
2a, and a path-taking shape including two parallel refrigerant distribution passages 22b and 22b on the intermediate pipe 24 side. On the other hand, the entire first indoor heat exchanger 21 is formed in a path-taking shape having three systems of refrigerant distribution passages 21a parallel to each other.

【0029】前記逆止弁ブリッジ回路12は、図1に示
すように、第1液管11が接続された第1出入口ポート
12aと、第2液管13が接続された第2出入口ポート
12bとの間に、入側配管31と出側配管32とを互い
に並列に接続し、入側配管31に第1・第2逆止弁33
・34を、また、出側配管32に第3・第4逆止弁35
・36をそれぞれ介設して構成されている。また、入側
配管31における第1逆止弁33と第2逆止弁34との
間の整流入口ポート12cと、出側配管32における第
3逆止弁35と第4逆止弁36との間の整流出口ポート
12dとの間に、整流配管37が設けられている。
As shown in FIG. 1, the check valve bridge circuit 12 includes a first inlet / outlet port 12a to which the first liquid pipe 11 is connected, and a second inlet / outlet port 12b to which the second liquid pipe 13 is connected. , The inlet pipe 31 and the outlet pipe 32 are connected in parallel with each other, and the inlet pipe 31 is connected to the first and second check valves 33.
34, and a third / fourth check valve 35 in the outlet pipe 32.
・ 36 are provided respectively. The rectifying inlet port 12c between the first check valve 33 and the second check valve 34 in the inlet pipe 31 and the third check valve 35 and the fourth check valve 36 in the outlet pipe 32 are connected. A rectification pipe 37 is provided between the rectification outlet port 12d and the rectification outlet port 12d.

【0030】第1逆止弁33・第2逆止弁34は、それ
ぞれ、第1出入口ポート12a・第2出入口ポート12
b側から整流入口ポート12cに向かう冷媒流れを許容
する方向で入側配管31に各々介設されている。また、
第3逆止弁35・第4逆止弁36は、それぞれ、整流出
口ポート12d側から第1出入口ポート12a・第2出
入口ポート12bに向かう冷媒流れを許容する方向で出
側配管32に各々介設されている。
The first check valve 33 and the second check valve 34 are respectively connected to the first port 12a and the second port 12
The inlet pipes 31 are interposed in a direction allowing the refrigerant flow from the b side toward the rectification inlet port 12c. Also,
The third check valve 35 and the fourth check valve 36 are respectively connected to the outlet pipe 32 in directions allowing the refrigerant flow from the rectifying outlet port 12d toward the first inlet / outlet port 12a / second inlet / outlet port 12b. Has been established.

【0031】一方、前記整流配管37には、整流入口ポ
ート12c側から、二重管より成る過冷却熱交換器38
と、後述する冷暖運転時に減圧機構として機能するよう
に開度制御される第1電動膨張弁39とが順次介設され
ている。そして、整流入口ポート12cと過冷却熱交換
器38の外管入口ポートとの間に、第2電動膨張弁40
が介設された第1インジェクション配管41が設けら
れ、また、過冷却熱交換器38の外管出口ポートを、前
記圧縮機3の吸込ポートに接続する第2インジェクショ
ン配管42が設けられている。
On the other hand, a supercooling heat exchanger 38 composed of a double pipe is connected to the rectification pipe 37 from the rectification inlet port 12c side.
And a first electric expansion valve 39 whose opening is controlled so as to function as a pressure reducing mechanism during a cooling / heating operation, which will be described later. And, between the rectification inlet port 12c and the outer pipe inlet port of the subcooling heat exchanger 38, the second electric expansion valve 40
Is provided, and a second injection pipe 42 that connects an outer pipe outlet port of the subcooling heat exchanger 38 to a suction port of the compressor 3 is provided.

【0032】これにより、第1液管11側から第1逆止
弁33を通して流れる冷媒、あるいは第2液管13側か
ら第2逆止弁34を通して流れる冷媒は、整流入口ポー
ト12c、第1電動膨張弁39と第2電動膨張弁40と
の開度比に応じて一部が第1インジェクション配管41
へと分流する。この分流冷媒は、過冷却熱交換器38通
過時に、整流入口ポート12cから過冷却熱交換器38
の内管を通して整流出口ポート12dへと流れる主冷媒
との間で熱交換を生じ、その後、第2インジェクション
配管42を通して圧縮機3に返流される。
As a result, the refrigerant flowing from the first liquid pipe 11 through the first check valve 33 or the refrigerant flowing from the second liquid pipe 13 through the second check valve 34 is supplied to the rectifying inlet port 12c and the first electric motor. A part of the first injection pipe 41 is partially provided according to the opening ratio between the expansion valve 39 and the second electric expansion valve 40.
Divert to When the divided refrigerant passes through the subcooling heat exchanger 38, it flows from the rectifying inlet port 12c through the subcooling heat exchanger 38.
The heat exchange occurs with the main refrigerant flowing to the rectification outlet port 12d through the inner pipe, and is then returned to the compressor 3 through the second injection pipe 42.

【0033】さらに上記冷媒回路には、前記第1液管1
1と吸込配管6との間にバイパス配管43が設けられ、
このバイパス配管43には一方向電磁弁より成るバイパ
ス開閉弁44が介設されている。
Further, the first liquid pipe 1 is connected to the refrigerant circuit.
A bypass pipe 43 is provided between the intake pipe 1 and the suction pipe 6,
A bypass opening / closing valve 44 composed of a one-way solenoid valve is interposed in the bypass pipe 43.

【0034】上記構成の空気調和機においては、暖房運
転が、除湿用電動膨張弁23を全開状態、また、バイパ
ス開閉弁44を閉にして、第1四路切換弁7および第2
四路切換弁10をそれぞれ図において実線で示す切換位
置に位置させ、この状態で圧縮機3を駆動することによ
って行われる。このとき、第2電動膨張弁40も全閉状
態にしていると、圧縮機3からの吐出冷媒は、図中実線
矢印で示すように、第1四路切換弁7・第1ガス管8・
第2四路切換弁10・ガス側中継管16を通して室内機
2側へ供給され、第1室内熱交換器21・第2室内熱交
換器22を順次通過した後、液側中継管17・第2四路
切換弁10・第1液管11・第1逆止弁33・過冷却熱
交換器38・第1電動膨張弁39・第4逆止弁36・第
2液管13を経て室外熱交換器15に流入し、この室外
熱交換器15を通過後、第2ガス管9・第1四路切換弁
7を経て圧縮機3に返流される。
In the air conditioner having the above-described structure, the heating operation is performed by fully opening the electric expansion valve 23 for dehumidification, closing the bypass on-off valve 44, and setting the first four-way switching valve 7 and the second
The four-way switching valve 10 is located at a switching position indicated by a solid line in the figure, and the compressor 3 is driven in this state. At this time, if the second electric expansion valve 40 is also in the fully closed state, the refrigerant discharged from the compressor 3 will receive the first four-way switching valve 7, the first gas pipe 8,
After being supplied to the indoor unit 2 through the second four-way switching valve 10 and the gas-side relay pipe 16 and sequentially passing through the first indoor heat exchanger 21 and the second indoor heat exchanger 22, the liquid-side relay pipe 17 Outdoor heat via the two-way switching valve 10, the first liquid pipe 11, the first check valve 33, the supercooling heat exchanger 38, the first electric expansion valve 39, the fourth check valve 36, and the second liquid pipe 13. After flowing into the exchanger 15 and passing through the outdoor heat exchanger 15, it is returned to the compressor 3 via the second gas pipe 9 and the first four-way switching valve 7.

【0035】このような暖房サイクルにおいて、第1・
第2室内熱交換器21・22が凝縮器、室外熱交換器1
5が蒸発器として各々機能し、室外から吸収した熱量を
室内へ放出して室内暖房が行われる。この暖房運転時に
は、室外熱交換器15を通過して圧縮機3に返流される
蒸発冷媒が所定の過熱度で維持されるように、第1電動
膨張弁39の開度が制御される。
In such a heating cycle, the first
The second indoor heat exchangers 21 and 22 are a condenser and the outdoor heat exchanger 1
Each of 5 functions as an evaporator and discharges the amount of heat absorbed from the outside to the room to perform room heating. During this heating operation, the opening degree of the first electric expansion valve 39 is controlled so that the evaporated refrigerant returned to the compressor 3 through the outdoor heat exchanger 15 is maintained at a predetermined degree of superheat.

【0036】一方、冷房運転は、上記から第1四路切換
弁7を図において破線で示す切換位置に切換えて圧縮機
3を駆動することにより行われる。このとき、圧縮機3
からの吐出冷媒は、図中破線矢印で示すように、第1四
路切換弁7・室外熱交換器15・第2液管13・第2逆
止弁34・過冷却熱交換器38・第1電動膨張弁39・
第3逆止弁35・第1液管11を順次通過し、さらに、
第2四路切換弁10・液側中継管17から第2室内熱交
換器22・第1室内熱交換器21を順次通過した後、ガ
ス側中継管16・第2四路切換弁10・第1ガス管8・
第1四路切換弁7を経て圧縮機3に返流される。
On the other hand, the cooling operation is performed by driving the compressor 3 by switching the first four-way switching valve 7 to the switching position shown by the broken line in the drawing. At this time, the compressor 3
As shown by the dashed arrow in the figure, the refrigerant discharged from the first heat exchanger 38, the first four-way switching valve 7, the outdoor heat exchanger 15, the second liquid pipe 13, the second check valve 34, the supercooling heat exchanger 38, 1 Electric expansion valve 39
It sequentially passes through the third check valve 35 and the first liquid pipe 11, and further,
After sequentially passing through the second indoor heat exchanger 22 and the first indoor heat exchanger 21 from the second four-way switching valve 10 and the liquid-side relay pipe 17, the gas-side relay pipe 16, the second four-way switching valve 10, and the second 1 gas pipe 8
It is returned to the compressor 3 via the first four-way switching valve 7.

【0037】このような冷房サイクルにおいて、室外熱
交換器15が凝縮器、第2・第1室内熱交換器22・2
1が蒸発器として各々機能し、室内から吸収した熱量を
室外へ放出して室内冷房が行われる。なお、この冷房運
転時には、第1室内熱交換器21を通過して圧縮機3に
返流される蒸発冷媒が所定の過熱度で維持されるよう
に、第1電動膨張弁39の開度が制御される。
In such a cooling cycle, the outdoor heat exchanger 15 is a condenser and the second and first indoor heat exchangers 22.2
Numerals 1 function as evaporators, and the amount of heat absorbed from the room is released to the outside to perform indoor cooling. During the cooling operation, the opening degree of the first electric expansion valve 39 is set so that the evaporated refrigerant passing through the first indoor heat exchanger 21 and returning to the compressor 3 is maintained at a predetermined degree of superheat. Controlled.

【0038】なお、例えば前記の暖房運転時に第2電動
膨張弁40を開弁すると、第1・第2室内熱交換器21
・22で凝縮した高温高圧の液冷媒は、第1液管11・
第1逆止弁33を通過して整流入口ポート12cに達し
たときに、第1電動膨張弁39と第2電動膨張弁40と
の開度比に応じて一部の液冷媒が第1インジェクション
配管41へと分流する。この分流液冷媒は、第2電動膨
張弁40通過時の絞り作用で減圧され低温低圧の気液混
合冷媒となって過冷却熱交換器38の外管に流入する。
When the second electric expansion valve 40 is opened during the heating operation, for example, the first and second indoor heat exchangers 21 are opened.
The high-temperature and high-pressure liquid refrigerant condensed in 22 is the first liquid pipe 11.
When passing through the first check valve 33 and reaching the rectifying inlet port 12c, a part of the liquid refrigerant is subjected to the first injection according to the opening ratio between the first electric expansion valve 39 and the second electric expansion valve 40. The flow branches to the pipe 41. The branched liquid refrigerant is decompressed by the throttling action when passing through the second electric expansion valve 40, becomes a low-temperature low-pressure gas-liquid mixed refrigerant, and flows into the outer pipe of the supercooling heat exchanger 38.

【0039】一方、整流入口ポート12cから整流配管
37を通して流れる主冷媒は、過冷却熱交換器38流入
時には高温高圧のままであり、この主冷媒と上記した分
流冷媒との間で過冷却熱交換器38通過時に熱交換が生
じる。これによって、分流冷媒は吸熱してガス化し、第
2インジェクション配管42を通して圧縮機3に返流さ
れる。主冷媒は温度が低下し、その過冷却度が大きくな
った状態で、第1電動膨張弁39通過時の絞り作用によ
って低温低圧の気液混合冷媒となる。そして、上記のよ
うに過冷却度が大きくなっている分、全体的な冷媒循環
量が多くなり、これによって、暖房能力が向上する。前
記冷房サイクルでの運転時においても、第2電動膨張弁
40を開弁することにより、上記と同様の作用で、より
冷房能力が向上した運転状態とすることができる。
On the other hand, the main refrigerant flowing from the rectifying inlet port 12c through the rectifying pipe 37 remains at a high temperature and a high pressure when flowing into the subcooling heat exchanger 38. Heat exchange occurs when passing through the vessel 38. Thereby, the divided refrigerant absorbs heat and is gasified, and is returned to the compressor 3 through the second injection pipe 42. In a state where the temperature of the main refrigerant decreases and the degree of supercooling increases, the main refrigerant becomes a low-temperature and low-pressure gas-liquid mixed refrigerant by a throttling action when passing through the first electric expansion valve 39. As the degree of supercooling is increased as described above, the overall refrigerant circulation amount is increased, thereby improving the heating capacity. Even during the operation in the cooling cycle, by opening the second electric expansion valve 40, an operation state in which the cooling capacity is further improved can be achieved by the same operation as described above.

【0040】次に、上記第1四路切換弁7を図中実線で
示す切換位置に位置させた暖房サイクルでの除湿運転に
ついて説明する。このとき、第2四路切換弁10は、図
中破線で示す切換位置に切換える。また、第1・第2電
動膨張弁39・40をそれぞれ全閉状態とする一方、バ
イパス開閉弁44を開弁する。そして、除湿用電動膨張
弁23の開度を、これが減圧機構として機能するように
制御する。また、室外ファン14は超低速回転状態、又
は停止状態とする。
Next, the dehumidifying operation in the heating cycle in which the first four-way switching valve 7 is located at the switching position shown by the solid line in the figure will be described. At this time, the second four-way switching valve 10 switches to the switching position indicated by the broken line in the figure. In addition, the first and second electric expansion valves 39 and 40 are fully closed, respectively, while the bypass on-off valve 44 is opened. Then, the opening of the dehumidifying electric expansion valve 23 is controlled so that it functions as a pressure reducing mechanism. Further, the outdoor fan 14 is set to the ultra low speed rotation state or the stop state.

【0041】この運転状態では、圧縮機3からの吐出冷
媒は、図中一点鎖線矢印で示すように、第1四路切換弁
7・第1ガス管8・第2四路切換弁10・液側中継管1
7を経て第2室内熱交換器22に流入する。そして、こ
の熱交換器22通過時に放熱して凝縮した後、除湿用電
動膨張弁23で減圧され、第1室内熱交換器21通過時
に吸熱して蒸発する。その後、ガス側中継管16・第2
四路切換弁10から第1液管11に流入し、この第1液
管11からバイパス配管43・吸込配管6を経て圧縮機
3に返流される。
In this operating state, the refrigerant discharged from the compressor 3 is supplied to the first four-way switching valve 7, the first gas pipe 8, the second four-way switching valve 10, and the liquid as indicated by the dashed line arrow in the figure. Side relay pipe 1
7 and flows into the second indoor heat exchanger 22. Then, after the heat is released and condensed when passing through the heat exchanger 22, the pressure is reduced by the electric expansion valve 23 for dehumidification. After that, the gas side relay pipe 16
The liquid flows into the first liquid pipe 11 from the four-way switching valve 10, and is returned from the first liquid pipe 11 to the compressor 3 via the bypass pipe 43 and the suction pipe 6.

【0042】したがって、前記室内ファン25の作動に
より室内機2内に吸込まれる室内空気は、まず、第1室
内熱交換器21通過時に冷却されて水分が結露し除湿さ
れる。その後、低温になった室内空気は第2室内熱交換
器22通過時に再熱される。この結果、温度を変えずに
湿度を低下させた空気が室内に吹き出され、いわゆる再
熱ドライ運転が行われる。
Therefore, the indoor air sucked into the indoor unit 2 by the operation of the indoor fan 25 is first cooled when passing through the first indoor heat exchanger 21, and the moisture is condensed and dehumidified. Thereafter, the low-temperature indoor air is reheated when passing through the second indoor heat exchanger 22. As a result, air whose humidity has been reduced without changing the temperature is blown into the room, and a so-called reheat dry operation is performed.

【0043】また、上記空気調和機においては、第1四
路切換弁7を図中破線で示す切換位置に位置させた冷房
サイクルでの除湿運転も適宜選択して行うことが可能で
ある。このとき、第2四路切換弁10は、図中実線で示
す切換位置に位置させ、また、第1電動膨張弁39を全
開、第2電動膨張弁40を全閉状態とする。また、バイ
パス開閉弁44は閉弁し、除湿用電動膨張弁23の開度
を、これが減圧機構として機能するように制御する。ま
た、室外ファン14は超低速回転状態、又は停止状態と
する。
Further, in the air conditioner, the dehumidifying operation in the cooling cycle in which the first four-way switching valve 7 is located at the switching position indicated by the broken line in the drawing can be appropriately selected and performed. At this time, the second four-way switching valve 10 is located at the switching position indicated by the solid line in the figure, the first electric expansion valve 39 is fully opened, and the second electric expansion valve 40 is fully closed. Further, the bypass on-off valve 44 is closed, and the opening of the dehumidifying electric expansion valve 23 is controlled so that it functions as a pressure reducing mechanism. Further, the outdoor fan 14 is set to the ultra low speed rotation state or the stop state.

【0044】この運転状態では、圧縮機3からの吐出冷
媒は、図中二点鎖線矢印で示すように、第1四路切換弁
7・第2ガス管9を経て室外熱交換器15に流入する。
このとき、室外ファン14を超低速回転、又は停止状態
にしておくことで、室外熱交換器15通過時の凝縮は抑
えられ、その後、前記冷房運転時と同様の経路を経て第
2室内熱交換器22に流入する。そして、この熱交換器
22通過時に凝縮し、次いで、第1室内熱交換器21通
過時に蒸発する。その後、ガス側中継管16・第2四路
切換弁10・第1ガス管8・第1四路切換弁7・吸込配
管6を経て圧縮機3に返流される。
In this operating state, the refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 15 through the first four-way switching valve 7 and the second gas pipe 9 as shown by a two-dot chain line arrow in the figure. I do.
At this time, by keeping the outdoor fan 14 at a very low speed or in a stopped state, the condensation when passing through the outdoor heat exchanger 15 is suppressed, and thereafter, the second indoor heat exchange is performed through the same path as in the cooling operation. Into the vessel 22. Then, it condenses when passing through the heat exchanger 22 and then evaporates when passing through the first indoor heat exchanger 21. Thereafter, the gas is returned to the compressor 3 via the gas side relay pipe 16, the second four-way switching valve 10, the first gas pipe 8, the first four-way switching valve 7, and the suction pipe 6.

【0045】したがって、この場合も、室内ファン25
の作動により室内機2内に吸込まれる室内空気は、第1
室内熱交換器21通過時に冷却された後、第2室内熱交
換器22通過時に再熱されて、再熱ドライ運転が行われ
る。
Therefore, also in this case, the indoor fan 25
The indoor air sucked into the indoor unit 2 by the operation of
After being cooled when passing through the indoor heat exchanger 21, it is reheated when passing through the second indoor heat exchanger 22, and a reheating dry operation is performed.

【0046】以上のように、本実施形態における空気調
和機においては、室内機2内における空気の通気方向に
沿って上流側に第1室内熱交換器21、下流側に第2室
内熱交換器22を配置しておくことで、第2四路切換弁
10の切換えにより、室内空気を一旦冷却して除湿した
後に再熱する再熱ドライ運転を、冷房サイクルと暖房サ
イクルとのいずれによっても行うことができる。これに
より、例えば外気温等の環境変化に応じて、冷房サイク
ル除湿運転と暖房サイクル除湿運転とを適宜選択するこ
とで、再熱能力や除湿効率の良好な再熱ドライ運転をよ
り安定して行わせることができる。
As described above, in the air conditioner according to the present embodiment, the first indoor heat exchanger 21 is located on the upstream side and the second indoor heat exchanger is located on the downstream side along the direction of air flow in the indoor unit 2. By arranging 22, the reheating dry operation of once cooling, dehumidifying and then reheating the room air by switching the second four-way switching valve 10 is performed by both the cooling cycle and the heating cycle. be able to. Thereby, for example, by appropriately selecting the cooling cycle dehumidifying operation and the heating cycle dehumidifying operation according to environmental changes such as the outside air temperature, the reheating dry operation with good reheating capability and dehumidifying efficiency is more stably performed. Can be made.

【0047】また上記では、暖房サイクル除湿運転時に
おいても、圧縮機3からの高温高圧の吐出冷媒は液側連
絡配管19を通して第2室内熱交換器22に流入し、そ
して、第1室内熱交換器21で蒸発した低温低圧のガス
冷媒が、ガス側連絡配管18を通して室外機1側に送ら
れる。したがって、液側連絡配管19およびガス側連絡
配管18として、従来同様に径の異なる配管を使用して
も、低圧のガス冷媒は径の大きなガス側連絡配管18を
通して室外機1に送られることになるので、従来の暖房
サイクル除湿運転で生じていた連絡配管での低圧損失が
少なくなる。これによって、蒸発温度の上昇が抑えら
れ、除湿効率が向上する。
Further, in the above description, even during the heating cycle dehumidifying operation, the high-temperature and high-pressure discharge refrigerant from the compressor 3 flows into the second indoor heat exchanger 22 through the liquid-side connecting pipe 19, and then the first indoor heat exchange. The low-temperature and low-pressure gas refrigerant evaporated in the unit 21 is sent to the outdoor unit 1 through the gas-side communication pipe 18. Therefore, even if pipes having different diameters are used as the liquid-side communication pipe 19 and the gas-side communication pipe 18 as before, the low-pressure gas refrigerant is sent to the outdoor unit 1 through the large-diameter gas-side communication pipe 18. Therefore, the low pressure loss in the communication pipe caused in the conventional heating cycle dehumidifying operation is reduced. As a result, an increase in the evaporation temperature is suppressed, and the dehumidifying efficiency is improved.

【0048】さらに、上記実施形態においては、図2を
参照して説明したように、第1・第2室内熱交換器21
・22における冷媒流路数、すなわちパス数は、液側連
絡配管19への接続側から、順次、1パス・2パス・3
パスに増加させて、流路断面積を次第に大きくした構成
となっている。したがって、冷房運転時でのこれら熱交
換器21・22での蒸発過程においては、液冷媒中のガ
ス冷媒の増加傾向に合わせて流路断面積が次第に増加す
るので、これら熱交換器21・22通過時の圧力損失も
極力小さく抑えられる。さらに、暖房運転時には、ガス
冷媒から液冷媒への変化に合わせて流路断面積が次第に
減少するので、液冷媒の流速低下が抑えられて、良好な
暖房能力が維持される。
Further, in the above embodiment, as described with reference to FIG. 2, the first and second indoor heat exchangers 21 are provided.
The number of refrigerant flow paths in 22, that is, the number of passes, is 1 pass, 2 passes, and 3 sequentially from the connection side to the liquid side communication pipe 19.
By increasing the number of paths, the cross-sectional area of the flow path is gradually increased. Therefore, in the evaporation process in the heat exchangers 21 and 22 during the cooling operation, the cross-sectional area of the flow path gradually increases in accordance with the increasing tendency of the gas refrigerant in the liquid refrigerant. The pressure loss at the time of passage is also minimized. Further, during the heating operation, the cross-sectional area of the flow path gradually decreases in accordance with the change from the gas refrigerant to the liquid refrigerant, so that a decrease in the flow velocity of the liquid refrigerant is suppressed, and good heating performance is maintained.

【0049】しかも、暖房サイクル除湿運転時や、冷房
サイクル除湿運転時においても、高圧ガス冷媒が第2室
内熱交換器22に流入して凝縮し、その後、第1室内熱
交換器21で蒸発して低圧のガス冷媒に変化するのに合
わせて、特に、第1室内熱交換器21側の流路断面積が
大きいので、この熱交換器21通過時の低圧損失が抑え
られ、これによっても蒸発温度の上昇が抑えられて、除
湿効率を向上させ得るものとなっている。
Further, even in the heating cycle dehumidifying operation or the cooling cycle dehumidifying operation, the high-pressure gas refrigerant flows into the second indoor heat exchanger 22 and condenses, and then evaporates in the first indoor heat exchanger 21. As the gas refrigerant changes to a low-pressure gas refrigerant, the flow path cross-sectional area on the side of the first indoor heat exchanger 21 is particularly large, so that low-pressure loss at the time of passing through the heat exchanger 21 is suppressed, thereby also evaporating. The rise in temperature is suppressed, and the dehumidification efficiency can be improved.

【0050】なお、第1・第2室内熱交換器21・22
がそれぞれクロスフィンチューブ型熱交換器から成り、
これらのパス数を上記のように相違させて流路断面積を
相互に異ならせる構成では、これら熱交換器21・22
の製作・組立に当たり、組立の最終段階で冷媒出入り口
に所望のパス数に応じたヘッダを各々取付ければ、それ
までの工程は第1・第2室内熱交換器21・22で同一
径の伝熱管を用いて互いに同様に行うことができるの
で、製作が容易になる。
The first and second indoor heat exchangers 21 and 22
Each consist of a cross-fin tube type heat exchanger,
In a configuration in which the numbers of these paths are made different from each other as described above to make the flow path cross-sectional areas different from each other, these heat exchangers 21 and 22 are used.
At the final stage of assembly, if headers corresponding to a desired number of passes are attached to the refrigerant inlet / outlet at the final stage of assembly, the process up to that point is performed by the first and second indoor heat exchangers 21 and 22 having the same diameter. Since the operations can be performed in the same manner using a heat tube, the production becomes easy.

【0051】さらに上記実施形態においては、暖房サイ
クル除湿運転時には、第1・第2電動膨張弁39・40
をそれぞれ全閉状態とし、バイパス配管43を通して第
1室内熱交換器21通過後の蒸発冷媒を圧縮機3に返流
させる。したがって、循環冷媒は室外熱交換器15を通
過しないので、外気温の変化に殆ど影響を受けない再熱
ドライ運転を行うことが可能である。図3(a)には、
このような暖房サイクル除湿運転時のモリエル線図を示
している。殆どエネルギー損失のない除湿運転行うこと
ができ、特に、凝縮過程での放熱量を室内空気の再熱量
として充分に確保し得るので、吹出温度の低下を生じさ
せることなく、さらには、例えば温風ドライ運転とし
て、室温調整も可能な除湿運転を行わせることが可能に
なる。
Further, in the above embodiment, during the heating cycle dehumidifying operation, the first and second electric expansion valves 39 and 40 are operated.
Are completely closed, and the evaporated refrigerant after passing through the first indoor heat exchanger 21 is returned to the compressor 3 through the bypass pipe 43. Therefore, since the circulating refrigerant does not pass through the outdoor heat exchanger 15, it is possible to perform a reheat dry operation that is hardly affected by changes in the outside air temperature. In FIG. 3A,
A Mollier chart during such a heating cycle dehumidifying operation is shown. The dehumidifying operation can be performed with almost no energy loss, and in particular, the amount of heat released during the condensation process can be sufficiently secured as the amount of reheat of the indoor air. As the dry operation, a dehumidification operation that can adjust the room temperature can be performed.

【0052】なお、上記実施形態では、インジェクショ
ン配管41・42をさらに備えた空気調和機を例示して
いるが、このような構成を備える空気調和機において
は、前記したバイパス配管43を設けずに、上記のイン
ジェクション配管41・42を通して、第1室内熱交換
器21通過後の蒸発冷媒を圧縮機3に返流させるように
することも可能である。
In the above embodiment, the air conditioner further provided with the injection pipes 41 and 42 is exemplified. However, in the air conditioner having such a configuration, the bypass pipe 43 is not provided. It is also possible to return the evaporated refrigerant after passing through the first indoor heat exchanger 21 to the compressor 3 through the above-mentioned injection pipes 41 and 42.

【0053】すなわち、暖房サイクル除湿運転時に第1
電動膨張弁39を全閉状態にする一方、第2電動膨張弁
40は全開状態とし、第1室内熱交換器21通過後の蒸
発冷媒を、図1において、第1液管11・第1逆止弁3
3から、第1・第2インジェクション配管41・42を
通して圧縮機3に返流させるのである。このときのモリ
エル線図を図3(b)に示している。なお、同図におけ
る破線部分は、運転開始当初に室外熱交換器15に残留
している液冷媒が、第2液管13・第2逆止弁34から
第1・第2インジェクション配管41・42を通して圧
縮機3に吸引される過渡的な状態を示しており、その後
の定常状態においては、実線で示すように、同図(a)
と同様の状態で再熱ドライ運転が継続される。
That is, during the heating cycle dehumidifying operation, the first
While the electric expansion valve 39 is in the fully closed state, the second electric expansion valve 40 is in the fully open state, and the evaporated refrigerant after passing through the first indoor heat exchanger 21 is supplied to the first liquid pipe 11 and the first inverted pipe in FIG. Stop valve 3
3, the refrigerant is returned to the compressor 3 through the first and second injection pipes 41 and 42. A Mollier diagram at this time is shown in FIG. The broken line in the figure indicates that the liquid refrigerant remaining in the outdoor heat exchanger 15 at the beginning of the operation is supplied from the second liquid pipe 13 and the second check valve 34 to the first and second injection pipes 41 and 42. 3A shows a transient state in which the air is sucked into the compressor 3 through the pump. In the subsequent steady state, as shown by a solid line, FIG.
The reheat dry operation is continued in the same state as described above.

【0054】以上にこの発明の具体的な実施形態につい
て説明したが、この発明は上記形態に限定されるもので
はなく、この発明の範囲内で種々変更して実施すること
ができる。例えば上記形態では、暖房サイクル除湿運転
時に、室外熱交換器15を通過させずに室内側から蒸発
冷媒を圧縮機3に返流させるために、バイパス配管43
或いは第1・第2インジェクション配管41・42を設
けた構成を挙げたが、これらの配管を設けずに、暖房サ
イクル除湿運転時に室外熱交換器15を通過させて冷媒
を圧縮機に返流させる構成の空気調和機にも、本発明を
適用することが可能である。
Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. For example, in the above embodiment, during the heating cycle dehumidifying operation, the bypass pipe 43 is used to return the evaporated refrigerant from the indoor side to the compressor 3 without passing through the outdoor heat exchanger 15.
Alternatively, the configuration in which the first and second injection pipes 41 and 42 are provided has been described, but the refrigerant is returned to the compressor by passing through the outdoor heat exchanger 15 during the heating cycle dehumidifying operation without providing these pipes. The present invention can be applied to an air conditioner having a configuration.

【0055】また、上記形態では、第1室内熱交換器2
1と第2室内熱交換器22とにおけるパス数を相互に異
ならせて流路断面積を相違させる構成としたが、例えば
同一のパス数として、第2室内熱交換器22における冷
媒配管(伝熱管)よりも大きな径の配管を第1室内熱交
換器21に用いて構成することもできる。
In the above embodiment, the first indoor heat exchanger 2
Although the number of paths in the first indoor heat exchanger 22 and the number of paths in the second indoor heat exchanger 22 are different from each other, the cross-sectional area of the flow path is different. A pipe having a diameter larger than that of the heat pipe may be used for the first indoor heat exchanger 21.

【0056】また上記形態では、冷暖運転時および除湿
運転時の各減圧機構をそれぞれ電動膨張弁39・23で
構成したが、これらに代えて、例えば開閉弁を並列接続
したキャピラリーチューブで各減圧機構を構成すること
等も可能である。
In the above embodiment, the decompression mechanisms during the cooling / heating operation and the dehumidifying operation are respectively constituted by the electric expansion valves 39 and 23. Instead of these, for example, each decompression mechanism is constituted by a capillary tube having an open / close valve connected in parallel. Can also be configured.

【0057】[0057]

【発明の効果】以上の説明のように、この発明の請求項
1の空気調和機においては、第1ガス管および第1液管
への室内側熱交換器の接続状態を切換える接続状態切換
手段を設けて、冷房サイクル除湿運転と暖房サイクル除
湿運転とのいずれにおいても、第1室内熱交換器を蒸発
器、第2室内熱交換器を凝縮器として機能させて再熱ド
ライ運転を行い得るようになっている。これにより、外
気温等の環境変化に応じて、冷房サイクル除湿運転と暖
房サイクル除湿運転とを適宜選択することで、再熱能力
や除湿効率が良好な再熱ドライ運転を、より安定して行
わせることができる。
As described above, in the air conditioner according to the first aspect of the present invention, the connection state switching means for switching the connection state of the indoor heat exchanger to the first gas pipe and the first liquid pipe. In both the cooling cycle dehumidifying operation and the heating cycle dehumidifying operation, the first indoor heat exchanger can function as an evaporator and the second indoor heat exchanger can function as a condenser to perform a reheat dry operation. It has become. Thereby, by appropriately selecting the cooling cycle dehumidifying operation and the heating cycle dehumidifying operation according to the environmental change such as the outside air temperature, the reheating dry operation with good reheating capability and dehumidifying efficiency is more stably performed. Can be made.

【0058】また、例えば連絡配管を用いて室外機と室
内機とを相互に接続して構成する場合でも、冷房サイク
ルと暖房サイクルとのいずれの除湿運転時にも、第1室
内熱交換器21で蒸発した低圧ガス冷媒がガス側連絡配
管を通して室外機側に送られるようにすることができ
る。したがって、液側連絡配管がガス側連絡配管より小
径であっても、従来の暖房サイクル除湿運転で生じてい
た連絡配管での低圧損失が少なくなり、これによって、
蒸発温度の上昇が抑えられるので除湿効率が向上する。
Further, for example, even when the outdoor unit and the indoor unit are connected to each other using a communication pipe, the first indoor heat exchanger 21 is used in both the cooling cycle and the heating cycle during the dehumidifying operation. The evaporated low-pressure gas refrigerant can be sent to the outdoor unit through the gas-side communication pipe. Therefore, even if the liquid side communication pipe is smaller in diameter than the gas side communication pipe, the low pressure loss in the communication pipe that has occurred in the conventional heating cycle dehumidifying operation is reduced, and
Since the rise in the evaporation temperature is suppressed, the dehumidifying efficiency is improved.

【0059】 さらに上記に加えて請求項1の空気調和
機においては、除湿運転時に蒸発器として機能する側の
第1室内熱交換器における冷媒の流路断面積を第2室内
熱交換器の流路断面積よりも大きくしているので、冷暖
運転時の空調能力が向上すると共に、さらに、除湿運転
時における第1室内熱交換器通過時の低圧損失も抑えら
れて、除湿効率が向上する。
In addition to the above, in the air conditioner according to the first aspect, the flow path cross-sectional area of the refrigerant in the first indoor heat exchanger which functions as an evaporator during the dehumidifying operation is determined by the flow of the second indoor heat exchanger. Since it is larger than the road cross-sectional area, the air conditioning capacity during the cooling / heating operation is improved, and the low pressure loss when passing through the first indoor heat exchanger during the dehumidifying operation is also suppressed, thereby improving the dehumidifying efficiency.

【0060】 請求項の空気調和機においては、各室
内熱交換器のパス数を異ならせて、第1室内熱交換器の
流路断面積が第2室内熱交換器よりも大きくなるように
した構成であり、この場合、クロスフィンチューブ型熱
交換器から成る第1・第2室内熱交換器を製作する際、
組立の最終段階で冷媒出入り口に所望のパス数に応じた
ヘッダを各々取付ければ、それまでの製作組立は第1・
第2室内熱交換器で同一の伝熱管を用いて互いに同様に
行うことができるので、製作が容易になる。
[0060] In the air conditioner according to the second aspect, the number of passes of each indoor heat exchanger is made different so that the flow path cross-sectional area of the first indoor heat exchanger is larger than that of the second indoor heat exchanger. In this case, when manufacturing the first and second indoor heat exchangers composed of the cross-fin tube type heat exchanger,
At the final stage of assembly, if headers corresponding to the desired number of passes are attached to the refrigerant inlet / outlet respectively, the production assembly up to that point is the first
Since the second indoor heat exchanger can perform the same operation using the same heat transfer tube, the production becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態における空気調和機の冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】上記空気調和機における第1室内熱交換器と第
2室内熱交換器との各パス数の説明図である。
FIG. 2 is an explanatory diagram of the number of passes of each of a first indoor heat exchanger and a second indoor heat exchanger in the air conditioner.

【図3】除湿運転時のモリエル線図を示すもので、同図
(a)は上記空気調和機におけるバイパス配管を通して
蒸発冷媒を圧縮機に返流させる暖房サイクル除湿運転時
のモリエル線図、同図(b)は、上記空気調和機におけ
るインジェクション配管を通して蒸発冷媒を圧縮機に返
流させる暖房サイクル除湿運転時のモリエル線図、同図
(c)は従来の冷房サイクル除湿運転時のモリエル線図
である。
FIG. 3 is a Mollier diagram during a dehumidifying operation, and FIG. 3A is a Mollier diagram during a heating cycle dehumidifying operation in which evaporated refrigerant is returned to a compressor through a bypass pipe in the air conditioner; FIG. 2B is a Mollier chart during a heating cycle dehumidifying operation in which the evaporated refrigerant is returned to the compressor through an injection pipe in the air conditioner, and FIG. 2C is a Mollier chart during a conventional cooling cycle dehumidifying operation. It is.

【図4】従来の冷房サイクル除湿運転可能な空気調和機
の冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram of a conventional air conditioner capable of a cooling cycle dehumidifying operation.

【図5】従来の暖房サイクル除湿運転可能な空気調和機
の冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a conventional air conditioner capable of performing a heating cycle dehumidifying operation.

【符号の説明】[Explanation of symbols]

3 圧縮機 7 第1四路切換弁 8 第1ガス管 9 第2ガス管 10 第2四路切換弁(接続状態切換手段) 11 第1液管 13 第2液管 15 室外熱交換器 20 室内側熱交換器 21 第1室内熱交換器 22 第2室内熱交換器 23 除湿用電動膨張弁(絞り手段) 39 第1電動膨張弁(減圧機構) Reference Signs List 3 compressor 7 first four-way switching valve 8 first gas pipe 9 second gas pipe 10 second four-way switching valve (connection state switching means) 11 first liquid pipe 13 second liquid pipe 15 outdoor heat exchanger 20 room Inside heat exchanger 21 First indoor heat exchanger 22 Second indoor heat exchanger 23 Electric expansion valve for dehumidification (throttle means) 39 First electric expansion valve (Decompression mechanism)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−34219(JP,A) 実開 平3−107667(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 F25B 29/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-34219 (JP, A) JP-A-3-107667 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 13/00 F25B 29/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(3)の吐出側と吸込側とが1次
側ポートに各々接続された四路切換弁(7)の2次側ポ
ートに、順次、第1ガス管(8)、室内側熱交換器(2
0)、第1液管(11)、減圧機構(39)、第2液管
(13)、室外熱交換器(15)、第2ガス管(9)を
接続して冷媒循環回路を形成し、上記室内側熱交換器
(20)を第1ガス管(8)側の第1室内熱交換器(2
1)と第1液管(11)側の第2室内熱交換器(22)
とに分割構成すると共に、第1室内熱交換器(21)と
第2室内熱交換器(22)との間に、除湿運転時に除湿
用減圧機構として介在される絞り手段(23)を設け、
圧縮機(3)の吐出冷媒を第1ガス管(8)に供給し第
1・第2室内熱交換器(21)(22)を凝縮器、室外
熱交換器(15)を蒸発器として機能させて暖房運転を
行う一方、圧縮機(3)の吐出冷媒を第2ガス管(9)
に供給し室外熱交換器(15)を凝縮器、第1・第2室
内熱交換器(21)(22)を蒸発器として機能させて
冷房運転を行う空気調和機であって、第1ガス管(8)
と第1液管(11)との間に、圧縮機(3)の吐出冷媒
を第2ガス管(9)に供給して行う冷房サイクル除湿運
転時には、第1液管(11)が第2室内熱交換器(2
2)に、第1室内熱交換器(21)が第1ガス管(8)
に各々接続された上記冷暖運転時の接続状態を保持する
一方、圧縮機(3)の吐出冷媒を第1ガス管(8)に供
給して行う暖房サイクル除湿運転時に、第1ガス管
(8)が第2室内熱交換器(22)に、第1室内熱交換
器(21)が第1液管(11)に各々接続された接続状
態に切換える接続状態切換手段(10)を設け、さらに
第1室内熱交換器(21)における冷媒の流路断面積を
第2室内熱交換器(22)の流路断面積よりも大きくし
ていることを特徴とする空気調和機。
A first gas pipe (8) is connected to a secondary port of a four-way switching valve (7) in which a discharge side and a suction side of a compressor (3) are respectively connected to a primary port. , Indoor heat exchanger (2
0), the first liquid pipe (11), the pressure reducing mechanism (39), the second liquid pipe (13), the outdoor heat exchanger (15), and the second gas pipe (9) are connected to form a refrigerant circulation circuit. The indoor heat exchanger (20) is connected to the first indoor heat exchanger (2) on the first gas pipe (8) side.
1) and the second indoor heat exchanger (22) on the first liquid pipe (11) side
And a throttle means (23) interposed as a dehumidifying depressurizing mechanism during the dehumidifying operation is provided between the first indoor heat exchanger (21) and the second indoor heat exchanger (22).
The refrigerant discharged from the compressor (3) is supplied to the first gas pipe (8), and the first and second indoor heat exchangers (21) and (22) function as condensers, and the outdoor heat exchanger (15) functions as an evaporator. While performing the heating operation, the refrigerant discharged from the compressor (3) is supplied to the second gas pipe (9).
An air conditioner that performs cooling operation by supplying the outdoor heat exchanger (15) as a condenser and the first and second indoor heat exchangers (21) and (22) as evaporators. Tube (8)
During the cooling cycle dehumidification operation in which the refrigerant discharged from the compressor (3) is supplied to the second gas pipe (9) between the first liquid pipe (11) and the first liquid pipe (11), the first liquid pipe (11) is connected to the second liquid pipe (11). Indoor heat exchanger (2
2) The first indoor heat exchanger (21) is connected to the first gas pipe (8).
During the heating cycle dehumidifying operation performed by supplying the refrigerant discharged from the compressor (3) to the first gas pipe (8) while maintaining the connection state at the time of the cooling / heating operation respectively connected to the first gas pipe (8). ) in the second indoor heat exchanger (22), the first indoor heat exchanger (21) is a connection state switching means for switching each connected connection state (10) provided in the first liquid pipe (11), further
The flow path cross-sectional area of the refrigerant in the first indoor heat exchanger (21)
Make it larger than the flow path cross-sectional area of the second indoor heat exchanger (22).
Air conditioner, characterized by that.
【請求項2】 第1室内熱交換器(21)に、冷媒が分
流して流れる互いに並列な冷媒流路を、その合計の流路
断面積が第2室内熱交換器(22)の流路断面積よりも
大きくなるように複数設けていることを特徴とする請求
の空気調和機。
2. A refrigerant flow path, which is parallel to the first indoor heat exchanger (21) and flows through the refrigerant in a divided manner, has a total cross-sectional area of the flow path of the second indoor heat exchanger (22). The air conditioner according to claim 1 , wherein a plurality of the air conditioners are provided so as to be larger than a cross-sectional area.
JP14236298A 1998-05-07 1998-05-07 Air conditioner Expired - Fee Related JP2998739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14236298A JP2998739B2 (en) 1998-05-07 1998-05-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14236298A JP2998739B2 (en) 1998-05-07 1998-05-07 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11325636A JPH11325636A (en) 1999-11-26
JP2998739B2 true JP2998739B2 (en) 2000-01-11

Family

ID=15313627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14236298A Expired - Fee Related JP2998739B2 (en) 1998-05-07 1998-05-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2998739B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079184B1 (en) * 2006-10-30 2008-04-23 ダイキン工業株式会社 Refrigeration unit heat source unit and refrigeration unit
CN101893287B (en) * 2010-08-13 2012-05-23 林开生 Constant-temperature constant-humidity air conditioner with heat pump type dehumidifying device and control system thereof
CN114811754A (en) * 2022-04-01 2022-07-29 北京小米移动软件有限公司 Air conditioner, control method and device thereof and storage medium

Also Published As

Publication number Publication date
JPH11325636A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
KR100437804B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
CN112503680B (en) Full-working-condition efficient fresh air fan for heat recovery of multistage heat pump
CN111237928B (en) Double-temperature double-flash air conditioner refrigerating system
CN111998565A (en) Dual-temperature air conditioning system and control method thereof
EP1806542A1 (en) Air conditioner
KR100688168B1 (en) Heat exchanger of air conditioner
JP2998740B2 (en) Air conditioner
JP2998739B2 (en) Air conditioner
JP2698118B2 (en) Air conditioner
JP4475740B2 (en) Air conditioner and operation method thereof
CN110207417B (en) Air conditioning system
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP2002340436A (en) Multi-chamber air conditioner
KR100480702B1 (en) Multi-type air conditioner for cooling/heating the same time
KR20210063506A (en) Automotive air conditioning system
JP2646709B2 (en) Air conditioner
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
US11629864B2 (en) Multi-type air conditioner
CN220506910U (en) Air conditioning system and air conditioner
JPH0719665A (en) Air conditioner for vehicle
JPH06213531A (en) Heat pump air conditioner for car
WO2023243054A1 (en) Air conditioner
WO2024122060A1 (en) Air conditioner
KR100389555B1 (en) Cooling circuit of multi-air conditioner using capillary tube
KR20230066727A (en) Heat pump system for vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees