JP2998432B2 - Shut-off valve - Google Patents

Shut-off valve

Info

Publication number
JP2998432B2
JP2998432B2 JP17658692A JP17658692A JP2998432B2 JP 2998432 B2 JP2998432 B2 JP 2998432B2 JP 17658692 A JP17658692 A JP 17658692A JP 17658692 A JP17658692 A JP 17658692A JP 2998432 B2 JP2998432 B2 JP 2998432B2
Authority
JP
Japan
Prior art keywords
yoke
valve
core
shut
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17658692A
Other languages
Japanese (ja)
Other versions
JPH0617962A (en
Inventor
正樹 杉山
正樹 山口
徳良 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17658692A priority Critical patent/JP2998432B2/en
Publication of JPH0617962A publication Critical patent/JPH0617962A/en
Application granted granted Critical
Publication of JP2998432B2 publication Critical patent/JP2998432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスの事故を未然に防
ぐガス遮断装置の遮断アクチュエータとして使用される
遮断弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shutoff valve used as a shutoff actuator of a gas shutoff device for preventing a gas accident from occurring.

【0002】[0002]

【従来の技術】一度発生すれば大惨事になる危険性の高
いガス事故を未然に防ぐため従来より種々の安全装置が
利用されていた。近年、ガスの異常使用およびガス漏れ
時等を検出しガスを遮断するガス遮断装置が注目されて
いる。特に近年、ガス配管の容易性、低価格等の優位性
のため、ガスメータに内蔵された流量センサによりガス
の流量を監視しマイコン(マイクロコンピュータ)によ
りガスの使用状態を判断し異常使用及びガス事故の危険
が予測される場合はガスメータに内蔵されたガス遮断弁
によりガスを遮断する電池電源によるマイコン型ガス遮
断装置内蔵ガスメータの有効性が評価されガス安全装置
の中核をなす物として行政の指導の元に「マイコンメー
タ」として全国的な普及が促進されている。マイコン型
ガス遮断装置の遮断弁としては、電池の消耗を抑えるた
め動作の瞬間のみ電流を印加し、その他の場合は永久磁
石またはスプリングによって状態を保持する自己保持型
電磁ソレノイドをアクチュエータとしたガス遮断弁が主
に利用されている。
2. Description of the Related Art Conventionally, various safety devices have been used in order to prevent a gas accident having a high risk of causing a catastrophe once it occurs. 2. Description of the Related Art In recent years, a gas shutoff device that detects abnormal use of gas, gas leakage, and the like and shuts off gas has attracted attention. In particular, in recent years, due to the ease of gas piping and the advantages of low cost, etc., the flow rate of the gas is monitored by a flow sensor built into the gas meter, and the usage status of the gas is judged by a microcomputer (microcomputer). If the danger of the gas is predicted, the effectiveness of the gas meter with a built-in microcomputer type gas shut-off device using a battery power supply that shuts off the gas with the gas shut-off valve built into the gas meter was evaluated, and guidance from the government was given as the core of the gas safety device. Originally, it has been promoted nationwide as a "microcomputer meter." As a shut-off valve of a microcomputer type gas shut-off device, gas is shut off by applying a current only at the moment of operation to suppress battery consumption, and using a self-holding electromagnetic solenoid that holds the state by a permanent magnet or a spring in other cases as an actuator. Valves are mainly used.

【0003】以下図面を参照しながら、上述した従来の
ガス遮断弁の一例に付いて説明する。
An example of the above-described conventional gas shut-off valve will be described below with reference to the drawings.

【0004】図5に示した従来の遮断弁は以下のように
構成されている。弁体69は、弁室82に内設された弁
座70と当接可能に配設された弁ゴム75と、弁ゴム7
5を弁座70との間で挟持可能に配設された弁ゴム受け
76と、弁ゴム75の中心穴にガス封止可能に嵌挿され
弁ゴム押さえ77ととめ輪78にて弁ゴム75に繋止さ
れた磁性材料性のプランジャ63とで形成されている。
そして、スプリング68は弁体69を弁座70に圧接す
る方向に付勢するよう弁ゴム受け76と弁室82に固定
されたフランジ71との間に圧縮して配設されている。
プランジャ63が貫通可能な穴を持ったフランジ71を
挟んで弁体69の反対側にプランジャ63と同軸上にプ
ランジャ63を遊挿された中心孔を持った第一ヨーク6
4と、一端がプランジャ63の他端と当接可能に同軸上
に磁性体製のコアー62を配設している。コアー62は
その他端に永久磁石61の片方の磁極を着接している。
72は第一ヨーク64の中心穴とフランジ71の前記孔
に挿設され内側孔のフランジ71側の一端にプランジャ
63を摺動可能に挿入し、他端内側にコアー62を挿設
されたパイプである。そして、パイプ72は電流を印加
することによりプランジャ63を励磁可能な電磁コイル
67を周設している。第二ヨーク65は永久磁石61の
他極に着接され電磁コイル67の外側にコの字型に形設
され端部を第一ヨーク64に結合されている。フランジ
71とパイプ72の間は第一パッキン73によって、パ
イプ72とコアー62との間は第二パッキン74によっ
て封止されている。
The conventional shut-off valve shown in FIG. 5 is configured as follows. The valve body 69 includes a valve rubber 75 provided so as to be able to contact the valve seat 70 provided in the valve chamber 82 and a valve rubber 7.
5 is disposed between the valve seat 70 and the valve seat 70 so as to be able to be sandwiched between the valve rubber 75 and the valve rubber 75. And a plunger 63 made of a magnetic material and fixed to the plunger 63.
The spring 68 is compressed and arranged between the valve rubber receiver 76 and the flange 71 fixed to the valve chamber 82 so as to urge the valve body 69 in the direction of pressing against the valve seat 70.
A first yoke 6 having a center hole in which the plunger 63 is loosely inserted coaxially with the plunger 63 on the opposite side of the valve body 69 across a flange 71 having a hole through which the plunger 63 can penetrate.
4, and a core 62 made of a magnetic material is disposed coaxially so that one end thereof can contact the other end of the plunger 63. The core 62 has one end of the permanent magnet 61 in contact with the other end.
A pipe 72 is inserted into the center hole of the first yoke 64 and the hole of the flange 71, the plunger 63 is slidably inserted into one end of the inner hole on the flange 71 side, and the core 62 is inserted into the other end inside. It is. The pipe 72 has an electromagnetic coil 67 around which the plunger 63 can be excited by applying a current. The second yoke 65 is attached to the other pole of the permanent magnet 61, is formed in a U-shape outside the electromagnetic coil 67, and has an end coupled to the first yoke 64. The first packing 73 seals between the flange 71 and the pipe 72, and the second packing 74 seals between the pipe 72 and the core 62.

【0005】以上のように構成された遮断弁について、
以下その動作について説明する。弁体69が弁座70と
の間に間隙がある状態を保持している開弁保持状態にお
いては、プランジャ63の一端がコアー62の一端と当
接する。したがって、永久磁石61の起磁力が、コアー
62とプランジャ63と第一ヨーク64と第二ヨーク6
5と永久磁石61とを結ぶ磁気回路84を形成し、吸着
面83においてプランジャ63をコアー62に吸引する
吸引力85を発生し、スプリング68の反力86に抗し
てプランジャ63をコアー62に吸着保持している。
[0005] Regarding the shut-off valve configured as described above,
The operation will be described below. In a valve-opening holding state in which the valve body 69 holds a state where there is a gap between the valve body 69 and one end of the core 62, one end of the plunger 63 abuts. Therefore, the magnetomotive force of the permanent magnet 61 is reduced by the core 62, the plunger 63, the first yoke 64, and the second yoke 6.
5 and a permanent magnet 61 are formed to generate a suction force 85 for attracting the plunger 63 to the core 62 on the attraction surface 83, and the plunger 63 is applied to the core 62 against a reaction force 86 of the spring 68. Holds by suction.

【0006】次に、閉弁動作の瞬間について述べる。電
磁コイル67に永久磁石61による起磁力と逆方向の起
磁力を発生する方向に電流を印加した場合は、電磁コイ
ル67により発生した磁束は前記磁気回路84と同経路
で逆向きの第二磁気回路87を形成する。ここで吸着面
83を通過する磁束は前記磁気回路84と同経路で逆向
きの第二磁気回路87を流れる磁束の加法で示される
が、結果として磁気回路84が減磁され吸引力85が減
少し、ついにはスプリング68の反力86より小さくな
り吸着面83においてプランジャ63をコアー62に吸
着保持していた力のバランスが崩れ、プランジャ63が
反力86に付勢されて移動し弁体69が弁座70に当接
してガスが封止され閉弁状態となる。閉弁保持状態にお
いては、プランジャ63がコアー62から離脱し吸着面
83における磁気抵抗が大きくなっているため、磁気回
路84に発生する磁束が小さく吸引力85も反力86よ
り小さい。従って、弁体69はスプリング68の反力8
6に付勢されて弁座70に圧接された閉弁状態を保持す
る。
Next, the moment of the valve closing operation will be described. When a current is applied to the electromagnetic coil 67 in a direction that generates a magnetomotive force in the direction opposite to the magnetomotive force generated by the permanent magnet 61, the magnetic flux generated by the electromagnetic coil 67 causes the magnetic flux generated by the electromagnetic coil 67 to travel in the same path as the magnetic circuit 84 in the second magnetic field. A circuit 87 is formed. Here, the magnetic flux passing through the attracting surface 83 is shown by the addition of the magnetic flux flowing through the second magnetic circuit 87 in the same path and opposite to the magnetic circuit 84. As a result, the magnetic circuit 84 is demagnetized and the attractive force 85 decreases. Eventually, the force becomes smaller than the reaction force 86 of the spring 68 and the balance of the force holding and holding the plunger 63 to the core 62 on the suction surface 83 is lost, and the plunger 63 moves by being urged by the reaction force 86 to move, and the valve body 69 moves. Comes into contact with the valve seat 70 to seal the gas and the valve is closed. In the valve-closed holding state, the plunger 63 is separated from the core 62 and the magnetic resistance at the attraction surface 83 is increased, so that the magnetic flux generated in the magnetic circuit 84 is small and the attraction force 85 is smaller than the reaction force 86. Therefore, the valve body 69 is provided with the reaction force 8 of the spring 68.
6 and is kept in the closed state pressed against the valve seat 70.

【0007】図6は従来の遮断弁の他の例の断面図を示
す物である。図6のガス遮断弁は図5に示した従来例と
ほぼ同一であり、図5に示した従来例に第三ヨーク66
が追加された物である。円管状の第三ヨーク66の中心
穴にはコアー62を入れたパイプ72の端が挿入され、
端部がパイプ72の端の拡管部に係止されて第二ヨーク
65と非接触の状態を保つように構成されている。
FIG. 6 is a sectional view showing another example of the conventional shut-off valve. The gas shut-off valve of FIG. 6 is substantially the same as the conventional example shown in FIG.
Is added. The end of the pipe 72 containing the core 62 is inserted into the center hole of the third yoke 66 having a tubular shape.
The end is locked to the expanded portion at the end of the pipe 72 so that the end is kept out of contact with the second yoke 65.

【0008】以上のように構成されたガス遮断弁の動作
は図5に示したガス遮断弁と略同一であるため、第三ヨ
ーク66の機能を中心に説明するが、ここで予め磁気回
路を決定する要因の一つである磁気抵抗について説明し
ておく。磁気回路中の磁気抵抗は磁気ギャップ、つまり
磁束が通過する非磁性体の距離に比例して大きくなる。
また前記図5において電磁コイル67に永久磁石61に
よる磁気回路84の磁束と逆方向の磁束を発生する方向
に電流を印加した場合は、前述のように発生した磁束は
前記磁気回路84と同経路で逆向きの第二磁気回路87
を形成するが、この時永久磁石61は非磁性体と同様磁
気ギャップとして働き、電磁コイル67が生成する磁束
の流れを阻害する磁気抵抗とみなされる。
The operation of the gas shut-off valve constructed as described above is substantially the same as that of the gas shut-off valve shown in FIG. 5, so that the function of the third yoke 66 will be mainly described. The magnetic resistance, which is one of the factors to be determined, will be described. The magnetic resistance in the magnetic circuit increases in proportion to the magnetic gap, that is, the distance of the nonmagnetic material through which the magnetic flux passes.
In addition, when a current is applied to the electromagnetic coil 67 in a direction that generates a magnetic flux in a direction opposite to the magnetic flux of the magnetic circuit 84 by the permanent magnet 61 in FIG. 5, the generated magnetic flux passes through the same path as the magnetic circuit 84 as described above. And the second magnetic circuit 87 in the opposite direction
At this time, the permanent magnet 61 acts as a magnetic gap similarly to the nonmagnetic material, and is regarded as a magnetic resistance that obstructs the flow of the magnetic flux generated by the electromagnetic coil 67.

【0009】図6の遮断弁では永久磁石61の起磁力は
前記図5の遮断弁と同様に磁気回路84を形成するが、
第三ヨーク66を設置した事によりコアー62と第三ヨ
ーク66と第二ヨーク65と永久磁石61とを結ぶ第二
磁気回路87を形成する。
In the shut-off valve shown in FIG. 6, the magnetomotive force of the permanent magnet 61 forms a magnetic circuit 84 similarly to the shut-off valve shown in FIG.
By providing the third yoke 66, a second magnetic circuit 87 connecting the core 62, the third yoke 66, the second yoke 65, and the permanent magnet 61 is formed.

【0010】次に電磁コイル67に永久磁石61による
起磁力と逆方向の起磁力を発生する方向に電流を印加し
た場合を説明する。この場合、永久磁石61は前述のよ
うに電磁コイル67が生成する磁束に対しては磁気ギャ
ップとして働き、磁束の流れを阻害する磁気抵抗とみな
されるが、第三ヨーク66を設置した事によりコアー6
2と第二ヨーク65との磁気ギャップは小さくなってい
る。具体的にはコアー62と第三ヨーク66間及び第三
ヨーク66と第二ヨーク65間のギャップ距離の長さの
和が永久磁石61の厚みより小さくなっている。よって
コアー62から永久磁石61を通り第二ヨーク65に至
る経路より、コアー62から第三ヨーク66を経て第二
ヨーク65に至る経路の方が磁気抵抗が小さくなる。そ
の結果、電磁コイル67に電流を印加する事によって生
成した磁束は、前記図5の遮断弁の磁気回路84とは異
なり、コアー62から第三ヨーク66を経て第二ヨーク
65に至る磁気バイパス経路に流れ、永久磁石61の起
磁力が形成する磁気回路84と逆方向に第三磁気回路8
8を形成する。加えて流れる磁束量も第三ヨーク66の
設置により磁気バイパス経路が形成され第三磁気回路8
8全体の磁気抵抗が下がるため、前記図5の遮断弁の磁
気回路84を流れる磁束量より増加する。
Next, a case where a current is applied to the electromagnetic coil 67 in a direction that generates a magnetomotive force in a direction opposite to that of the permanent magnet 61 will be described. In this case, the permanent magnet 61 acts as a magnetic gap with respect to the magnetic flux generated by the electromagnetic coil 67 as described above, and is regarded as a magnetic resistance that obstructs the flow of the magnetic flux. 6
The magnetic gap between the second yoke 65 and the second yoke 65 is small. Specifically, the sum of the gap distances between the core 62 and the third yoke 66 and between the third yoke 66 and the second yoke 65 is smaller than the thickness of the permanent magnet 61. Therefore, the magnetic resistance of the path from the core 62 to the second yoke 65 via the third yoke 66 is smaller than that of the path from the core 62 to the second yoke 65 through the permanent magnet 61. As a result, the magnetic flux generated by applying a current to the electromagnetic coil 67 is different from the magnetic circuit 84 of the shutoff valve shown in FIG. 5 in that the magnetic bypass path from the core 62 to the second yoke 65 via the third yoke 66 is provided. Flows in the direction opposite to the magnetic circuit 84 formed by the magnetomotive force of the permanent magnet 61.
8 is formed. In addition, a magnetic bypass path is formed by the provision of the third yoke 66 by the provision of the third yoke 66, so that the third magnetic circuit 8
Since the magnetic resistance of the whole 8 decreases, the magnetic flux amount increases from the magnetic flux flowing through the magnetic circuit 84 of the shut-off valve in FIG.

【0011】以上の理由により前記図5の遮断弁に対し
て、第三ヨーク66を設置した図6の遮断弁は永久磁石
61の起磁力により形成する磁気回路84の磁束、即ち
吸着面83においてプランジャ63をコアー62に吸引
しスプリング68の反力86に抗して弁体69を吸着保
持する吸引力85を、打ち消す消磁力が強くなる。
For the above reasons, the shut-off valve of FIG. 6 in which the third yoke 66 is installed is different from the shut-off valve of FIG. 5 in that the magnetic flux of the magnetic circuit 84 formed by the magnetomotive force of the permanent magnet 61, that is, the attracting surface 83 The demagnetizing force for canceling the attraction force 85 that attracts the plunger 63 to the core 62 and attracts and holds the valve body 69 against the reaction force 86 of the spring 68 increases.

【0012】ここで前記図5の遮断弁及び図6の遮断弁
の動作特性を、図10に示した印加電流と弁体に働く吸
引力の関係を用いて表す。
Here, the operating characteristics of the shut-off valve shown in FIG. 5 and the shut-off valve shown in FIG. 6 will be described using the relationship between the applied current and the attraction force acting on the valve shown in FIG.

【0013】図10において横軸は永久磁石61と逆方
向の起磁力を発生する方向を正とした印加電流、縦軸は
吸着面83における吸引力85であり、Fbは図5の遮
断弁の吸引力特性曲線、Fcは図6の遮断弁の吸引力特
性曲線、fbsp、fcsp、及びFb(0)、Fc
(0)及び動作点b、動作点c、は各々図5図6の遮断
弁のスプリング反力、永久磁石の起磁力による吸引力、
そして動作点を表している。Fb、Fcは係数が磁気抵
抗の逆数に比例した形で与えられる印加電流の二次関数
で表される。また遮断弁を閉弁動作させる印加電流を動
作電流i(0)とすると、動作点b、動作点cはFb、
Fbとi=i(0)との交点で与えらる。
In FIG. 10, the abscissa represents the applied current with the direction in which the magnetomotive force is generated in the direction opposite to that of the permanent magnet 61 being positive, the ordinate represents the attraction force 85 on the attraction surface 83, and Fb represents the shut-off valve of FIG. The suction force characteristic curve, Fc, is the suction force characteristic curve of the shut-off valve in FIG. 6, fbsp, fcsp, and Fb (0), Fc.
(0) and the operating point b and the operating point c are respectively the spring reaction force of the shut-off valve in FIG. 5 and FIG.
And it represents the operating point. Fb and Fc are represented by quadratic functions of the applied current whose coefficients are proportional to the reciprocal of the magnetoresistance. When the applied current for closing the shut-off valve is an operating current i (0), the operating point b and the operating point c are Fb,
It is given at the intersection of Fb and i = i (0).

【0014】まず図5の遮断弁の吸引力特性を説明す
る。電磁コイル67に電流が印加されない状態では、吸
着面83において吸引力Fb(0)が働きfbspの反
力を備えたスプリング68が備えられ、その差分ΔFb
(0)の吸着保持力で弁体69を保持し開弁状態を維持
している。遮断弁を閉弁動作させる動作電流i(0)が
電磁コイル67に印加されると、電磁コイル67の起磁
力により吸着面83における吸引力は動作点bまで減少
しスプリング68の反力fbspと等しくなり、弁体6
9の保持が不能となりスプリング68により離脱し閉弁
される。
First, the suction force characteristics of the shut-off valve shown in FIG. 5 will be described. In a state where no current is applied to the electromagnetic coil 67, a suction force Fb (0) acts on the suction surface 83 to provide a spring 68 having a reaction force of fbsp, and the difference ΔFb
The valve body 69 is held by the suction holding force of (0), and the valve opening state is maintained. When an operating current i (0) for closing the shut-off valve is applied to the electromagnetic coil 67, the attractive force at the attracting surface 83 decreases to the operating point b due to the magnetomotive force of the electromagnetic coil 67, and the reaction force fbsp of the spring 68 decreases. Equal, valve element 6
9 cannot be held, and is released by the spring 68 and closed.

【0015】続いて図6の遮断弁の吸引力特性を説明す
ると、前述のように電磁コイル67に電流が印加されな
い状態では、吸引力Fc(0)が働きfscpの反力を
備えたスプリング68が備えられ、その差分ΔFc
(0)の吸着保持力で弁体69を保持し開弁状態を維持
され、動作電流i(0)が印加されると、吸引力は動作
点cまで減少しスプリング68の反力fcspと等しく
なり、弁体69の保持が不能となりスプリング68によ
り離脱し閉弁される。
Next, the attraction force characteristic of the shut-off valve shown in FIG. 6 will be described. As described above, when no current is applied to the electromagnetic coil 67, the attraction force Fc (0) acts and a spring 68 having a reaction force of fscp. And the difference ΔFc
When the valve body 69 is held by the suction holding force of (0) to maintain the valve open state and the operating current i (0) is applied, the suction force decreases to the operating point c and becomes equal to the reaction force fcsp of the spring 68. As a result, the holding of the valve body 69 becomes impossible, and the valve body 69 is detached and closed by the spring 68.

【0016】ここで図5の遮断弁と図6の遮断弁の吸引
力特性を比較する。図6の遮断弁では第三ヨーク66を
設置すると前述のように第二磁気回路87を形成され、
磁気回路84に流れる磁束量が減少するため吸引力Fc
(0)はFb(0)に対して小さくなる。一方第三ヨー
ク66の設置により磁気バイパス経路が形成されて電磁
コイル67が形成する第三磁気回路88の磁気抵抗は下
がるため、図6の遮断弁の吸引力特性曲線Fcの傾きは
図5の遮断弁の吸引力特性曲線Fbの傾きより大きくな
る。スプリング68の反力86の大きさは動作点cより
fcspとなり図5の遮断弁のfbspよりも小さくな
る。そして吸引力Fc(0)とスプリング反力fcsp
の差分で現せれる弁体69の吸着保持力ΔFc(0)は
図5の遮断弁の吸着保持力ΔFb(0)より大きくな
る。
Here, the suction force characteristics of the shut-off valve of FIG. 5 and the shut-off valve of FIG. 6 will be compared. In the shut-off valve of FIG. 6, when the third yoke 66 is installed, the second magnetic circuit 87 is formed as described above,
Attraction force Fc because the amount of magnetic flux flowing through the magnetic circuit 84 decreases.
(0) is smaller than Fb (0). On the other hand, since the magnetic bypass is formed by the provision of the third yoke 66 and the magnetic resistance of the third magnetic circuit 88 formed by the electromagnetic coil 67 decreases, the slope of the attraction force characteristic curve Fc of the shutoff valve in FIG. It becomes larger than the slope of the suction force characteristic curve Fb of the shutoff valve. The magnitude of the reaction force 86 of the spring 68 becomes fcsp from the operating point c and becomes smaller than fbsp of the shutoff valve in FIG. Then, the suction force Fc (0) and the spring reaction force fcsp
Is greater than the suction holding force ΔFb (0) of the shut-off valve in FIG.

【0017】ここでつけ加えるとガス遮断装置の遮断ア
クチュエータとして使用されるガス遮断弁は、外部から
の衝撃による閉弁誤作動を防止するために、永久磁石に
よる吸引力とスプリング68の反力86との差で表され
る吸着保持力ΔFが可能な限り大きい方がよい。即ち吸
引力特性曲線の傾きはできるだけ大きくつまり磁気抵抗
はできるだけ小さい方がよい。またマイコン型ガス遮断
装置内蔵ガスメータの電源が電池で容量が有限である事
を考慮すると、吸着保持力ΔFを大きく取るための動作
電流を大きく取り動作点を下げる事は好ましくない。
In addition, the gas shut-off valve used as a shut-off actuator of the gas shut-off device is provided with a suction force by a permanent magnet and a reaction force 86 of the spring 68 in order to prevent a valve closing malfunction due to an external impact. It is better that the suction holding force ΔF expressed by the difference That is, it is better that the slope of the attractive force characteristic curve is as large as possible, that is, the magnetic resistance is as small as possible. Considering that the power supply of the gas meter with the built-in microcomputer type gas shut-off device is a battery and has a finite capacity, it is not preferable to increase the operating current for increasing the suction holding force ΔF and lower the operating point.

【0018】図7は特開昭63−76794号公報、図
8は特開昭63−186081号公報における更なる他
の従来例の遮断弁の断面図であるが、図7ではコアー6
2と永久磁石61の間に第三ヨーク90を設置し、図8
の従来例においては通常非磁性体であるパイプ72を磁
性体で形成し磁気バイパス経路の磁気抵抗の低減を図っ
ている。
FIG. 7 is a cross-sectional view of another conventional shut-off valve disclosed in JP-A-63-76794, and FIG. 8 is a cross-sectional view of another conventional shut-off valve disclosed in JP-A-63-186081.
A third yoke 90 is installed between the second magnet 2 and the permanent magnet 61, and FIG.
In the conventional example, the pipe 72, which is usually a non-magnetic material, is formed of a magnetic material to reduce the magnetic resistance of the magnetic bypass path.

【0019】最後の従来例として特開昭63−1258
77号公報を紹介する。図9は第三ヨーク91を設置し
た従来の遮断弁の他の実施例の断面を示す図である。図
9の例においては第三ヨーク91は円管形状を成しコア
ー62と永久磁石61を内設したパイプ72の外周に内
周部を内設し、かつ端部が第二ヨーク65着設される構
造となっている。この構成では第二ヨーク65と第三ヨ
ーク91間の磁気ギャップを小さくして磁気バイパス経
路の磁気抵抗の低減を図っている。
The last conventional example is disclosed in Japanese Patent Application Laid-Open No. 63-1258.
No. 77 is introduced. FIG. 9 is a diagram showing a cross section of another embodiment of the conventional shut-off valve in which the third yoke 91 is installed. In the example of FIG. 9, the third yoke 91 has a circular tube shape, an inner peripheral portion is provided on the outer periphery of a pipe 72 in which a core 62 and a permanent magnet 61 are provided, and an end portion is provided with a second yoke 65. It is a structure that is performed. In this configuration, the magnetic gap between the second yoke 65 and the third yoke 91 is reduced to reduce the magnetic resistance of the magnetic bypass path.

【0020】[0020]

【発明が解決しようとする課題】しかしながら、前記従
来の構成では、第三ヨークを設定し磁気バイパス経路を
設け第三磁気回路全体の磁気抵抗を低減し、電磁コイル
に電流を印加して発生させる磁束量を増大させている
が、磁気バイパス経路内に磁気ギャップを設けていたの
で磁気バイパス経路自体に大きな磁気抵抗が存在し第三
磁気回路の磁気抵抗低減効果が不十分で、結果として電
磁コイルが発生させる磁束量が不足し、永久磁石の起磁
力による磁束、即ち弁体を吸着保持する吸引力を打ち消
す消磁力が不足し、前記吸着保持力を大きくとれず外部
からの衝撃による閉弁誤作動の防止が不十分であると言
う課題があった。
However, in the above-described conventional configuration, the third yoke is provided, a magnetic bypass path is provided, the magnetic resistance of the entire third magnetic circuit is reduced, and a current is generated by applying a current to the electromagnetic coil. Although the amount of magnetic flux is increased, since a magnetic gap is provided in the magnetic bypass path, a large magnetic resistance exists in the magnetic bypass path itself, and the effect of reducing the magnetic resistance of the third magnetic circuit is insufficient. Is insufficient, the magnetic flux due to the magnetomotive force of the permanent magnet, that is, the demagnetizing force for canceling the attraction force for attracting and holding the valve element is insufficient. There was a problem that the prevention of operation was insufficient.

【0021】即ち図6の従来例の遮断弁ではコアー62
と第三ヨーク66間に非磁性体であるパイプ72が存在
し、また第二ヨーク65と第三ヨーク66の間には間隙
が存在し、各々磁気ギャップが形成して大きな磁気抵抗
となっており、また図7の従来例の遮断弁においても第
三ヨーク90とコアー62は当接する構造となってお
り、その間の磁気抵抗は極めて小さいが、第二ヨーク6
5と第三ヨーク90の間には間隙が存在し、大きな磁気
ギャップ、磁気抵抗となっている。
That is, in the conventional shut-off valve shown in FIG.
A non-magnetic pipe 72 exists between the first yoke 66 and the third yoke 66, and a gap exists between the second yoke 65 and the third yoke 66. Also, in the conventional shut-off valve shown in FIG. 7, the third yoke 90 and the core 62 are in contact with each other, and the magnetic resistance therebetween is extremely small.
There is a gap between the fifth yoke 90 and the third yoke 90, resulting in a large magnetic gap and magnetic resistance.

【0022】図8の従来例の遮断弁でも同様に磁気バイ
パス経路を形成する磁性体製のパイプ72と第二ヨーク
65の間に空隙が存在し、図9の従来例の遮断弁では第
二ヨーク65と第三ヨーク91は当接しているが第三ヨ
ーク91とコアー62の間に非磁性体であるパイプ72
が存在し、各々大きな磁気抵抗となっている。
Similarly, in the conventional shut-off valve shown in FIG. 8, there is a gap between the magnetic pipe 72 forming the magnetic bypass path and the second yoke 65, and in the conventional shut-off valve shown in FIG. The yoke 65 and the third yoke 91 are in contact with each other, but a pipe 72 made of a nonmagnetic material is provided between the third yoke 91 and the core 62.
Exist, and each has a large magnetic resistance.

【0023】また前記の課題に加えて前記従来例の構造
では、永久磁石61の厚み、コアー62の寸法精度、パ
イプ72の肉厚長さ偏心度などの単品部材の寸法精度及
びその組立寸法精度のばらつきの影響を受け第三ヨーク
66との相対位置がばらつき、前記磁気ギャップの間隙
が安定せず、そのため磁気バイパス経路の磁気抵抗がば
らつく。よって第二磁気回路87の磁気抵抗がばらつ
き、磁気回路84を流れる永久磁石61の起磁力による
磁束量がばらつき、前記の永久磁石61による吸引力F
c(0)がばらつく。更に第三磁気回路88の磁気抵抗
もばらつくため、前記遮断弁の吸引力特性曲線Fcの傾
きもばらつき、このため図10において動作電流i
(0)での動作点cが変動し、ばらつくことになる。つ
まり、この動作ばらつきを吸収し所定の動作電流i
(0)で閉弁作動をするため適用するスプリング68の
荷重反力fcspがばらつく事となる。結果として、こ
の遮断弁を製造するにあたり、遮断弁の動作ばらつきを
吸収する荷重fcspの異なったスプリング68を多種
類必要となり、またその調整に要する工数も多く必要と
する課題があった。
In addition to the above-mentioned problems, in the structure of the conventional example, the dimensional accuracy of a single component such as the thickness of the permanent magnet 61, the dimensional accuracy of the core 62, the wall thickness eccentricity of the pipe 72, and the assembly dimensional accuracy thereof. , The relative position with respect to the third yoke 66 varies, and the gap of the magnetic gap is not stabilized, so that the magnetic resistance of the magnetic bypass path varies. Therefore, the magnetic resistance of the second magnetic circuit 87 fluctuates, and the amount of magnetic flux due to the magnetomotive force of the permanent magnet 61 flowing through the magnetic circuit 84 fluctuates.
c (0) varies. Further, since the magnetic resistance of the third magnetic circuit 88 varies, the slope of the attraction force characteristic curve Fc of the shut-off valve also fluctuates.
The operating point c at (0) fluctuates and varies. That is, this operation variation is absorbed and the predetermined operation current i
At (0), the load reaction force fcsp of the spring 68 applied for performing the valve closing operation varies. As a result, in manufacturing this shut-off valve, there are problems that various types of springs 68 having different loads fcsp are required to absorb variations in the operation of the shut-off valve, and that a large number of man-hours are required for the adjustment.

【0024】本発明はかかる従来の課題に鑑み、弁体の
吸着保持力が強いため耐衝撃強度が強く、磁気ギャップ
つまり磁気抵抗のばらつきも少なく、結果として遮断弁
の吸引力特性、動作特性のばらつきが小さくなり、この
遮断弁の製造調整工程に要する工数も少なく、簡易な構
成のため安価で実現可能な遮断弁を提供するものであ
る。
In view of the above-mentioned conventional problems, the present invention has a strong impact holding strength due to a strong suction holding force of the valve body, has a small impact resistance, and has a small variation in a magnetic gap, that is, a magnetic resistance. An object of the present invention is to provide a shut-off valve which is less in variability, requires less man-hours for the production adjustment process of the shut-off valve, and can be realized at a low cost with a simple configuration.

【0025】[0025]

【課題を解決するための手段】上記目的を達成するため
に本発明遮断弁の第一手段は弁座と当接可能に配設され
た弁体と、その弁体を前記弁座に圧接する方向に付勢す
るスプリングと、一端に前記弁体を配接した磁性体製の
プランジャと、そのプランジャを遊挿する穴を持った第
一ヨークと、前記プランジャと略同一軸上に配設し、前
記プランジャを吸着するコアー及びコアーに接合した永
久磁石と、前記プランジャを遊挿し、励磁可能な電磁コ
イルと、前記第一ヨークに結合し前記永久磁石から電磁
コイルの外側を通り前記プランジャに至る磁気回路を形
成する第二ヨークと、一端部が少なくとも前記コアーの
外周面に摺動して当接し、他端部が前記第二ヨークに当
接した第三ヨークを備えたものである。
In order to achieve the above-mentioned object, a first means of the shut-off valve according to the present invention comprises a valve element disposed so as to be in contact with a valve seat, and pressing the valve element against the valve seat. And a first yoke having a hole into which the plunger is loosely inserted, and a first yoke having a hole through which the plunger is loosely inserted, and a plunger disposed substantially coaxially with the plunger. A core for adsorbing the plunger, a permanent magnet joined to the core, an electromagnetic coil capable of loosely inserting the plunger and being excitable, and connecting to the first yoke from the permanent magnet to the plunger through the outside of the electromagnetic coil. A second yoke forming a magnetic circuit; and a third yoke having one end sliding at least against the outer peripheral surface of the core and the other end abutting on the second yoke.

【0026】また上記目的を達成するために本発明遮断
弁の第二手段は上記第一手段に加えて、第三ヨークの内
周部に接触させて第三ヨークにコアーと永久磁石を内装
したものである。
In order to achieve the above object, the second means of the shut-off valve of the present invention, in addition to the first means, has a core and a permanent magnet provided inside the third yoke by being brought into contact with the inner periphery of the third yoke. Things.

【0027】さらに上記目的を達成するために本発明遮
断弁の第三手段は上記第二手段に加えて、第三ヨークは
内周部に接触させて外径の異なるコアー及び永久磁石を
設け、かつ内周部に段差を設けて異なる内径を形成し、
大径側の内径部の軸方向の長さを、コアーと永久磁石の
当接する平面と前記段差との間に空隙が形成されるよう
長く設定したものである。
In order to achieve the above object, the third means of the shut-off valve of the present invention, in addition to the second means, further comprises a third yoke provided with a core and a permanent magnet having different outer diameters in contact with the inner peripheral portion, And a step is provided in the inner peripheral part to form a different inner diameter,
The axial length of the inner diameter portion on the large diameter side is set long so that a gap is formed between the plane where the core and the permanent magnet abut and the step.

【0028】[0028]

【作用】上記第一手段によれば、第三ヨークの一端部が
コアーの外周面に摺動して接合し、他端部が第二ヨーク
に当接するよう形設されているため、第三ヨークが第二
ヨークまたはコアーとの間に磁気ギャップを設けたよう
に構成された遮断弁と比較して、コアーから第三ヨーク
を経て第二ヨークに至る磁気バイパス経路の磁気抵抗が
極めて小さくなる。
According to the first means, one end of the third yoke is slidably joined to the outer peripheral surface of the core and the other end is formed so as to abut the second yoke. Compared to a shut-off valve in which the yoke has a magnetic gap between the second yoke and the core, the magnetic resistance of the magnetic bypass path from the core to the second yoke via the third yoke is extremely small. .

【0029】また、コアーに周設される第三ヨークの端
部がコアーの外周面と摺動して内接し、かつ第三ヨーク
の他端部が第二ヨークに当接するよう形設されているた
め、コアーと第三ヨーク間及び第三ヨークと第二ヨーク
間に磁気ギャップが存在しないため磁気抵抗のばらつき
も少ない。また第三ヨークは板金加工を施した鉄板など
で成形可能で、第二ヨーク及びコアーに直接接するため
第二ヨークとの相対位置を一定に保つための係止部材が
不要であり、簡易な構成で実現が可能である。
The end of the third yoke provided around the core is slidably inscribed on the outer peripheral surface of the core, and the other end of the third yoke is formed so as to abut the second yoke. Therefore, since there is no magnetic gap between the core and the third yoke and between the third yoke and the second yoke, variations in magnetic resistance are small. The third yoke can be formed from an iron plate or the like subjected to sheet metal processing. Since the third yoke is in direct contact with the second yoke and the core, there is no need for a locking member for maintaining a constant relative position with respect to the second yoke. It can be realized by:

【0030】[0030]

【実施例】以下、本発明の一実施例のガス遮断弁につい
て、図面を参照しながら説明する。図1は本発明の第1
の実施例におけるガス遮断弁の断面図を示すもので以下
のように構成されている。弁体9は、弁室22に内設さ
れた弁座10と当接可能に配設された弁ゴム15と、弁
ゴム15を弁座10との間で狭持可能に配設された弁ゴ
ム受け16と、弁ゴム15の中心穴にガス封止可能に嵌
挿され弁ゴム押さえ17ととめ輪18にて弁ゴム15に
繋止された磁性材料性のプランシャ3とで形成されてい
る。そして、スプリング8は弁体9を弁座10に圧接す
る方向に付勢するよう弁ゴム受け16と弁室22に固定
されたフランジ11との間に圧縮して配設されている。
フランジ11はほぼ中央にプランジャ3が貫通可能な穴
を有する。フランジ11を挟んで弁体9の反対側にプラ
ンジャ3と同軸上にプランジャ3を遊挿された中心穴を
持った第一ヨーク4と、一端がプランジャ3の他端と当
接可能に同軸上に磁性体製のコアー2を配設している。
コアー2はその他端に永久磁石1の片方の磁極を着接し
ている。パイプ12は第一ヨーク4の中心穴とフランジ
11の前記穴に挿設され、内側穴のフランジ11側の一
端にプランジャ3を摺動可能に挿入し、他端内側に前記
コアー2を挿設している。また、パイプ12は電流を印
加することによりプランジャ3を励磁可能な電磁コイル
7を周設している。第二ヨーク5は永久磁石1の他極に
着接され電磁コイル7の外側にコの字型に形設され端部
を第一ヨーク4に結合されている。円管状の第三ヨーク
6は、パイプ12のコアー2を挿設された端の内周部に
周設され、外径はパイプ12の前記端部における内径と
ほぼ等しい。ここで第三ヨーク6の内径は挿設されたコ
アーの外径と等しく取られ中心穴の内周部がコアー2の
外周部と摺動可能に内接し、かつ端部が第二ヨーク5に
当接するよう形設されている。フランジ11とパイプ1
2の間は第一パッキン13によって、パイプ12とコア
ー2との間は第二パッキン14によってガス封止されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a gas shut-off valve according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the first embodiment of the present invention.
1 is a cross-sectional view of a gas shut-off valve according to an embodiment of the present invention, which is configured as follows. The valve element 9 includes a valve rubber 15 disposed so as to be in contact with the valve seat 10 provided in the valve chamber 22, and a valve disposed so as to be able to hold the valve rubber 15 between the valve seat 10. It is formed of a rubber receiver 16 and a plunger 3 made of a magnetic material, which is fitted into the center hole of the valve rubber 15 in a gas-sealable manner and is fixed to the valve rubber 15 by a valve rubber retainer 17 and a stop ring 18. I have. The spring 8 is compressed and disposed between the valve rubber receiver 16 and the flange 11 fixed to the valve chamber 22 so as to urge the valve body 9 in the direction of pressing against the valve seat 10.
The flange 11 has a hole at substantially the center, through which the plunger 3 can pass. A first yoke 4 having a center hole into which the plunger 3 is loosely inserted coaxially with the plunger 3 on the opposite side of the valve body 9 with the flange 11 interposed therebetween, and one end coaxial with the other end of the plunger 3 so as to be able to abut. Is provided with a core 2 made of a magnetic material.
The core 2 has one end of the permanent magnet 1 attached to the other end. The pipe 12 is inserted into the center hole of the first yoke 4 and the hole of the flange 11. The plunger 3 is slidably inserted into one end of the inner hole on the flange 11 side, and the core 2 is inserted into the other end inside. are doing. The pipe 12 has an electromagnetic coil 7 around which the plunger 3 can be excited by applying a current. The second yoke 5 is attached to the other pole of the permanent magnet 1, is formed in a U-shape outside the electromagnetic coil 7, and has an end coupled to the first yoke 4. The cylindrical third yoke 6 is provided around the inner periphery of the end of the pipe 12 where the core 2 is inserted, and the outer diameter is substantially equal to the inner diameter at the end of the pipe 12. Here, the inner diameter of the third yoke 6 is equal to the outer diameter of the inserted core, the inner peripheral part of the center hole is slidably inscribed with the outer peripheral part of the core 2, and the end part is connected to the second yoke 5. It is shaped to abut. Flange 11 and pipe 1
2 is sealed by a first packing 13, and a space between the pipe 12 and the core 2 is sealed by a second packing 14.

【0031】以上のように構成されたガス遮断弁につい
て、以下図1を用いてその動作、特徴を説明する。弁体
9が弁座10との間に間隙がある状態を保持している開
弁状態においては、プランジャ3の一端がコアー2の一
端と当接することにより、永久磁石1の起磁力が、コア
ー2とプランジャ3と第一ヨーク4と第二ヨーク5と永
久磁石1とを結ぶ磁気回路24を形成し、吸着面23に
おいてプランジャ3をコアー2に吸引する吸引力25を
発生し、スプリング8の反力26に抗してプランジャ3
をコアー2に吸着保持している。同時に第三ヨーク6を
設置した事により、コアー2と第三ヨーク6と第二ヨー
ク5と永久磁石1とを結ぶ第二磁気回路27を形成す
る。
The operation and features of the gas shut-off valve configured as described above will be described below with reference to FIG. In a valve-open state in which the valve body 9 maintains a state in which there is a gap between the valve body 9 and the valve seat 10, one end of the plunger 3 comes into contact with one end of the core 2 so that the magnetomotive force of the permanent magnet 1 is reduced. 2, a plunger 3, a first yoke 4, a second yoke 5, and a magnetic circuit 24 that connects the permanent magnet 1 to the permanent magnet 1. At the attracting surface 23, an attractive force 25 for attracting the plunger 3 to the core 2 is generated. Plunger 3 against reaction force 26
Is adsorbed and held on the core 2. At the same time, by installing the third yoke 6, a second magnetic circuit 27 connecting the core 2, the third yoke 6, the second yoke 5, and the permanent magnet 1 is formed.

【0032】次に閉弁動作の瞬間、電磁コイル7に永久
磁石1による起磁力と逆方向の起磁力を発生する方向に
電流を印加した場合を説明する。この場合、永久磁石1
は前述のように電磁コイル7が発生させる磁束に対して
は磁気ギャップとして働き、磁束の流れを阻害する磁気
抵抗とみなされる。一方、第三ヨーク6がコアー2及び
第二ヨーク5に直接当接し磁気抵抗が極めて小さくなっ
ているので、コアー2から永久磁石1を通り第二ヨーク
5に至る経路より、コアー2から第三ヨーク6を経て第
二ヨーク5に至る経路の方が磁気抵抗が小さくなく。そ
の結果、電磁コイル7によって発生した磁束は、前記磁
気回路24とは経路及び方向異なり、コアー2から第三
ヨーク6を経て第二ヨーク5に至る磁気バイパス経路に
流れ、永久磁石1の起磁力が形成する磁気回路24と逆
方向に第三磁気回路28を形成する。よってプランジャ
3とコアー2との吸着面23を通過する永久磁石1の起
磁力による磁束が消磁され減少し、スプリング8の反力
26に抗してプランジャ3をコアー2を吸着面23に吸
着保持する吸引力25が減少し、ついにはスプリング8
の反力26より小さくなり力のバランスが崩れ、プラン
ジャ3が反力26に付勢されて移動し弁体9が弁座10
に当接してガスが封止され閉弁状態となる。ここで第三
磁気回路28に流れる磁束量に注目すると、第三ヨーク
6の設置により磁気バイパス経路が形成されるが、第三
ヨーク6が第二ヨーク5及びコアー2に直接に当接する
ため、コアー2と第二ヨーク5間の磁気抵抗が極めて小
さくなり、第三磁気回路28全体の磁気抵抗が下がるた
め、前記図6の従来例の遮断弁の磁気回路84を流れる
磁束量より極めて増加する。
Next, a case where a current is applied to the electromagnetic coil 7 in a direction that generates a magnetomotive force in the opposite direction to the magnetomotive force generated by the permanent magnet 1 at the moment of the valve closing operation will be described. In this case, the permanent magnet 1
Acts as a magnetic gap with respect to the magnetic flux generated by the electromagnetic coil 7 as described above, and is regarded as a magnetic resistance that impedes the flow of the magnetic flux. On the other hand, since the third yoke 6 is in direct contact with the core 2 and the second yoke 5 and the reluctance is extremely small, the third yoke 6 passes through the path from the core 2 to the second yoke 5 through the permanent magnet 1 so that the third yoke 6 The path leading to the second yoke 5 via the yoke 6 has a smaller magnetic resistance. As a result, the magnetic flux generated by the electromagnetic coil 7 flows in a magnetic bypass path extending from the core 2 to the second yoke 5 via the third yoke 6, different from the path and direction of the magnetic circuit 24, and the magnetomotive force of the permanent magnet 1 A third magnetic circuit 28 is formed in the opposite direction to the magnetic circuit 24 formed by the third magnetic circuit 24. Therefore, the magnetic flux due to the magnetomotive force of the permanent magnet 1 passing through the attracting surface 23 between the plunger 3 and the core 2 is demagnetized and reduced, and the plunger 3 is attracted and held on the attracting surface 23 against the reaction force 26 of the spring 8. Suction force 25 is reduced, and finally the spring 8
And the balance of the force is lost, the plunger 3 is urged by the reaction force 26 and moves, and the valve 9 moves the valve seat 10.
, The gas is sealed and the valve is closed. Here, paying attention to the amount of magnetic flux flowing through the third magnetic circuit 28, a magnetic bypass path is formed by installing the third yoke 6, but since the third yoke 6 directly contacts the second yoke 5 and the core 2, Since the magnetic resistance between the core 2 and the second yoke 5 becomes extremely small and the magnetic resistance of the entire third magnetic circuit 28 decreases, the amount of magnetic flux flowing through the magnetic circuit 84 of the conventional shut-off valve shown in FIG. .

【0033】よって本実施例のように第三ヨーク6を第
二ヨーク5及びコアー2に当接させるような構造を取っ
た遮断弁は、永久磁石1の起磁力により形成する磁気回
路24の磁束、即ち吸着面23において弁体9を吸着保
持する吸引力25を、打ち消す消磁力が強くなる。
Therefore, the shut-off valve having a structure in which the third yoke 6 is brought into contact with the second yoke 5 and the core 2 as in the present embodiment is provided by the magnetic flux of the magnetic circuit 24 formed by the magnetomotive force of the permanent magnet 1. That is, the demagnetizing force for canceling the suction force 25 for holding the valve element 9 on the suction surface 23 is increased.

【0034】図1の遮断弁のこの動作特性を、図10に
示した印加電流と吸引力の関係を用いて表す。
This operating characteristic of the shut-off valve shown in FIG. 1 is represented by using the relationship between the applied current and the attractive force shown in FIG.

【0035】図10において横軸は永久磁石1と逆方向
の起磁力を発生する方向を正とした印加電流、縦軸は吸
着面23における弁体9の吸引力25であり、Faは図
1の遮断弁の吸引力特性曲線、fasp、及びFa
(0)及び動作点aは各々図1の遮断弁のスプリング反
力、永久磁石の起磁力による吸引力、そして動作点を表
している。Faは係数が磁気抵抗の逆数に比例した形で
与えられる印加電流の二次関数で表される。また遮断弁
を閉弁動作させる印加電流を動作電流i(0)とする
と、動作点aはFaとi=i(0)との交点で与えら
る。
In FIG. 10, the horizontal axis represents the applied current with the direction in which the magnetomotive force in the direction opposite to that of the permanent magnet 1 is generated being positive, the vertical axis represents the attraction force 25 of the valve body 9 on the attraction surface 23, and Fa is FIG. Characteristic curve, fasp, and Fa of the shutoff valve of FIG.
(0) and the operating point a represent the spring reaction force of the shut-off valve in FIG. 1, the attraction force by the magnetomotive force of the permanent magnet, and the operating point, respectively. Fa is represented by a quadratic function of the applied current whose coefficient is proportional to the reciprocal of the magnetoresistance. Further, assuming that the applied current for closing the shutoff valve is the operating current i (0), the operating point a is given by the intersection of Fa and i = i (0).

【0036】図1の遮断弁の動作特性は吸引力特性曲線
Faによって表せられる。即ち電磁コイル7に電流が印
加されない状態では、吸着面23において吸引力Fa
(0)が働きfaspの反力を備えたスプリング28が
備えられ、その差分ΔFa(0)の吸着保持力で弁体9
を保持し開弁状態を維持している。遮断弁を閉弁動作さ
せる動作電流i(0)が電磁コイル7に印加されると、
電磁コイル7の消磁力により吸着面23における吸引力
は動作点aまで減少しスプリング8の反力faspと等
しくなり、弁体9の保持が不能となりスプリング8によ
り離脱し閉弁される。
The operating characteristics of the shut-off valve shown in FIG. 1 are represented by a suction force characteristic curve Fa. That is, when no current is applied to the electromagnetic coil 7, the suction force Fa
(0) is provided, and a spring 28 having a reaction force of fasp is provided.
And maintain the valve open state. When an operating current i (0) for closing the shut-off valve is applied to the electromagnetic coil 7,
Due to the demagnetizing force of the electromagnetic coil 7, the attraction force on the attracting surface 23 decreases to the operating point a, becomes equal to the reaction force fasp of the spring 8, and the holding of the valve body 9 becomes impossible, and the valve body 9 is separated and closed by the spring 8.

【0037】ここで本実施例である図1の遮断弁の吸引
力特性と従来例である前記図6の遮断弁の吸引力特性を
比較する。図1の遮断弁では第三ヨーク6を第二ヨーク
5及びコアー2に直接当接するよう形成され、第三ヨー
ク6が第二ヨーク5またはコアー2との間に磁気ギャッ
プを設けたように構成された図6の遮断弁と比較して、
コアー2から第三ヨーク6を経て第二ヨーク5に至る磁
気バイパス経路の磁気抵抗が極めて小さくなる。永久磁
石1の起磁力によって生成する磁束は前述のようにコア
ー2からプランジャ3、第一ヨーク4、第二ヨーク5を
経て永久磁石1に戻る磁気回路24と、コアー2から第
三ヨーク6、第二ヨーク5を経て永久磁石1に至る磁気
バイパス経路を通る第二磁気回路27を形成する。ここ
でこの磁気バイパス経路の磁気抵抗は図6の遮断弁と比
較して小さいさめ、第二磁気回路27にりがれる磁束量
が増加し、磁気回路24に流れる磁束量は減少し、結果
として吸引力Fa(0)は図6の遮断弁のFc(0)よ
りも小さくなる。
Here, the suction force characteristics of the shut-off valve of FIG. 1 of the present embodiment and the suction force characteristics of the conventional shut-off valve of FIG. 6 will be compared. In the shut-off valve shown in FIG. 1, the third yoke 6 is formed so as to directly contact the second yoke 5 and the core 2, and the third yoke 6 has a magnetic gap between the second yoke 5 and the core 2. Compared with the shut-off valve of FIG.
The magnetic resistance of the magnetic bypass path from the core 2 to the second yoke 5 via the third yoke 6 becomes extremely small. The magnetic flux generated by the magnetomotive force of the permanent magnet 1 returns from the core 2 to the permanent magnet 1 via the plunger 3, the first yoke 4, and the second yoke 5, and from the core 2 to the third yoke 6, A second magnetic circuit 27 is formed that passes through a magnetic bypass path leading to the permanent magnet 1 via the second yoke 5. Here, the magnetic resistance of the magnetic bypass path is reduced as compared with the shut-off valve of FIG. 6, the amount of magnetic flux flowing to the second magnetic circuit 27 increases, and the amount of magnetic flux flowing to the magnetic circuit 24 decreases. As a result, The suction force Fa (0) is smaller than Fc (0) of the shut-off valve in FIG.

【0038】次に電磁コイル7に永久磁石1による起磁
力と逆方向の起磁力を発生する方向に電流を印加する
と、電磁コイル7により生成する磁束は前記図6の遮断
弁と同様磁気抵抗の小さい磁気バイパス経路を通って第
三磁気回路28を形成するが、図6の遮断弁と比較して
磁気バイパス経路の磁気抵抗が更に小さいため、傾きが
磁気抵抗に反比例して大きくなる吸引力特性曲線Faの
傾きが、図6の遮断弁の吸引力特性曲線Fbの傾きより
大きくなる。また動作点aよりスプリング8の反力26
の大きさfaspが求められる。、これらの結果より吸
引力Fa(0)とfaspの差分で表わされる弁体9の
吸着保持力ΔFa(0)はΔFc(0)に対して大きく
なる事が分かる。従って従来と同じ大きさの動作電流i
(0)で、永久磁石1の起磁力による磁束、即ち弁体9
の吸着保持力をより強く消磁する事が可能となり、結果
として永久磁石1による吸引力とスプリングの反力と差
を大きく設定することができ、外部からの衝撃による閉
弁誤作動に対する耐衝撃性が向上する。一方、永久磁石
による起磁力と順方向に電磁コイルに電流を印加し吸着
開弁動作を行う場合も、同様の理由からより強い吸引力
が得られる。
Next, when a current is applied to the electromagnetic coil 7 in a direction that generates a magnetomotive force in the direction opposite to the magnetomotive force generated by the permanent magnet 1, the magnetic flux generated by the electromagnetic coil 7 has the same magnetic resistance as the shut-off valve in FIG. Although the third magnetic circuit 28 is formed through a small magnetic bypass path, since the magnetic resistance of the magnetic bypass path is smaller than that of the shutoff valve in FIG. 6, the attraction force characteristic in which the inclination increases in inverse proportion to the magnetic resistance. The slope of the curve Fa becomes larger than the slope of the suction force characteristic curve Fb of the shutoff valve in FIG. Also, the reaction force 26 of the spring 8 from the operating point a
Is obtained. From these results, it can be seen that the suction holding force ΔFa (0) of the valve element 9 represented by the difference between the suction force Fa (0) and fasp is larger than ΔFc (0). Therefore, the operating current i of the same magnitude as the conventional one
In (0), the magnetic flux due to the magnetomotive force of the permanent magnet 1, that is, the valve body 9
Can be demagnetized more strongly, and as a result, the difference between the attraction force of the permanent magnet 1 and the reaction force of the spring can be set large, and the shock resistance against a valve closing malfunction due to an external impact Is improved. On the other hand, even when a current is applied to the electromagnetic coil in the forward direction with respect to the magnetomotive force generated by the permanent magnet to perform the attraction valve opening operation, a stronger attraction force can be obtained for the same reason.

【0039】閉弁保持状態においては、プランジャ3が
コアー2から離脱し吸着面23における磁気抵抗が大き
くなっているため、吸着面23を通過する磁束が小さく
吸引力25も反力26より小さい。従って、弁体9はス
プリング8の反力26に付勢されて弁座10に圧接され
た閉弁状態を保持する。
In the valve-closed holding state, the plunger 3 is separated from the core 2 and the magnetic resistance at the attraction surface 23 is large, so that the magnetic flux passing through the attraction surface 23 is small and the attraction force 25 is smaller than the reaction force 26. Accordingly, the valve element 9 is kept biased by the reaction force 26 of the spring 8 and pressed against the valve seat 10 to maintain the closed state.

【0040】またコアー2に周設される第三ヨーク6の
中心穴の内周部がコアー2の外周部と直接内接し、かつ
第三ヨーク6の端部が第二ヨーク5に直接当接するよう
形設されているためコアー2と第三ヨーク6間及び第三
ヨーク6と第二ヨーク5間の磁気抵抗のばらつきも少な
い。結果として遮断弁の吸引特性、即ち電磁コイル7へ
の印加電流と吸引力の関係が安定し、動作特性ばらつき
が小さくなる。従ってこの遮断弁を製造するにあたり製
造調整工程に要する工数も少なくなる。
The inner periphery of the center hole of the third yoke 6 provided around the core 2 directly inscribes the outer periphery of the core 2, and the end of the third yoke 6 directly contacts the second yoke 5. With such a configuration, variations in magnetic resistance between the core 2 and the third yoke 6 and between the third yoke 6 and the second yoke 5 are small. As a result, the attraction characteristics of the shut-off valve, that is, the relationship between the applied current to the electromagnetic coil 7 and the attraction force are stabilized, and the variation in operating characteristics is reduced. Therefore, the man-hour required for the manufacturing adjustment process in manufacturing the shut-off valve is reduced.

【0041】加えてまた第三ヨーク6はコアー2及び第
二ヨーク5に当接する構造となっているので、永久磁石
1は前記第二磁気回路27を形成するが、この第二磁気
回路27を流れる磁束が第三ヨーク6を第二ヨーク5に
吸引させる自己吸引力29として作用する。加えて第三
ヨーク6はコアー2の外周部を軸として嵌合しているの
で組み込み時に摺動可能であるため、第二ヨーク5の永
久磁石1を嵌合着設している凹部の深さ、永久磁石1の
厚み、及び第三ヨーク6自体の寸法ばらつきが生じて
も、第三ヨーク6は第二ヨーク5に確実に着設され、そ
の間隔を埋め磁気ギャップのばらつきをなくし遮断弁の
作動を安定させ、更に第三ヨーク6の係止部材も不要と
なり、簡易な構成で実現が可能である。第三ヨーク6自
体も板金加工を施した鉄板などで成形可能で、容易に大
量生産が可能である。
In addition, since the third yoke 6 has a structure in contact with the core 2 and the second yoke 5, the permanent magnet 1 forms the second magnetic circuit 27. The flowing magnetic flux acts as a self-attracting force 29 for attracting the third yoke 6 to the second yoke 5. In addition, since the third yoke 6 is fitted around the outer periphery of the core 2 as a shaft, the third yoke 6 can slide when assembled. Even if the thickness of the permanent magnet 1 and the dimensional variation of the third yoke 6 itself occur, the third yoke 6 is securely attached to the second yoke 5 to fill the gap and eliminate the variation of the magnetic gap, thereby reducing the variation of the magnetic gap. The operation is stabilized, and the locking member of the third yoke 6 is not required, so that it can be realized with a simple configuration. The third yoke 6 itself can be formed from a sheet metal processed iron plate or the like, and mass production can be easily performed.

【0042】以上のように本発明のガス遮断弁は、第三
ヨーク6の中心穴の内周部がコアー2の外周部と内接
し、かつ端部が第二ヨーク5に当接するよう形設されて
いるため、吸着保持力が強いため耐衝撃強度が強く、遮
断弁の動作特性のばらつきが小さく製造調整工程に要す
る工数が少なく、簡易な構成で実現可能となる。
As described above, the gas shut-off valve of the present invention is formed so that the inner peripheral portion of the center hole of the third yoke 6 is inscribed in the outer peripheral portion of the core 2 and the end portion is in contact with the second yoke 5. As a result, the suction holding force is high, the impact resistance is high, the variation in the operating characteristics of the shut-off valve is small, the number of steps required for the manufacturing adjustment process is small, and the configuration can be realized with a simple configuration.

【0043】図2は本発明の第2の実施例における遮断
弁の断面図を示すものである。図2の遮断弁の構成は基
本的に図1の遮断弁の構成と略同一で、その同一部分に
は図1と同一符合を付して詳細な説明を省略してある
が、第三ヨーク30の設置構造が異なる。図1の遮断弁
における第三ヨーク6は円管形状成し、中心穴の内周部
がコアー2の外周部と内接しかつ端部が第二ヨーク5に
当接するよう形設されていたが、図2の遮断弁の第三ヨ
ーク30は前記特徴に加えて、中心穴の内周部が永久磁
石1の外周部とも内接していることを特徴としている。
FIG. 2 is a sectional view of a shut-off valve according to a second embodiment of the present invention. The configuration of the shut-off valve in FIG. 2 is basically the same as the configuration of the shut-off valve in FIG. 1, and the same parts are denoted by the same reference numerals as in FIG. 30 installation structures are different. Although the third yoke 6 in the shut-off valve of FIG. 1 is formed in a circular pipe shape, the inner peripheral portion of the center hole is inscribed in the outer peripheral portion of the core 2 and the end portion is in contact with the second yoke 5. The third yoke 30 of the shut-off valve shown in FIG. 2 is characterized in that, in addition to the above features, the inner peripheral portion of the center hole is also inscribed with the outer peripheral portion of the permanent magnet 1.

【0044】以上のように構成された図2のガス遮断弁
の動作は図1のガス遮断弁と同一であるので省略する。
The operation of the gas shut-off valve of FIG. 2 configured as described above is the same as that of the gas shut-off valve of FIG.

【0045】図2の遮断弁の第三ヨーク30の効果は、
その中心穴の内周部がコアー2だけでなく永久磁石1の
外周部とも内接しているため、円筒形状を成したコアー
2、永久磁石1及び円管形状の第三ヨーク30の各々の
中心軸の同軸度が向上し、各部品の相対位置関係が安定
する。よってコアー2、永久磁石1及び第三ヨーク30
周りの磁気ギャップ、つまり磁気抵抗が安定し、そこに
形成される磁気回路及び通る磁束量のばらつきが減少
し、結果として遮断弁の動作特性のばらつきが少なくな
り安定する。また第三ヨーク30の中心穴がコアー2、
永久磁石1の位置決めを行うため、組立性も向上する。
The effect of the third yoke 30 of the shut-off valve in FIG.
Since the inner peripheral portion of the center hole is in contact with the outer peripheral portion of the permanent magnet 1 as well as the core 2, the center of each of the cylindrical core 2, the permanent magnet 1, and the cylindrical third yoke 30 is formed. The coaxiality of the shaft is improved, and the relative positional relationship between the components is stabilized. Therefore, the core 2, the permanent magnet 1, and the third yoke 30
The surrounding magnetic gap, that is, the magnetic resistance is stabilized, the variation in the magnetic circuit formed therein and the amount of magnetic flux passing therethrough are reduced, and as a result, the variation in the operating characteristics of the shut-off valve is reduced and stabilized. The center hole of the third yoke 30 is the core 2,
Since the permanent magnet 1 is positioned, assemblability is also improved.

【0046】図3は本発明の第3の実施例における遮断
弁の断面図を示すものである。図3の遮断弁の構成は基
本的に図2の遮断弁の構成と略同一で、その同一部分に
は同一符合を付して詳細な説明を省略してあるが、コア
ー31、永久磁石32、第三ヨーク33の形状と設置構
造が異なる。図3の遮断弁においてもコアー31、永久
磁石32は円盤形状を成しているが、コアー31の永久
磁石32との着設面の外径より永久磁石32の外径の方
が大きい。第三ヨーク33は前記実施例と同様円管形状
で形成されているが、内周部が外径が小さいコアー31
と外径の大きい永久磁石32と径の異なった2つの部材
に内接するので、中心穴の内周部に段差33aを設けて
異なる2つの内径を形成し、径の大きい側、即ち永久磁
石32の外周部に内接する内径部の軸方向における長さ
を、予め長く設定し、組立後に永久磁石32とコアー3
1の着設平面と第三ヨーク33の前記段差面との間に図
3中のdで表される空隙を持った空洞部34が形成され
る構造となっている。
FIG. 3 is a sectional view of a shut-off valve according to a third embodiment of the present invention. The configuration of the shut-off valve in FIG. 3 is basically the same as the configuration of the shut-off valve in FIG. 2, and the same parts are denoted by the same reference numerals and detailed description is omitted. , The configuration and the installation structure of the third yoke 33 are different. 3, the core 31 and the permanent magnet 32 have a disk shape, but the outer diameter of the permanent magnet 32 is larger than the outer diameter of the mounting surface of the core 31 with the permanent magnet 32. The third yoke 33 is formed in the shape of a circular tube as in the above-mentioned embodiment, but the inner peripheral portion has a small outer diameter.
And the permanent magnet 32 having a large outer diameter and the two members having different diameters are inscribed. Therefore, a step 33a is provided in the inner peripheral portion of the center hole to form two different inner diameters. The axial length of the inner diameter portion inscribed in the outer peripheral portion of the permanent magnet 32 and the core 3 after assembly is set to be long beforehand.
A cavity 34 having a space represented by d in FIG. 3 is formed between the mounting plane 1 and the stepped surface of the third yoke 33.

【0047】上記のような構造を取っているため、第二
ヨーク5の永久磁石32を嵌合着設している凹部の深
さ、永久磁石32の厚み、及び第三ヨーク33自体の寸
法ばらつきが生じても、第三ヨーク33は組み込み時に
コアー31の外周部を軸として摺動可能で、第三ヨーク
33の前記軸方向の長さを予め長く設定された大径側内
径部により前記空隙を持った空洞部34が形成され、そ
のばらつきを吸収し、第三ヨーク33の段差部が永久磁
石32に乗り上げて第二ヨーク5との間に空隙を生じる
事はなく第二ヨーク5が確実に着設される。
Because of the above-described structure, the depth of the concave portion of the second yoke 5 in which the permanent magnet 32 is fitted, the thickness of the permanent magnet 32, and the dimensional variation of the third yoke 33 itself. Occurs, the third yoke 33 can be slid around the outer periphery of the core 31 during assembly, and the axial length of the third yoke 33 is increased by a large-diameter inner diameter portion set in advance. Is formed, the variation is absorbed, and the step portion of the third yoke 33 does not ride on the permanent magnet 32 to form a gap between the second yoke 5 and the second yoke 5. To be laid.

【0048】図4は本発明の第4の実施例における遮断
弁の断面図を示すものである。図4の遮断弁の構成は基
本的に図3の遮断弁の構成と略同一で、その同一部分に
は同一符合を付して詳細な説明を省略してあるが、図3
の実施例とは逆に永久磁石36の外径よりコアー35の
永久磁石36との着設面の外径の方が大きくしてある。
したがって、第三ヨーク37の内周部は図3の実施例の
第三ヨーク33と同様に中心穴の内周部に段差を設け、
異なる2つの内径を形成しており、径の大きい側、即ち
コアー35の外周部に内接する内径部の軸方向の長さを
予め長く設定し、組立後に永久磁石36とコアー35の
着設平面と第三ヨーク37の前記段差面との間に図4中
のdで表される空隙を持った空洞部38が形成される構
造となっており、図3の実施例で説明したのと同じ理由
で第三ヨーク37の段差部にコアー35が乗り上げて永
久磁石36との間に空隙を生じる事はなくコアー35に
確実に着設される。
FIG. 4 is a sectional view of a shut-off valve according to a fourth embodiment of the present invention. The configuration of the shut-off valve in FIG. 4 is basically the same as the configuration of the shut-off valve in FIG. 3, and the same parts are denoted by the same reference numerals and detailed description is omitted.
In contrast to the embodiment, the outer diameter of the mounting surface of the core 35 with the permanent magnet 36 is larger than the outer diameter of the permanent magnet 36.
Accordingly, the inner peripheral portion of the third yoke 37 is provided with a step at the inner peripheral portion of the center hole similarly to the third yoke 33 of the embodiment of FIG.
Two different inner diameters are formed, and the axial length of the larger diameter side, that is, the inner diameter portion inscribed in the outer peripheral portion of the core 35, is set to be long in advance, and the assembling plane of the permanent magnet 36 and the core 35 after assembly. A cavity 38 having an air gap indicated by d in FIG. 4 is formed between the first yoke 37 and the step surface of the third yoke 37, which is the same as that described in the embodiment of FIG. For this reason, the core 35 does not ride on the stepped portion of the third yoke 37 to form a gap between the third yoke 37 and the permanent magnet 36, so that the core 35 is securely attached to the core 35.

【0049】以上図3に示した第3実施例及び図4に示
した第4実施例における遮断弁の第三ヨークの如く、内
周部に段差を設け異なる2つの内径を形成し、大径側内
径部の軸方向の長さを予め長く設定し、組立後に永久磁
石とコアーの着設平面と第三ヨークの前記段差面との間
に空隙を持った空洞部が形成される構造をとれば、外径
の異なる永久磁石とコアーを用いた遮断弁でも、前記第
1実施例及び第2実施例と同様の効果を得る事ができ
る。
As in the third yoke of the shut-off valve in the third embodiment shown in FIG. 3 and the fourth embodiment shown in FIG. The length of the inner diameter portion in the axial direction is set to be long in advance, and a structure is formed in which a cavity having a gap is formed between the mounting surface of the permanent magnet and the core and the step surface of the third yoke after assembly. For example, even with a shutoff valve using a permanent magnet and a core having different outer diameters, the same effects as in the first and second embodiments can be obtained.

【0050】なお第三ヨークの詳細形状、即ち円管部の
形状・内外径・長さ・厚み・第二ヨーク、永久磁石、コ
アーとの接触面積等は組合わさる他の遮断弁構成部品の
形状と遮断弁磁気回路構成、作動特性のバランスなどで
決定されるが、本発明の構成の条件を満たせばその詳細
形状は問わないのは言うまでもない。
The detailed shape of the third yoke, that is, the shape, inner and outer diameters, length, thickness, the area of contact with the second yoke, the permanent magnet and the core, etc. of the circular tube portion are combined with the shape of other shutoff valve components. It is determined by the balance of the shutoff valve magnetic circuit configuration and the operation characteristics, but it goes without saying that the detailed shape does not matter as long as the conditions of the configuration of the present invention are satisfied.

【0051】[0051]

【発明の効果】以上のように本発明による構成をとった
遮断弁では以下の効果が得られる。
As described above, the shut-off valve having the configuration according to the present invention has the following effects.

【0052】(1)請求項1の遮断弁は、第三ヨークの
一端部がコアーの外周面に摺動して当接され、かつ他端
部が第二ヨークに当接するものであるから、第三ヨーク
が第二ヨークまたはコアーとの間に磁気ギャップを設け
たように構成された遮断弁と比較して、コアーから第三
ヨークを経て第二ヨークに至る磁気バイパス経路の磁気
抵抗が極めて小さくなるので、磁気コイルが発生させる
磁束量が増大し、永久磁石の起磁力による磁束、即ち弁
耐の吸引力を打ち消す消磁力を強くできる。従って従来
と同じ大きさの動作電流で吸引力とスプリング反力との
バランスをより大きく崩す事が可能となり、永久磁石に
よる吸引力とスプリングの反力との差、つまり吸着保持
力が大きくとれ、耐衝撃強度が強くすることができる。
(1) In the shut-off valve according to the first aspect, one end of the third yoke slides on and contacts the outer peripheral surface of the core, and the other end contacts the second yoke. Compared with a shut-off valve in which the third yoke has a magnetic gap between the second yoke and the core, the magnetic resistance of the magnetic bypass path from the core to the second yoke via the third yoke is extremely low. Since it becomes smaller, the amount of magnetic flux generated by the magnetic coil increases, and the magnetic flux due to the magnetomotive force of the permanent magnet, that is, the demagnetizing force for canceling the attraction force of the valve can be increased. Therefore, the balance between the attraction force and the spring reaction force can be greatly reduced with an operating current of the same size as the conventional one, and the difference between the attraction force by the permanent magnet and the reaction force of the spring, that is, the suction holding force, can be increased. Impact strength can be increased.

【0053】(2)請求項1の遮断弁は、第三ヨークが
コアー及び第二ヨークに直接当接し、組立時に第二ヨー
クに吸引する自己吸引力が作用しコアーの外周面を軸と
して部品寸法ばらつきを吸収するべく摺動して第二ヨー
クに確実に当って設置されるため、磁気ギャップ、つま
り磁気抵抗のばらつきも少なくでき、遮断弁の吸引力特
性、動作特性のばらつきが小さくなり、この遮断弁の製
造調整工程に要する工数も少なくできる。
(2) In the shut-off valve according to the first aspect, the third yoke directly abuts the core and the second yoke, and a self-sucking force is applied to the second yoke at the time of assembling, whereby the outer peripheral surface of the core is used as a shaft. Since it is slid to absorb the dimensional variation and installed securely against the second yoke, the variation in the magnetic gap, that is, the magnetic resistance can be reduced, and the variation in the attraction force characteristics and operating characteristics of the shut-off valve is reduced. The man-hour required for the production adjustment process of the shut-off valve can be reduced.

【0054】(3)請求項2の遮断弁は第三ヨークの内
周部に嵌挿してコアーだけでなく永久磁石も摺動して内
接しているため、コアー、永久磁石及び第三ヨークの各
々の中心軸の同軸度が向上し、各部品の相対位置関係が
安定する。よって磁気バイパス経路周りの磁気抵抗のば
らつきが減少し、通る磁束量が安定し、遮断弁の動作特
性のばらつきが少なくなり安定する。また第三ヨークが
コアー、永久磁石の位置決めを行うため、組立性も向上
する。
(3) The shut-off valve according to claim 2 is inserted into the inner peripheral portion of the third yoke so that not only the core but also the permanent magnet is slid and inscribed. The coaxiality of each central axis is improved, and the relative positional relationship of each component is stabilized. Therefore, the variation in the magnetic resistance around the magnetic bypass path is reduced, the amount of magnetic flux passing therethrough is stabilized, and the variation in the operating characteristics of the shut-off valve is reduced and stabilized. In addition, since the third yoke positions the core and the permanent magnet, assemblability is improved.

【0055】(4)請求項3の遮断弁は、第三ヨークの
内周部に段差を設け異なる内径を形成し、大径側内径部
の軸方向の長さを予め長く設定し、組立後に永久磁石と
コアーの着設平面と第三ヨークの前記段差との間に空隙
を持った空洞部が形成される構造を取っているため、外
径の異なる永久磁石とコアーを用いた遮断弁でも、前記
請求項1及び請求項2の遮断弁と同様の効果を得る事が
できる。
(4) In the shut-off valve according to the third aspect, a step is formed in the inner peripheral portion of the third yoke to form different inner diameters, the axial length of the large-diameter inner diameter portion is set to be long in advance, and after assembly, Since a cavity having a cavity is formed between the mounting surface of the permanent magnet and the core and the step of the third yoke, even a shutoff valve using a permanent magnet and a core having different outer diameters. The same effects as those of the shut-off valves according to the first and second aspects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例におけるガス遮断弁の断
面図
FIG. 1 is a sectional view of a gas shutoff valve according to a first embodiment of the present invention.

【図2】本発明の第2の実施例におけるガス遮断弁の断
面図
FIG. 2 is a sectional view of a gas shutoff valve according to a second embodiment of the present invention.

【図3】本発明の第3の実施例におけるガス遮断弁の断
面図
FIG. 3 is a sectional view of a gas shutoff valve according to a third embodiment of the present invention.

【図4】本発明の第4の実施例におけるガス遮断弁の断
面図
FIG. 4 is a sectional view of a gas shutoff valve according to a fourth embodiment of the present invention.

【図5】従来のガス遮断弁の断面図FIG. 5 is a sectional view of a conventional gas shut-off valve.

【図6】従来のガス遮断弁の断面図FIG. 6 is a sectional view of a conventional gas shut-off valve.

【図7】従来のガス遮断弁の他の例の断面図FIG. 7 is a sectional view of another example of the conventional gas shut-off valve.

【図8】従来のガス遮断弁の他の例の断面図FIG. 8 is a sectional view of another example of the conventional gas shut-off valve.

【図9】従来のガス遮断弁の他の例の断面図FIG. 9 is a sectional view of another example of the conventional gas shut-off valve.

【図10】図1の本発明の第1の実施例における遮断
弁、および図5、図6の従来の遮断弁の印加電流プラン
ジャとコアー間の吸引力の関係を示した図
10 is a diagram showing the relationship between the applied current plunger and the attraction force between the cores of the shut-off valve in the first embodiment of the present invention shown in FIG. 1 and the conventional shut-off valves shown in FIGS. 5 and 6;

【符号の説明】[Explanation of symbols]

1 永久磁石 2 コアー 3 プランジャ 4 第一ヨーク 5 第二ヨーク 6 第三ヨーク 7 電磁コイル 8 スプリング 9 弁体 Reference Signs List 1 permanent magnet 2 core 3 plunger 4 first yoke 5 second yoke 6 third yoke 7 electromagnetic coil 8 spring 9 valve body

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16K 31/06 380 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16K 31/06 380

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁座と当接可能に配設された弁体と、その
弁体を前記弁座に圧接する方向に付勢するスプリング
と、一端に前記弁体を配設した磁性体製のプランジャ
と、そのプランジャを遊挿する孔を持った第一ヨーク
と、前記プランジャと略同一軸上に配設し、前記プラン
ジャを吸着するコアー及びコアーに接合した永久磁石
と、前記プランジャを遊挿し、励磁可能な電磁コイル
と、前記第一ヨークに結合し、前記永久磁石から電磁コ
イルの外側を通り前記プランジャに至る磁気回路を形成
する第二ヨークと、一端部が少なくとも前記コアーの外
周面に摺動して当接し、他端部が前記第二ヨークに当接
した第三ヨークを備えた遮断弁。
A valve body disposed so as to be in contact with the valve seat, a spring for urging the valve body in a direction of pressing the valve body against the valve seat, and a magnetic material having the valve body disposed at one end. Plunger, a first yoke having a hole through which the plunger is loosely inserted, a core disposed substantially on the same axis as the plunger, a core for adsorbing the plunger, a permanent magnet joined to the core, and a plunger. An electromagnetic coil that can be inserted and excited, a second yoke coupled to the first yoke to form a magnetic circuit extending from the permanent magnet to the plunger through the outside of the electromagnetic coil, and one end portion having at least an outer peripheral surface of the core And a third yoke slidably in contact with the second yoke and having the other end in contact with the second yoke.
【請求項2】第三ヨークは内周部に接触させてコアーと
永久磁石を内装した請求項1記載の遮断弁。
2. The shut-off valve according to claim 1, wherein the third yoke is provided with a core and a permanent magnet in contact with an inner peripheral portion.
【請求項3】第三ヨークは内周部に接触させて外径の異
なるコアー及び永久磁石を設け、かつ内周部に段差を設
けて異なる内径を形成し、大径側の内径部の軸方向の長
さを、コアーと永久磁石の当接する平面と前記段差との
間に空隙が形成されるよう長く設定した請求項2記載の
遮断弁。
3. The third yoke is provided with a core and a permanent magnet having different outer diameters in contact with an inner peripheral portion, and a step is formed on an inner peripheral portion to form different inner diameters. 3. The shutoff valve according to claim 2, wherein the length in the direction is set long so that a gap is formed between a plane where the core and the permanent magnet abut, and the step.
JP17658692A 1992-07-03 1992-07-03 Shut-off valve Expired - Lifetime JP2998432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17658692A JP2998432B2 (en) 1992-07-03 1992-07-03 Shut-off valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17658692A JP2998432B2 (en) 1992-07-03 1992-07-03 Shut-off valve

Publications (2)

Publication Number Publication Date
JPH0617962A JPH0617962A (en) 1994-01-25
JP2998432B2 true JP2998432B2 (en) 2000-01-11

Family

ID=16016158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17658692A Expired - Lifetime JP2998432B2 (en) 1992-07-03 1992-07-03 Shut-off valve

Country Status (1)

Country Link
JP (1) JP2998432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507429C1 (en) * 2012-10-15 2014-02-20 ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "РОССИЙСКАЯ КОМПАНИЯ ПО ОСВОЕНИЮ ШЕЛЬФА" (ЗАО "Росшельф") Electromagnetic shutoff valve

Also Published As

Publication number Publication date
JPH0617962A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
US8567755B2 (en) Solenoid operated fluid control valve
JP5248982B2 (en) Release-type electromagnet device
JP2005014701A (en) Fluid controlling device
WO2011033654A1 (en) Releasing type electromagnet device
JP2998432B2 (en) Shut-off valve
US20050092951A1 (en) Magnetic valve
JP2005132347A (en) Braking fluid control device
JP2745339B2 (en) Press-fitting and fixing the spherical valve element to the plunger
JP3016056B2 (en) Air gap adjustment method for normally closed solenoid valve and air gap and valve stroke adjustment method for normally open solenoid valve
JP3075037B2 (en) Shut-off valve
JPS59133884A (en) Solenoid valve
JP3800701B2 (en) Gas proportional control device
JPH071566Y2 (en) solenoid valve
JPH085428Y2 (en) Gas shutoff valve
JP3965133B2 (en) solenoid valve
JPH05196163A (en) Cutoff valve
JP3464845B2 (en) Automatic gas shut-off valve
JPH09269081A (en) Self-retaining type cut-off valve
JPH0442618Y2 (en)
JP2962057B2 (en) Self-holding electromagnetic solenoid
JPH10122419A (en) Shut-off valve
JPH0442617Y2 (en)
JP2001200948A (en) Solenoid valve
JPH0763274A (en) Cutoff valve device
JPH076582B2 (en) Gas shutoff valve reset device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121105

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13