JP2997542B2 - Ceramic porous body - Google Patents

Ceramic porous body

Info

Publication number
JP2997542B2
JP2997542B2 JP2340579A JP34057990A JP2997542B2 JP 2997542 B2 JP2997542 B2 JP 2997542B2 JP 2340579 A JP2340579 A JP 2340579A JP 34057990 A JP34057990 A JP 34057990A JP 2997542 B2 JP2997542 B2 JP 2997542B2
Authority
JP
Japan
Prior art keywords
ceramic
porous body
diameter
layer
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2340579A
Other languages
Japanese (ja)
Other versions
JPH04209772A (en
Inventor
駿蔵 島井
浩一 井村
賢一 岡本
耕一 白石
久爾子 安藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18338350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2997542(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP2340579A priority Critical patent/JP2997542B2/en
Publication of JPH04209772A publication Critical patent/JPH04209772A/en
Application granted granted Critical
Publication of JP2997542B2 publication Critical patent/JP2997542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、異なる気孔径を有する複数のセラミック層
から構成されるセラミック多孔体に関する。
The present invention relates to a porous ceramic body composed of a plurality of ceramic layers having different pore diameters.

[従来の技術] 周知の如く、セラミック多孔体は、連続した気孔を利
用したセラミックフィルターや、気孔を含んだ構造を利
用した断熱材等の分野で利用されている。
[Prior Art] As is well known, a porous ceramic body is used in fields such as a ceramic filter using continuous pores and a heat insulating material using a structure including pores.

ところで、セラミックフィルターなどのセラミック膜
は透過抵抗を減少させるため、いわゆる非対称構造とな
っているものが特性が良く、多用されている。また、気
孔径が小さい部分は透過抵抗が大きいため、この部分を
できるだけ薄膜化するために非対称構造が採用されてい
る。ここで、非対称構造のセラミック膜は、一般に気孔
径の大きい支持体上に支持体気孔径よりも小さい気孔径
をもつ第1層を形成し、更にこの上に小さい気孔径をも
つ第2層を形成した複数層の構成となっており、膜厚方
向に非対称になっている。
Incidentally, a ceramic film such as a ceramic filter having a so-called asymmetric structure has good characteristics and is often used in order to reduce transmission resistance. In addition, since a portion having a small pore diameter has a large transmission resistance, an asymmetric structure is adopted to make this portion as thin as possible. Here, the ceramic film having an asymmetric structure generally forms a first layer having a pore size smaller than the support pore size on a support having a large pore size, and further forms a second layer having a small pore size thereon. It has a configuration of a plurality of layers formed and is asymmetric in the film thickness direction.

一方、セラミック断熱材としては、セラミックファイ
バーを成形したものや、発泡により気孔を形成した断熱
煉瓦が使用されているが、一つの製品としては気孔径の
分布は部分によって変化させてあるものはなかった。
On the other hand, as the ceramic heat insulating material, a ceramic fiber molded material or a heat insulating brick having pores formed by foaming is used, but as one product, the distribution of the pore diameter is not changed by part. Was.

[発明が解決しようとする課題] しかし、従来のセラミック多孔体においては、支持
体,中間層,膜と順次成形していく非対称構造となって
いるため、製造工程が複雑で、コストも高くつく。
[Problems to be Solved by the Invention] However, the conventional ceramic porous body has an asymmetric structure in which a support, an intermediate layer, and a film are sequentially formed, so that the manufacturing process is complicated and the cost is high. .

また、セラミック非対称膜を作る上で支持体気孔径に
対し次の層を形成するセラミック粒子径が小さいため、
支持体上に次層を形成するには次層粒子が支持体内に侵
入しないような手段を講じる必要があり、この点もセラ
ミック非対称膜を高価なものにしている理由の一つとな
っている。
In addition, in making a ceramic asymmetric membrane, since the diameter of the ceramic particles forming the next layer is smaller than the pore diameter of the support,
In order to form the next layer on the support, it is necessary to take measures to prevent the particles of the next layer from entering the support, and this is one of the reasons why the ceramic asymmetric membrane is expensive.

一方、多孔質セラミック断熱材については、熱伝導の
理論からすれば不十分なものであるといわざるを得な
い。熱伝導率は、温度によって伝導メカニズムが異な
り、高温になると輻射による伝熱が増加するので、温度
分布にあわせて熱伝導率が最小になる構造となることが
望ましいが、断熱材一つの中にそのような構造をもった
ものはなく、実際には十分な断熱効果が発現されていな
かった。
On the other hand, the porous ceramic heat insulating material cannot be said to be insufficient according to the theory of heat conduction. The thermal conductivity has a different conduction mechanism depending on the temperature, and heat transfer by radiation increases at high temperatures.Therefore, it is desirable to have a structure that minimizes the thermal conductivity according to the temperature distribution. None had such a structure, and a sufficient heat insulating effect was not actually exhibited.

本発明は上記事情に鑑みてなされたもので、使用目的
に応じて化学的成分や多孔構造の異なるものを簡単に作
ることができ、かつコスト低減をなし得るセラミック多
孔体を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ceramic porous body that can easily produce a substance having a different chemical component or a porous structure according to the purpose of use and can reduce the cost. And

[課題を解決するための手段] 本発明は、気孔径の異なるセラミックスから構成され
る複数のセラミック層を、最外部を気孔径の大きいセラ
ミックスからなるセラミックス層とし、最内部を気孔径
の小さいセラミックスからなるセラミックス層とし、順
次厚さ方向に傾斜的に積層してなることを特徴とするセ
ラミック多孔体である。
Means for Solving the Problems According to the present invention, a plurality of ceramic layers composed of ceramics having different pore diameters are formed as ceramic layers having a large pore diameter on the outermost side and ceramics having a small pore diameter on the innermost side. The ceramic porous body is characterized in that it is a ceramic layer composed of:

本発明におけるセラミック多孔体は気孔径を傾斜的に
分布させることを特徴とするが、かかる多孔体は種々の
方法で製造される。
The ceramic porous body according to the present invention is characterized in that the pore diameter is distributed with a gradient, and such a porous body is manufactured by various methods.

例えば、材料の厚さ方向に細孔径が分布したセラミッ
クフィルター(板形状のセラミック多孔体)は、下記の
〜の各工程を経て作られる。なお、フィルターの細
孔はセラミック粒子間の空隙によって造出され、大きさ
の異なるセラミック粒子を傾斜的に充填し焼結すること
によって細孔が傾斜的に分布し、連続する気孔をもった
セラミック多孔体が得られる。
For example, a ceramic filter (porous ceramic body having a plate shape) in which pore diameters are distributed in the thickness direction of the material is produced through the following steps (1) to (4). The pores of the filter are created by the gaps between the ceramic particles, and the ceramic particles having different sizes are gradually filled by sintering and sintering the ceramic particles of different sizes, and the ceramics have continuous pores. A porous body is obtained.

まず、粒度分布をもったセラミック粒子を水中に分
散し、スラリーとする。次に、このスラリーを一定高
さの水深をもったセラミック粒子を水中に静に投入す
る。投入されたスラリー中のセラミック粒子は、その粒
径に応じて沈降速度が異なり、径の大きい粒子が先に沈
降し、粒径に従って傾斜的に沈降層ができる。この
後、この沈降層を乾燥すると、傾斜的に細孔分布をした
細孔形状のセラミック多孔体の成形体が得られた。
First, ceramic particles having a particle size distribution are dispersed in water to form a slurry. Next, ceramic particles having a certain depth of water in the slurry are statically poured into water. The sedimentation speed of the ceramic particles in the supplied slurry varies depending on the particle size, and particles having a large diameter settle first, and a sedimentation layer is formed with a gradient according to the particle size. Thereafter, when the sedimented layer was dried, a molded body of a porous ceramic body having pores having a gradient pore distribution was obtained.

また、水中における沈降速度が粒径に比例するという
原理を利用してパイプ形状のセラミック非対称膜を形成
することも可能である。例えば、この非対称膜は次のよ
うな工程を経て作られる。まず、円筒形状の空間を有
する石膏型中に水を充填する。次に、この水柱中心部
にスラリーが充填された細いパイプを導入し、栓を外す
ことにより水柱の中心部にスラリーを導入する。つづ
いて、石膏型を回転し、遠心力でスラリー中のセラミッ
ク粒子を石膏型方向に移動させ沈着させる。次いで、
沈降層形成の後排水し、乾燥後パイプ形状の成形体を石
膏型より取り出し焼結して、セラミック非対称膜を形成
する。
It is also possible to form a pipe-shaped ceramic asymmetric membrane utilizing the principle that the sedimentation velocity in water is proportional to the particle size. For example, this asymmetric membrane is made through the following steps. First, water is filled in a gypsum mold having a cylindrical space. Next, a thin pipe filled with slurry is introduced into the center of the water column, and the slurry is introduced into the center of the water column by removing the plug. Subsequently, the gypsum mold is rotated, and the ceramic particles in the slurry are moved by the centrifugal force in the gypsum mold direction and deposited. Then
After the sedimentation layer is formed, water is drained, and after drying, the pipe-shaped molded product is taken out of the gypsum mold and sintered to form a ceramic asymmetric membrane.

断熱材等に使用されるセラミック多孔体は、発泡法、
可燃物の燃焼除去、ファイバーと粒子の配合など、種々
な方法で作ることができ、夫々の製法において、傾斜的
に気孔径を導入することが可能である。ここで、発泡法
によるセラミック多孔体を成形する際に、傾斜的に気孔
径を分布させる方法は下記〜に示す通りである。
まず、セラミック粉粒体に水などの分散剤を加えてスラ
リー状とし、これを発泡剤,バインダーなどを添加し、
加熱するなどして発泡剤を分解してガスを発生させ、ス
ラリーを発泡させる。次に、発泡体を乾燥して水分を
除去することによって固化する。しかし、発泡体は表面
積が大きいため、固化する前に泡が合体して大きな泡に
成長する。従って、泡を石膏板のような吸収性のある材
料にのせる。これにより、石膏に接する部分は吸収さ
れ、泡が合体する前に固化が進行する。このようにして
泡径が傾斜的に分布するセラミック発泡体が成形でき
る。更に、この発泡体を十分乾燥した後焼成すること
により、泡径が傾斜的に分布した泡状セラミックス多孔
体を得る。なお、可燃物を燃焼除去して気孔を導入する
セラミックッス多孔体についても、前記傾斜気孔非対称
膜と同様に、可燃物をまず傾斜的に成形し、可燃物粒子
の空隙にセラミックスラリーを流し込む事によって成形
できる。
The ceramic porous body used for heat insulation etc.
It can be made by various methods such as combustion removal of combustibles and blending of fibers and particles. In each of the production methods, it is possible to introduce a pore diameter with a gradient. Here, a method of distributing the pore diameter in a gradient manner when forming the ceramic porous body by the foaming method is as described below.
First, a dispersing agent such as water is added to the ceramic powder to form a slurry, which is then added with a foaming agent, a binder, and the like.
The foaming agent is decomposed by heating or the like to generate gas, and the slurry is foamed. Next, the foam is dried and solidified by removing moisture. However, since the foam has a large surface area, the bubbles coalesce and grow into large bubbles before solidifying. Therefore, the foam is placed on an absorbent material such as gypsum board. As a result, the portion in contact with the gypsum is absorbed, and the solidification proceeds before the bubbles coalesce. In this way, a ceramic foam in which the foam diameter is distributed with a gradient can be formed. Furthermore, the foamed body is sufficiently dried and then fired to obtain a foamed ceramic porous body in which the bubble diameter is distributed in a gradient. In addition, as for the ceramic porous body which introduces pores by burning and removing combustibles, similarly to the inclined pore asymmetric membrane, the combustibles are first formed obliquely, and the ceramic slurry is poured into the voids of the combustible particles. Can be molded.

[作 用] 本発明によれば、使用目的に応じて化学的成分や多孔
構造の異なるものを簡単に作ることができ、かつコスト
低減をなし得るセラミック多孔体を得ることができる。
[Operation] According to the present invention, it is possible to easily produce one having different chemical components and porous structures according to the purpose of use, and to obtain a ceramic porous body capable of reducing costs.

以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.

[実施例1] まず、最大径20μmの電融アルミナ粒子と平均粒径2
μのバイヤー法アルミナ粉、及び平均粒径0.5μmのア
ラム分解アルミナ粉を混合し、0.1〜20μmの範囲をカ
バーするアルミナ粉粒体を調整した。次に、この粉粒体
100部,イオン交換水30部,ポリアクリル酸アンモニウ
ム0.5部をポットミルにて一昼夜混合してスラリーとし
た。
Example 1 First, fused alumina particles having a maximum diameter of 20 μm and an average diameter of 2
The Bayer method alumina powder having an average particle size of 0.5 μm and the alum-decomposed alumina powder having an average particle size of 0.5 μm were mixed to prepare alumina powder particles covering a range of 0.1 to 20 μm. Next, this powder
100 parts, 30 parts of ion-exchanged water, and 0.5 part of ammonium polyacrylate were mixed in a pot mill for 24 hours to form a slurry.

一方、内径φ30mm、長さ100mmの空洞部をもった2つ
割りの石膏型を予め製作しておき、この石膏型中にアラ
ム分解アルミナ粉5部を分散したイオン交換水を満た
し、この水中の中心部に内径φ5mmのガラス管よりなる
スポイト中より上記スラリーを静に注入した。次に、石
膏型に栓を施し、この石膏型を1000rpmで10分間回転し
た。つづいて、栓を開放し、石膏型内の水を静に流し出
した後、室内に放置し内面にアルミナ粉粒体よりなる薄
い層を付着させた石膏型を乾燥した。
On the other hand, a two-piece gypsum mold having an inner diameter of φ30 mm and a length of 100 mm was prepared in advance, and the gypsum mold was filled with ion exchange water in which 5 parts of alum-decomposed alumina powder were dispersed. The slurry was gently poured into the center of a dropper made of a glass tube having an inner diameter of 5 mm. Next, the gypsum mold was plugged, and the gypsum mold was rotated at 1000 rpm for 10 minutes. Subsequently, the stopper was opened and the water in the gypsum mold was allowed to flow out gently, and then left in a room to dry the gypsum mold having a thin layer of alumina powder adhered to the inner surface.

次に、アルミナ管状成形体を石膏型を二つに割って取
り出した。総厚さ(H)は1mmであり、20μmの粒子か
ら0.2μmの粉に至る粉粒体が実質的に傾斜的に充填焼
結された。ここで、予め石膏型イオン交換水に分散して
おいたアラム分散アルミナ粉は、粒子成長し最小粒径が
0.2μmとなっている事が確認された。なお、アラム分
解アルミナは、粒子成長し粒径が0.2μmとなってい
た。
Next, the plaster mold was split into two and the alumina tubular molded body was taken out. The total thickness (H) was 1 mm, and the particles ranging from 20 μm particles to 0.2 μm powder were filled and sintered substantially obliquely. Here, the alum-dispersed alumina powder previously dispersed in the gypsum-type ion-exchanged water grows to have a minimum particle size.
It was confirmed that the thickness was 0.2 μm. The alum-decomposed alumina was grown to have a particle size of 0.2 μm.

このようにして得られた管状アルミナ多孔体1は、第
1図及び第2図に示す如く、最外層である粒子径(L1
20μmのセラミックスからなる最大径層2から最内層で
ある粒子径が0.2μmのセラミックスからなる最小径層
3まで、各層の粒子径が順に小さくなるように複数層積
層された構成となっている。
As shown in FIG. 1 and FIG. 2, the tubular alumina porous body 1 thus obtained has a particle diameter (L 1 ) as an outermost layer.
A plurality of layers are laminated so that the particle diameter of each layer becomes smaller in order from the largest diameter layer 2 made of ceramics of 20 μm to the smallest inner diameter layer 3 made of ceramics having a particle diameter of 0.2 μm.

事実、前記焼成体を切断し、顕微鏡で微細構造を観察
したところ、層厚は約1mmであり、20μmからの粒子か
ら0.2μmの粉に至る粉粒体が実質的に傾斜して充填焼
結されていた。予め石膏型イオン交換水に分散しておい
たアラム分解アルミナ粉は、大きな粒子の結合に寄与し
ている事が確認された。アラム分解アルミナは、粒子成
長し最小粒径が0.2μmとなっていた。
In fact, when cutting the fired body and observing the microstructure with a microscope, the layer thickness was about 1 mm, and the powder from 20 μm to 0.2 μm powder was substantially inclined and filled and sintered. It had been. It was confirmed that alum-decomposed alumina powder previously dispersed in gypsum-type ion-exchanged water contributed to the binding of large particles. The alum-dissolved alumina grew to have a minimum particle size of 0.2 μm.

上記管状アルミナ多孔体の細孔径分布を水銀圧入ボロ
ンシメータで測定したところ、細孔径は0.1μmから10
μmまで実質的に分布していた。また、上記セラミック
管は肉厚方向に傾斜的に気孔径分布をもった管である事
が判明した。更に、上記セラミック管をフィルターとし
て使用したところ、圧力損失が小さく、かつ振動衝撃な
どに耐え、良好に使用できた。
When the pore size distribution of the tubular alumina porous body was measured by a mercury intrusion boron simeter, the pore size was 0.1 μm to 10 μm.
It was substantially distributed down to μm. It was also found that the ceramic tube was a tube having a pore size distribution inclined in the thickness direction. Furthermore, when the above-mentioned ceramic tube was used as a filter, the pressure loss was small, the device was resistant to vibrations and the like, and it could be used well.

[実施例2] まず、実施例1と同様な方法にて、20μmから5μm
の粒径のカーボン粒子から管状成形体を得た。次に、平
均粒径0.2μmのイットリア安定化ジルコニア粉80部、
イオン交換水20部、ポリアクリル酸アンモニウム2部を
ポットミル中で一昼夜混合してスラリーとした。つづい
て、このスラリーを前記カーボン成形体中に含浸した
後、室内に放置し乾燥した。この後、これを空気中で14
50℃、2時間焼成し、カーボンを焼成除去するとともに
焼結し、φ20mmの管状ジルコニア多孔体を得た。
Example 2 First, in the same manner as in Example 1, 20 μm to 5 μm
A tubular molded body was obtained from carbon particles having a particle size of Next, 80 parts of yttria-stabilized zirconia powder having an average particle size of 0.2 μm,
20 parts of ion-exchanged water and 2 parts of ammonium polyacrylate were mixed in a pot mill for 24 hours to form a slurry. Subsequently, the slurry was impregnated into the carbon molded body, and then left to dry in a room. After this, put it in air 14
The resultant was fired at 50 ° C. for 2 hours, fired to remove carbon, and sintered to obtain a tubular zirconia porous body having a diameter of 20 mm.

このようにして得られた管状ジルコニア多孔体は、図
示しないが、最外層が粒子径15μmのセラミックスから
なり、最内層が粒子径が3μmのセラミックスからな
り、各層の粒子径が最外層から順に小さくなるように複
数層積層された構成となっている。
Although the tubular zirconia porous body thus obtained is not shown, the outermost layer is made of a ceramic having a particle diameter of 15 μm, the innermost layer is made of a ceramic having a particle diameter of 3 μm, and the particle diameter of each layer is gradually reduced from the outermost layer. It has a configuration in which a plurality of layers are stacked.

[実施例3] まず、平均粒径0.8μmの窒化珪素粉100部,平均粒径
0.2μmのアルミナ粉5部,平均粒径0.5μmのイットリ
ア5部,イオン交換水30部,及びポリアクリル酸アンモ
ニウム3部をポットミル中で一昼夜混合し、スラリーを
調整した。次に、このスラリーにバインダーとしてメチ
ルセルロース2部,整泡剤としてステアリン酸アンモニ
ウム2部添加し、泡立て機で泡を立てた。つづいて、こ
の泡を乾燥した石膏板に流し、更に乾燥防止のため泡を
ビニールシートで覆って室内に放置した。泡状スラリー
中の水分は石膏型に吸収され、泡の下面から固化が進行
した。同時に、泡は少しずつ合体していった。一昼夜放
置乾燥後、乾燥した泡状成形体を窒素ガス中で600℃、
2時間加熱することで脱脂し、更に窒素ガス中で1820℃
で2時間焼成して泡状窒化珪素セラミックスを得た。
Example 3 First, 100 parts of silicon nitride powder having an average particle size of 0.8 μm, average particle size
5 parts of 0.2 μm alumina powder, 5 parts of yttria having an average particle size of 0.5 μm, 30 parts of ion-exchanged water, and 3 parts of ammonium polyacrylate were mixed in a pot mill for 24 hours to prepare a slurry. Next, 2 parts of methylcellulose as a binder and 2 parts of ammonium stearate as a foam stabilizer were added to the slurry, and foaming was performed with a whisk. Subsequently, the foam was poured on a dried gypsum board, and further, the foam was covered with a vinyl sheet to prevent drying, and left indoors. The moisture in the foam slurry was absorbed by the gypsum mold, and solidification proceeded from the lower surface of the foam. At the same time, the bubbles gradually coalesced. After leaving to dry all day and night, the dried foamed body was heated at 600 ° C in nitrogen gas.
Degreasing by heating for 2 hours, then 1820 ℃ in nitrogen gas
For 2 hours to obtain a foamed silicon nitride ceramic.

泡状セラミックスを切断してセルの大きさを測定した
ところ、乾燥方向に100μmから300μmの傾斜的にセル
径のが分布したものとなっている。このセラミック多孔
体を窒素雰囲気における断熱材として使用したところ、
従来のカーボンファイバーによる断熱材に比べ、約2倍
の断熱効果が得られた。
When the cell size was measured by cutting the foamed ceramic, the cell diameter was distributed in a gradient of 100 μm to 300 μm in the drying direction. When this ceramic porous body was used as a heat insulator in a nitrogen atmosphere,
About twice the heat insulating effect was obtained as compared with the heat insulating material using the conventional carbon fiber.

[発明の効果] 以上詳述した如く本発明によれば、使用目的に応じて
化学的成分や多孔構造の異なるものを簡単に作ることが
でき、かつコスト低減をなし得るセラミック多孔体を提
供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a porous ceramic body that can easily produce a substance having a different chemical component or porous structure according to the purpose of use and can reduce the cost. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る管状アルミナ多孔体の
説明図、第2図は第1図のX−Xに沿う要部の断面図で
ある。 1……管状アルミナ多孔体、2……最大径層、3……細
小径層。
FIG. 1 is an explanatory view of a tubular porous alumina body according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view of a main part along XX of FIG. 1 ... tubular alumina porous body, 2 ... maximum diameter layer, 3 ... small diameter layer.

フロントページの続き (72)発明者 白石 耕一 神奈川県秦野市曽屋30番地 東芝セラミ ックス株式会社中央研究所内 (72)発明者 安藤 久爾子 神奈川県秦野市曽屋30番地 東芝セラミ ックス株式会社中央研究所内 (56)参考文献 特開 昭63−291881(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 38/00 Continued on the front page (72) Inventor Koichi Shiraishi 30 Soya, Hadano-shi, Kanagawa Prefecture, Central Research Laboratory Toshiba Ceramics Co., Ltd. (72) Inventor Kuniko Ando 30 Soya, Hadano-shi, Kanagawa Prefecture, Central Research Laboratory Toshiba Ceramics ( 56) References JP-A-63-291881 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 38/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気孔径の異なるセラミックスから構成され
る複数のセラミック層を、最外部を気孔径の大きいセラ
ミックスからなるセラミックス層とし、最内部を気孔径
の小さいセラミックスからなるセラミックス層とし、順
次厚さ方向に傾斜的に積層してなることを特徴とするセ
ラミック多孔体。
A ceramic layer composed of ceramics having different pore diameters, a ceramic layer composed of ceramics having a large pore diameter at the outermost part, and a ceramic layer composed of ceramics having a small pore diameter at the outermost part. A ceramic porous body characterized in that it is laminated obliquely in the vertical direction.
JP2340579A 1990-11-30 1990-11-30 Ceramic porous body Expired - Fee Related JP2997542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340579A JP2997542B2 (en) 1990-11-30 1990-11-30 Ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340579A JP2997542B2 (en) 1990-11-30 1990-11-30 Ceramic porous body

Publications (2)

Publication Number Publication Date
JPH04209772A JPH04209772A (en) 1992-07-31
JP2997542B2 true JP2997542B2 (en) 2000-01-11

Family

ID=18338350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340579A Expired - Fee Related JP2997542B2 (en) 1990-11-30 1990-11-30 Ceramic porous body

Country Status (1)

Country Link
JP (1) JP2997542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129253A1 (en) * 2010-04-12 2011-10-20 住友大阪セメント株式会社 Exhaust gas purification filter, and method for manufacturing exhaust gas purification filter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178137A (en) * 2000-12-19 2002-06-25 Tokyo Yogyo Co Ltd Aluminum melting and holding furnace
JP2006282496A (en) * 2005-03-08 2006-10-19 Bridgestone Corp Porous body composed of silicon carbide sintered body and method for manufacturing the same
JP4599591B2 (en) * 2005-05-20 2010-12-15 独立行政法人産業技術総合研究所 Manufacturing method of ceramic structure
JP4934466B2 (en) * 2006-03-27 2012-05-16 シチズンファインテックミヨタ株式会社 Porous cover and method for manufacturing the same
JP4714640B2 (en) * 2006-06-07 2011-06-29 新日本製鐵株式会社 Manufacturing method of heat insulating gradient material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129253A1 (en) * 2010-04-12 2011-10-20 住友大阪セメント株式会社 Exhaust gas purification filter, and method for manufacturing exhaust gas purification filter
JP2011218310A (en) * 2010-04-12 2011-11-04 Sumitomo Osaka Cement Co Ltd Exhaust gas purification filter, and method for manufacturing the same
US8741020B2 (en) 2010-04-12 2014-06-03 Sumitomo Osaka Cement Co., Ltd. Exhaust gas purification filter, and method of manufacturing exhaust gas purification filter

Also Published As

Publication number Publication date
JPH04209772A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
US5762841A (en) Ceramic porous body having a continuous particle size distribution
US3097930A (en) Method of making a porous shape of sintered refractory material
JP4176278B2 (en) Ceramic porous body and method for producing the same
CN112321286A (en) Multilayer porous ceramic material and preparation method thereof
JP2008069069A (en) Method for manufacturing honeycomb structured body and material composition for honeycomb fired body
WO2008032391A1 (en) Process for producing honeycomb structure and raw-material composition for burnt honeycomb
KR930005940A (en) Supported Microporous Ceramic Membrane
US4070197A (en) Gas tight silicon carbide body
US6613255B2 (en) Method of making a permeable ceramic tile insulation
CN102247764A (en) Carbon/graphite/porous matrix composite membrane and preparation method and application thereof
CN107619226B (en) Porous cement film and preparation method and application thereof
JP2997542B2 (en) Ceramic porous body
KR20150004512A (en) Method for manufacturing porous ceramic membrane with controlled pore characteristics and porous ceramic membrane manufactured thereby
CN113624048A (en) Porous ceramic with straight-hole gradient structure, capillary core and preparation method of porous ceramic
EP1063005B1 (en) Ceramic membrane
JP6667614B2 (en) Porous support, method for manufacturing porous support, separation membrane structure, and method for manufacturing separation membrane structure
CN110790574B (en) Si with hierarchical pore structure3N4-SiCN ceramic and preparation method thereof
KR20140011508A (en) Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same
CN104667762A (en) Manufacturing method for seamless metal pipe
WO1990015661A1 (en) Porous ceramic membrane and method
JP3850668B2 (en) Porous inorganic material having porous ceramic membrane and method for producing the same
Li et al. Kieselguhr–Mullite ceramic membrane substrate fabricated by line compounding technique
JP2008260655A (en) Porous ceramic, and filter for sensor using the same
JP5441067B2 (en) Porous clay material and method for producing the same
Muda et al. Effect of SiO2 solid loading and sintering temperatures on the physical properties of SiO2-NiO foam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees