JP2997265B1 - Electrolytic reduction device - Google Patents

Electrolytic reduction device

Info

Publication number
JP2997265B1
JP2997265B1 JP11020891A JP2089199A JP2997265B1 JP 2997265 B1 JP2997265 B1 JP 2997265B1 JP 11020891 A JP11020891 A JP 11020891A JP 2089199 A JP2089199 A JP 2089199A JP 2997265 B1 JP2997265 B1 JP 2997265B1
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic cell
conductive
molten salt
conductive container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11020891A
Other languages
Japanese (ja)
Other versions
JP2000219990A (en
Inventor
直樹 寺前
康史 星野
寛 高澤
毅 尾上
Original Assignee
金属鉱業事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金属鉱業事業団 filed Critical 金属鉱業事業団
Priority to JP11020891A priority Critical patent/JP2997265B1/en
Application granted granted Critical
Publication of JP2997265B1 publication Critical patent/JP2997265B1/en
Publication of JP2000219990A publication Critical patent/JP2000219990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

【要約】 【課題】 陰極部を電解槽から電気的に確実に絶縁で
き、陰極電流密度が向上して溶融金属の回収率を増大さ
せることができ、比較的安価でかつ大容量の電解還元装
置を提供できる。 【解決手段】 電解還元装置は、溶融塩18を貯え底部
の一部に凹部11が形成された電解槽12と、凹部内に
凹部と所定の隙間をあけかつ電解槽と電気的に絶縁して
設けられた導電性容器13と、上記隙間に連通する不活
性ガスの導入流路12aと、電解槽内に吹出すように導
入流路に不活性ガスを圧送するガス供給手段と、電解槽
の外部に設けられ溶融塩18を溶融状態にして電解槽の
電解液とするヒータ17と、電解槽の溶融塩中に保持さ
れる陽極19とを備える。凹部周縁と容器の上端周縁と
が蓋16で覆われ、導電性容器の底部に陰極となる導電
性突起13aが凹部より突設される。
A relatively inexpensive and large-capacity electrolytic reduction device that can reliably insulate a cathode portion electrically from an electrolytic cell, improve the cathode current density and increase the recovery rate of molten metal, Can be provided. An electrolytic reduction device is configured to store a molten salt (18) and form a concave part (11) in a part of a bottom part, and to provide a predetermined gap between the concave part and the concave part in the concave part and to electrically insulate the electrolytic tank. A conductive container 13 provided, an inert gas introduction passage 12a communicating with the gap, gas supply means for pressure-feeding the inert gas into the introduction passage so as to blow out into the electrolytic bath, The apparatus includes a heater 17 provided outside to make a molten salt 18 into a molten state to be used as an electrolytic solution in an electrolytic cell, and an anode 19 held in the molten salt in the electrolytic cell. The periphery of the recess and the periphery of the upper end of the container are covered with a lid 16, and a conductive projection 13a serving as a cathode is provided at the bottom of the conductive container so as to protrude from the recess.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融塩電解により
ウラン等の溶融塩中において複数の原子価をとる金属を
溶融状態で生成する電解還元装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic reduction apparatus for producing a metal having a plurality of valences in a molten state in a molten salt such as uranium by molten salt electrolysis.

【0002】[0002]

【従来の技術】溶融塩電解では金属酸化物や金属塩が還
元されて陰極に溶融金属として生成され、アルミニウム
等の金属を生産する方法としてフッ化物溶融塩を電解液
とした溶融塩電解法が知られている。この溶融塩電解法
では、電解槽の上方に陽極を設け、電解槽の底部を陰極
とした構造の電解還元装置が一般的に用いられている。
このような装置として従来、図4に示すようなものが知
られている。即ち、電解槽1は電解電流が溶融塩2の中
を流れる際に発生する熱を利用して加熱され、電解槽の
厳密な温度管理により電解槽1の側面部1aのフッ化物
塩部分2aを非溶融状態にして電解槽の側面部1aを絶
縁状態にすることにより、陰極面積を実質的に電解槽1
の底部のみに限定して電解を行い、必要な陰極電流密度
を得ることができるようになっている。また図5に示す
ように、内側面に絶縁層3を有するAl電解槽4内に溶
融塩浴5を生成させ、溶融塩浴5中に上方から陽極6を
吊り下げ、陰極7を中実又は中空の形状の複数の電極か
ら構成し、この陰極7を電解槽4の底部に生成した溶融
Alパッド8浴面から突出するように設け、陽極33の
下面と陰極30の上面との間隔を特定の短い間隔に保つ
ことにより、陰極の消耗と両極間の電圧降下を少なくす
る金属の電解製造法が知られている(米国特許4,07
1,420)。
2. Description of the Related Art In molten salt electrolysis, a metal oxide or a metal salt is reduced and formed as a molten metal on a cathode. As a method for producing a metal such as aluminum, a molten salt electrolysis method using a fluoride molten salt as an electrolytic solution is known. Are known. In this molten salt electrolysis method, an electrolytic reduction apparatus having a structure in which an anode is provided above an electrolytic cell and the bottom of the electrolytic cell is used as a cathode is generally used.
Conventionally, such a device as shown in FIG. 4 is known. That is, the electrolytic cell 1 is heated by using heat generated when an electrolytic current flows through the molten salt 2, and the fluorinated salt portion 2 a of the side surface 1 a of the electrolytic cell 1 is controlled by strict temperature control of the electrolytic cell. By making the side portion 1a of the electrolytic cell in a non-molten state and insulated, the cathode area is substantially reduced.
Electrolysis is performed only on the bottom portion of the substrate, and a required cathode current density can be obtained. Further, as shown in FIG. 5, a molten salt bath 5 is generated in an Al electrolytic cell 4 having an insulating layer 3 on the inner surface, an anode 6 is suspended from above in the molten salt bath 5, and a cathode 7 is solid or The cathode 7 is provided at the bottom of the electrolytic cell 4 so as to protrude from a bath surface of a molten Al pad 8 formed at the bottom of the electrolytic cell 4. The gap between the lower surface of the anode 33 and the upper surface of the cathode 30 is specified. A method of electrolytically producing a metal is known in which the distance between the electrodes is reduced by reducing the distance between the electrodes by reducing the distance between the electrodes.
1,420).

【0003】[0003]

【発明が解決しようとする課題】しかし、図4に示した
前者の溶融塩電解方法では電解槽側面部の塩部分2aの
みを非溶融状態にして電解槽側面部に絶縁部分を形成さ
せるため、溶融塩の融点付近での温度制御が要求され、
装置の運転中の電解槽全体の厳密な温度管理が必要とな
る不具合がある。またアルミニウム電解にあってはアル
ミニウムの融点が支持塩の融点より低いため、支持塩温
度が一部において支持塩を凍結させる温度であってもア
ルミニウムは融体として生成するが、ウランの電解にあ
ってはウランの融点が支持塩の融点より高いため、支持
塩温度の一部を凍結させる温度ではウランが固体状態と
なり、生成される金属のその後の取扱いが困難になる不
具合がある。また電解槽1の側面部1aを絶縁状態にし
て陰極面積を制御する方法では陰極面積を陽極面積より
小さくすることは困難で、複数のイオン種を持つウラン
のように高い陰極電流密度での電解が必要となる金属で
は、その電解が困難になる場合がある。このような場合
に、電解電流を増大させることも考えられるが、電解電
流を増大させることは陽極電流密度の増大を伴い、陽極
が気泡により覆われるいわゆる陽極効果が発生する可能
性が高まり好ましくない。
However, in the former molten salt electrolysis method shown in FIG. 4, since only the salt portion 2a on the side surface of the electrolytic cell is in a non-molten state, an insulating portion is formed on the side surface of the electrolytic cell. Temperature control around the melting point of the molten salt is required,
There is a problem that strict temperature control of the entire electrolytic cell is required during operation of the apparatus. Also, in aluminum electrolysis, since the melting point of aluminum is lower than the melting point of the supporting salt, aluminum is produced as a melt even when the supporting salt temperature is a temperature at which the supporting salt is partially frozen. Since the melting point of uranium is higher than the melting point of the supporting salt, uranium is in a solid state at a temperature at which a part of the temperature of the supporting salt is frozen, so that there is a problem that it is difficult to handle the generated metal thereafter. Further, it is difficult to make the cathode area smaller than the anode area by controlling the cathode area while keeping the side surface portion 1a of the electrolytic cell 1 in an insulated state, and the electrolysis at a high cathode current density such as uranium having a plurality of ion species is difficult. In the case of metals that require, the electrolysis may be difficult. In such a case, it is conceivable to increase the electrolysis current, but increasing the electrolysis current is accompanied by an increase in the anode current density, and the possibility that the so-called anodic effect in which the anode is covered with bubbles increases, which is not preferable. .

【0004】また図5に示した後者の電解製造法では、
電解槽4と突出した陰極7が電気的に接続されているた
め、絶縁層3の絶縁性が劣化した場合、その部分の電解
槽4にも金属が析出し易い問題点がある。
In the latter electrolytic manufacturing method shown in FIG.
Since the electrolytic cell 4 and the protruding cathode 7 are electrically connected to each other, when the insulating property of the insulating layer 3 is deteriorated, there is a problem that metal is easily deposited also in the electrolytic cell 4 in that portion.

【0005】本発明の目的は、陰極部を電解槽から電気
的に確実に絶縁でき、陰極電流密度が向上して溶融金属
の回収率を増大させることができ、比較的安価でかつ大
容量の電解還元装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reliably insulate the cathode portion from the electrolytic cell, improve the cathode current density and increase the recovery rate of molten metal, and provide a relatively inexpensive and large-capacity battery. An electrolytic reduction device is provided.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、溶融塩18を貯え底部の一部に凹部
11が形成された電解槽12と、凹部11内に凹部11
と所定の隙間をあけかつ電解槽12と電気的に絶縁して
設けられた導電性容器13と、上記隙間に連通する不活
性ガスの導入流路12aと、電解槽12内に吹出すよう
に導入流路12aに不活性ガスを圧送するガス供給手段
と、電解槽12の外部に設けられ溶融塩18を溶融状態
にして電解槽12の電解液とするヒータ17と、電解槽
12の溶融塩18中に保持される陽極19とを備えた電
解還元装置であって、電解槽12の凹部11周縁と導電
性容器13の上端周縁とを覆う蓋16が設けられ、導電
性容器13の底部に1又は2以上の陰極となる導電性突
起13aが凹部11より突出するように設けられたこと
を特徴とする電解還元装置である。凹部11と導電性容
器13との間に隙間を設けることにより、導電性容器1
3と電解槽12とは電気的に絶縁される。ガス供給手段
により導入流路12aを介して凹部11と導電性容器1
3との間の隙間に不活性ガスを圧送することにより、溶
融した溶融塩18が隙間に侵入することを防止する。こ
の状態で陽極19及び陰極となる導電性突起13aに通
電して電解還元を実施すると、凹部11より突出する突
起13aに電流が集中し、溶融塩18中の金属陽イオン
が突起13aに溶融金属となって析出し、この溶融金属
21が突起13aに沿って流下して導電性容器13内に
貯えられる。
The invention according to claim 1 is
As shown in FIG. 1, an electrolytic cell 12 in which a molten salt 18 is stored and a concave portion 11 is formed in a part of a bottom portion, and a concave portion 11 is formed in the concave portion 11.
And a conductive container 13 provided with a predetermined gap and electrically insulated from the electrolytic cell 12, an inert gas introduction flow path 12 a communicating with the gap, and blown into the electrolytic cell 12. A gas supply means for pumping an inert gas into the introduction channel 12a, a heater 17 provided outside the electrolytic cell 12 to make the molten salt 18 into a molten state and serve as an electrolytic solution for the electrolytic cell 12, and a molten salt for the electrolytic cell 12 An electrolytic reduction device comprising an anode 19 held in an electrocatalyst 18, wherein a lid 16 is provided to cover the periphery of the concave portion 11 of the electrolytic cell 12 and the periphery of the upper end of the conductive container 13. An electrolytic reduction apparatus characterized in that one or more conductive projections 13a serving as cathodes are provided so as to protrude from the recesses 11. By providing a gap between the recess 11 and the conductive container 13, the conductive container 1
3 and the electrolytic cell 12 are electrically insulated. The recess 11 and the conductive container 1 are introduced by the gas supply means through the introduction channel 12a.
By pumping the inert gas into the gap between the molten salt 18 and the molten salt 3, the molten salt 18 is prevented from entering the gap. In this state, when electricity is supplied to the anode 19 and the conductive projection 13a serving as a cathode to perform electrolytic reduction, current concentrates on the projection 13a projecting from the concave portion 11, and metal cations in the molten salt 18 are deposited on the projection 13a by molten metal. The molten metal 21 flows down along the protrusion 13 a and is stored in the conductive container 13.

【0007】また蓋16を凹部11周縁と導電性容器1
3の上端周縁とを覆うように凹部11周縁と導電性容器
13の間に設けることにより、圧送する不活性ガスのガ
ス量を少なくしても溶融塩が隙間に侵入することを防止
し、陰極となる導電性突起13aと陽極19との距離を
接近させることができるので、陰極の電流密度が向上し
溶融金属の回収率を増大させることができる。
[0007] Further, the lid 16 is placed on the periphery of the concave portion 11 and the conductive container 1.
3 is provided between the periphery of the concave portion 11 and the conductive container 13 so as to cover the periphery of the upper end of the cathode 3 to prevent the molten salt from entering the gap even if the amount of the inert gas to be pumped is reduced. Since the distance between the conductive projection 13a and the anode 19 can be reduced, the current density of the cathode can be improved and the recovery rate of the molten metal can be increased.

【0008】請求項2に係る発明は、請求項1に係る発
明であって、複数の導電性突起13aが導電性容器13
の底部中心に対して対称に設けられた電解還元装置であ
る。複数の導電性突起13aを使用することにより、陽
極に対向する陰極の表面積が増大し、溶融金属の回収率
を増大させる。請求項3に係る発明は、請求項1に係る
発明であって、蓋16が絶縁性部材である電解還元装置
である。蓋16を絶縁性部材により構成することによ
り、万一溶融塩が隙間に侵入した場合であっても、陰極
となる導電性容器13における面積が拡大することを防
止する。
The invention according to a second aspect is the invention according to the first aspect, wherein the plurality of conductive protrusions 13 a
Is an electrolytic reduction device provided symmetrically with respect to the center of the bottom. By using the plurality of conductive protrusions 13a, the surface area of the cathode facing the anode increases, and the recovery rate of the molten metal increases. The invention according to claim 3 is the invention according to claim 1, which is an electrolytic reduction device in which the lid 16 is an insulating member. By forming the lid 16 with an insulating member, even if the molten salt enters the gap, the area of the conductive container 13 serving as a cathode is prevented from being enlarged.

【0009】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、導電性容器13が絶縁材
14を介して電解槽12の底部に設置された電解還元装
置である。導電性容器13を絶縁材14を介して設置す
ることにより、導電性容器13を確実に凹部11と所定
の隙間をもって容易に電解槽12の底部に設けることが
できる。
The invention according to claim 4 is the invention according to claims 1 to 3
An invention according to any one of the above, wherein the conductive container 13 is an electrolytic reduction device provided at the bottom of the electrolytic cell 12 via an insulating material 14. By installing the conductive container 13 with the insulating material 14 interposed therebetween, the conductive container 13 can be easily provided at the bottom of the electrolytic cell 12 with a certain gap from the concave portion 11.

【0010】請求項5に係る発明は、請求項1ないし4
いずれかに係る発明であって、電解槽12、導電性容器
13及び導電性突起13aがそれぞれ黒鉛からなり、蓋
16が窒化ホウ素からなる電解還元装置である。黒鉛及
び窒化ホウ素を材料とすることにより、比較的高価な窒
化ホウ素のバルク材の使用量を減少させ、装置を安価に
製作することができる。
[0010] The invention according to claim 5 is the invention according to claims 1 to 4.
An invention according to any one of the above, wherein the electrolytic cell 12, the conductive container 13, and the conductive protrusion 13a are each made of graphite, and the lid 16 is made of boron nitride. By using graphite and boron nitride as materials, the amount of relatively expensive boron nitride bulk material used can be reduced, and the device can be manufactured at low cost.

【0011】[0011]

【発明の実施の形態】本発明の電解還元装置の実施の形
態を図面に基づいて説明する。この電解還元装置は複数
の原子価をとる金属であるウランの酸化物(UO2,U3
8等)を電解還元するのに適する。図1に示すよう
に、黒鉛製の電解槽12は底部に貫通孔10を有する円
筒体であって、その底部の中央に円形の凹部11が形成
される。凹部11内には凹部11と所定の隙間を有する
ように円形の黒鉛製導電性容器13が設けられる。導電
性容器13の底部には陰極となる単一の導電性突起13
aが凹部11より突出するように設けられる。導電性容
器13は窒化ホウ素製の絶縁材14を介して凹部11の
底部に設置される。絶縁材14は電解槽12と導電性容
器13とを適切な距離で離間しかつ電気的に絶縁する。
電解槽12の凹部11周縁と導電性容器13の先端周縁
との間には絶縁性部材である円形の窒化ホウ素製蓋16
が設けられる。蓋16の上面は電解槽12の底部表面と
同一平面をなすように形成され、蓋16には下端が導電
性容器13に所定の隙間を持って挿入可能な外形を有す
る挿入筒部16aが形成される。電解槽12には導電性
容器13との隙間に連通する不活性ガスの導入流路12
aが形成され、電解槽12の外部には図示しないがこの
導入流路12aに不活性ガスを圧送するガス供給手段で
あるガスボンベが設けられる。電解槽12の溶融塩18
中には陽極19が保持して設けられる。また電解槽12
の外部には加熱することにより溶融塩18を溶融状態に
して電解槽12の電解液とするヒータ17が設けられ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electrolytic reduction apparatus according to the present invention will be described with reference to the drawings. This electrolytic reduction apparatus uses uranium oxide (UO 2 , U 3) , which is a metal having multiple valences.
O 8 ) is suitable for electrolytic reduction. As shown in FIG. 1, an electrolytic cell 12 made of graphite is a cylindrical body having a through hole 10 at the bottom, and a circular recess 11 is formed at the center of the bottom. A circular graphite conductive container 13 is provided in the recess 11 so as to have a predetermined gap with the recess 11. A single conductive protrusion 13 serving as a cathode is provided on the bottom of the conductive container 13.
a is provided so as to protrude from the concave portion 11. The conductive container 13 is provided at the bottom of the recess 11 via an insulating material 14 made of boron nitride. The insulating material 14 separates the electrolytic cell 12 and the conductive container 13 at an appropriate distance and electrically insulates the electrolytic cell 12 from the conductive container 13.
Between the periphery of the concave portion 11 of the electrolytic cell 12 and the periphery of the tip of the conductive container 13, a circular boron nitride lid 16 which is an insulating member is provided.
Is provided. The upper surface of the lid 16 is formed so as to be flush with the bottom surface of the electrolytic cell 12, and the lid 16 has an insertion tube portion 16a having an outer shape whose lower end can be inserted into the conductive container 13 with a predetermined gap. Is done. Introducing channel 12 for an inert gas communicating with a gap between conductive vessel 13 and electrolytic vessel 12
a is formed, and a gas cylinder (not shown) serving as a gas supply means for feeding an inert gas under pressure is provided in the introduction flow path 12a (not shown). Molten salt 18 of electrolytic cell 12
Inside, an anode 19 is held and provided. In addition, electrolytic cell 12
A heater 17 is provided outside of the heater 17 so that the molten salt 18 is turned into a molten state by heating and used as an electrolytic solution in the electrolytic cell 12.

【0012】このように構成された電解還元装置では、
凹部11と導電性容器13との間に隙間を設けたので、
導電性容器13と電解槽12との間が電気的に絶縁され
る。この電解還元装置の電解槽12内に支持塩を入れて
溶融状態にし、これと同時に凹部11と導電性容器13
との間の隙間にガス供給手段であるガスボンベにより不
活性ガスを導入流路12aを介して図の実線矢印で示す
ように圧送することにより溶融塩18が隙間に侵入する
ことを防止する。なお、電解槽12の外部に設けられた
ヒータ17により加熱して支持塩を溶融状態にする他
に、電解電流が流れる際に発生する熱を利用して支持塩
を溶融してもよい。
In the electrolytic reduction apparatus configured as described above,
Since a gap is provided between the concave portion 11 and the conductive container 13,
The conductive container 13 and the electrolytic cell 12 are electrically insulated. A supporting salt is put into an electrolytic cell 12 of this electrolytic reduction device to be in a molten state.
The molten salt 18 is prevented from intruding into the gap by feeding an inert gas through the introduction flow path 12a as shown by the solid line arrow in FIG. It should be noted that, besides heating by a heater 17 provided outside the electrolytic cell 12 to bring the supporting salt into a molten state, the supporting salt may be melted using heat generated when an electrolytic current flows.

【0013】支持塩を溶融させた後、陽極19及び陰極
となる導電性突起13aに通電すると、突起13aに電
流が集中し、有効な電流の流れが両者の間に流れる。こ
の状態で原料のUO2,U38等の金属酸化物を電解槽
12に供給すると、この金属酸化物の電解還元が行わ
れ、電解液である溶融塩18中の金属陽イオンは突起1
3aの表面に溶融金属となって析出する。この溶融金属
21は溶融塩との比重差により突起13aに沿って流下
して導電性容器13内に貯えられる。導電性容器13内
に貯留した金属21は、図示しないがその後真空吸引装
置やサイホン装置により、或いは図2に示すように装置
に設けられた排出口13bを介して回収される。なお、
図1に示した実施の形態の電解還元装置では、導電性容
器13の底部に単一の導電性突起13aを凹部11より
突出するように設けたが、この突起の数は2個、3個、
4個以上でもよい。例えば図3(a)及び(b)に示す
ように、4個の導電性突起13aを導電性容器13の底
部中心に対して対称に設けてもよい。
After the supporting salt is melted, when current is supplied to the anode 19 and the conductive projection 13a serving as a cathode, a current is concentrated on the projection 13a, and an effective current flows between them. When a metal oxide such as UO 2 or U 3 O 8 as a raw material is supplied to the electrolytic cell 12 in this state, the metal oxide is electrolytically reduced, and the metal cations in the molten salt 18 as an electrolytic solution are projected. 1
Molten metal is deposited on the surface of 3a. The molten metal 21 flows down along the protrusion 13 a due to a specific gravity difference from the molten salt and is stored in the conductive container 13. The metal 21 stored in the conductive container 13 is recovered by a vacuum suction device or a siphon device (not shown) or through an outlet 13b provided in the device as shown in FIG. In addition,
In the electrolytic reduction apparatus according to the embodiment shown in FIG. 1, a single conductive projection 13a is provided at the bottom of the conductive container 13 so as to project from the recess 11, but the number of the projections is two or three. ,
The number may be four or more. For example, as shown in FIGS. 3A and 3B, four conductive protrusions 13a may be provided symmetrically with respect to the center of the bottom of the conductive container 13.

【0014】[0014]

【実施例】次に本発明の実施例を説明する。 <実施例1>図2に示すように、容積が約70,000
cm3の電解槽12を用意した。即ち、黒鉛製の電解槽
12は底部に貫通孔10を有する円筒体であって、その
底部の中央に円形の凹部11が形成される。電解槽12
の内部には下端が底部と所定の間隔をあけて仕切壁12
bを設け、この仕切壁12bと電解槽12の側壁とによ
り、原料となるウラン酸化物を溶融塩18中に供給する
ための供給口12cを形成した。電解槽12の外部には
加熱することにより塩を溶融状態にして電解槽の電解液
とするヒータ17を設けた。凹部11は電解槽12の底
部に形成された円形の孔であって、孔には内径が126
mm、深さが70mmの円形の黒鉛製導電性容器13を
窒化ホウ素からなる絶縁材14を介して凹部11と所定
の隙間を有するように底部に設置した。導電性容器13
と凹部11との間には、外径が116mmの挿入筒部1
6aを有する窒化ホウ素からなる円形の蓋16をはめ込
み、導電性容器13と挿入筒部16aとの隙間が5mm
になるように電解槽12の底部を封止した。導電性容器
13の底部には陰極となる導電性突起13aを凹部11
より突出するように設けた。
Next, embodiments of the present invention will be described. <Example 1> As shown in FIG.
An electrolytic cell 12 of cm 3 was prepared. That is, the graphite electrolytic cell 12 is a cylindrical body having the through hole 10 at the bottom, and the circular concave portion 11 is formed at the center of the bottom. Electrolysis tank 12
The lower end of the partition wall 12 is spaced apart from the bottom by a predetermined distance.
b, a supply port 12 c for supplying uranium oxide as a raw material into the molten salt 18 was formed by the partition wall 12 b and the side wall of the electrolytic cell 12. A heater 17 was provided outside the electrolytic cell 12 so that the salt was melted by heating to be used as an electrolytic solution in the electrolytic cell. The concave portion 11 is a circular hole formed at the bottom of the electrolytic cell 12 and has an inner diameter of 126.
A circular graphite conductive container 13 having a depth of 70 mm and a depth of 70 mm was placed at the bottom with a predetermined gap from the recess 11 via an insulating material 14 made of boron nitride. Conductive container 13
Between the recess 11 and the insertion cylinder 1 having an outer diameter of 116 mm.
6a, a circular lid 16 made of boron nitride is fitted therein, and the gap between the conductive container 13 and the insertion cylinder 16a is 5 mm.
Was sealed at the bottom of the electrolytic cell 12. A conductive projection 13a serving as a cathode is formed on the bottom of the conductive
It was provided so as to protrude more.

【0015】また導電性容器13には電解により生成さ
れた溶融金属21を排出可能に構成されたクランク状の
排出口13bを形成し、排出口13bの中間に連通する
ように縦孔12dを電解槽12の側壁に形成し、この縦
孔12dに先端にセラミック製の封止栓24aを有する
遮断用ロッド24を挿入した。遮断用ロッド24は図の
実線矢印で示すように上昇すると、この排出口13bを
開放し、破線矢印で示すように下降すると、この排出口
13bを遮断するように構成した。次いで、フッ化物溶
融塩18を生成するフッ化物を準備した。このフッ化物
は74重量%のBaF2と、11重量%のLiFと、1
5重量%のUF4とからなる約180kgの混合物であ
る。このフッ化物混合物を電解槽12に供給し、ヒータ
17の高周波誘導加熱コイルに通電して電解槽12を加
熱し、徐々にウランの融点以上の1200℃まで昇温し
た。これと同時に凹部11と導電性容器13との間の隙
間にガス供給手段であるガスボンベから不活性ガスのア
ルゴンを導入流路12aを介して圧送し、供給したフッ
化物混合物が溶融塩となったときにも、この溶融塩が上
記隙間に侵入することを防止した。
The conductive container 13 is formed with a crank-shaped outlet 13b capable of discharging the molten metal 21 generated by electrolysis, and a vertical hole 12d is formed so as to communicate with the middle of the outlet 13b. A blocking rod 24 formed on the side wall of the tank 12 and having a ceramic sealing plug 24a at the end was inserted into the vertical hole 12d. The shut-off rod 24 is configured to open the outlet 13b when raised as shown by a solid arrow in the drawing, and to shut off the outlet 13b when lowered as shown by a broken arrow. Next, a fluoride for forming the fluoride molten salt 18 was prepared. This fluoride contains 74% by weight of BaF 2 , 11% by weight of LiF,
5 is a mixture of about 180kg consisting wt% of UF 4 Prefecture. This fluoride mixture was supplied to the electrolytic cell 12, and the high-frequency induction heating coil of the heater 17 was energized to heat the electrolytic cell 12, and the temperature was gradually raised to 1200 ° C., which was higher than the melting point of uranium. At the same time, an inert gas, argon, was pumped into the gap between the recess 11 and the conductive container 13 from the gas cylinder, which is a gas supply means, through the introduction channel 12a, and the supplied fluoride mixture became a molten salt. Sometimes, the molten salt was prevented from entering the gap.

【0016】次に、電解槽12の上方から陽極19をフ
ッ化物溶融塩18中に挿入し、導電性突起13aを陰極
として陰極電流密度が0.7〜1.6A/cm2の範囲
で通電した後、原料となるUO2を供給口12cから供
給して溶融塩電解を行った。この溶融塩電解により、電
解液である溶融塩18中のウランイオン(U4+)が突起
13aに金属ウランとなって析出し、この金属ウラン2
1が突起13aに沿って流下して導電性容器13内に貯
留した。この状態での遮断用ロッド24を上昇させて排
出口13bを開放することにより溶融した金属ウラン2
1は排出口13bを介して排出することができ、遮断用
ロッド24を再び下降させて排出口13bを遮断するこ
とにより電解作業を再び再開させることができた。従っ
て、実施例1における電解還元装置では、溶融した金属
ウラン21が排出した分だけ供給口12cから原料のウ
ラン酸化物を新たに供給することにより連続的に電解還
元することができた。
Next, the anode 19 is inserted into the fluoride molten salt 18 from above the electrolytic cell 12, and the current is applied to the conductive projection 13a as a cathode at a cathode current density of 0.7 to 1.6 A / cm 2. After that, UO 2 as a raw material was supplied from a supply port 12c to perform molten salt electrolysis. By this molten salt electrolysis, uranium ions (U 4+ ) in the molten salt 18 which is an electrolytic solution are deposited as uranium metal on the projections 13a, and this uranium ion
1 flows down along the protrusion 13 a and is stored in the conductive container 13. By raising the blocking rod 24 in this state and opening the discharge port 13b, the molten metal uranium 2
1 could be discharged through the outlet 13b, and the electrolysis work could be restarted again by lowering the shut-off rod 24 again to shut off the outlet 13b. Therefore, in the electrolytic reduction apparatus in Example 1, the raw material uranium oxide was newly supplied from the supply port 12c by the amount discharged from the molten metal uranium 21, so that the electrolytic reduction could be continuously performed.

【0017】<比較例1>図4に示す電解槽1と同一の
構造を有する容積が約400リットルの電解槽を用意
し、実施例1と同一組成のフッ化物を電解槽に供給し、
電気炉により1200℃まで昇温して溶融させた。その
後、原料のウラン酸化物を電解槽に入れ電解を行った。
この時、陰極面積は特に限定されていない状態である
が、槽の容積を大きくしたスケールアップを行うことに
よりかろうじて陰極電流密度約0.4A/cm2を保っ
て電解を行った。
Comparative Example 1 An electrolytic cell having the same structure as the electrolytic cell 1 shown in FIG. 4 and having a capacity of about 400 liters was prepared, and a fluoride having the same composition as in Example 1 was supplied to the electrolytic cell.
The temperature was raised to 1200 ° C. by an electric furnace to be melted. Thereafter, the raw material uranium oxide was placed in an electrolytic cell and electrolysis was performed.
At this time, although the cathode area is not particularly limited, electrolysis was performed with a cathode current density of about 0.4 A / cm 2 barely maintained by increasing the volume of the cell and performing scale-up.

【0018】<比較例2>図示しないが、実施例1の黒
鉛電解槽と陰極とを短絡させた以外は実施例1と同一の
条件及び手順で電解を行った。この時の陰極電流密度は
0.1A/cm2以下となった。
<Comparative Example 2> Although not shown, electrolysis was performed under the same conditions and procedures as in Example 1 except that the graphite electrolytic cell of Example 1 and the cathode were short-circuited. At this time, the cathode current density was 0.1 A / cm 2 or less.

【0019】<比較試験及び評価>実施例1、比較例1
及び比較例2における電解終了後、それぞれの電解槽を
解体した。実施例1の電解槽12の凹部11と導電性容
器13との間の隙間を目視により観察した結果、溶融塩
の侵入は認められず空間が確保されていた。また実施例
1、比較例1及び比較例2の電解槽を解体して得られた
電解生成物である金属ウランを取出し、それぞれの金属
ウランの量から溶融塩電解における電流効率を計測し
た。その結果、実施例1における電流効率は55%以上
であったのに対し、比較例1では約30%であった。ま
た比較例2では金属ウランがほとんど析出されず、従っ
て電流効率はほぼ0%であった。これは、比較例1にお
ける陰極電流密度がやや不足であるためと考えられる。
また比較例2で金属ウランがほとんど析出しなかったの
は陰極電流密度が絶対的に不足しているためと考えられ
る。また実施例1において有効に電解が行われ、比較例
2において金属ウランが得られなかったことから、導電
性容器13が電解槽12と確実に絶縁されていることが
判った。
<Comparative Test and Evaluation> Example 1, Comparative Example 1
After the electrolysis in Comparative Example 2 was completed, each electrolytic cell was disassembled. As a result of visually observing the gap between the concave portion 11 of the electrolytic cell 12 of Example 1 and the conductive container 13, no intrusion of the molten salt was observed, and a space was secured. Further, metal uranium, which is an electrolysis product obtained by dismantling the electrolytic cells of Example 1, Comparative Examples 1 and 2, was taken out, and the current efficiency in molten salt electrolysis was measured from the amount of each metal uranium. As a result, the current efficiency in Example 1 was 55% or more, while that in Comparative Example 1 was about 30%. In Comparative Example 2, almost no metal uranium was precipitated, and thus the current efficiency was almost 0%. This is probably because the cathode current density in Comparative Example 1 was slightly insufficient.
Further, the reason why almost no metal uranium was precipitated in Comparative Example 2 is considered to be because the cathode current density was absolutely insufficient. Moreover, since electrolysis was effectively performed in Example 1 and metal uranium was not obtained in Comparative Example 2, it was found that the conductive container 13 was reliably insulated from the electrolytic tank 12.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、電
解槽の底部の一部に形成された凹部内にこの凹部と所定
の隙間をあけかつ電解槽と電気的に絶縁して導電性容器
を設け、上記隙間に連通する不活性ガスの導入流路と、
導入流路に不活性ガスを圧送するガス供給手段と、電解
槽の溶融塩中に保持される陽極とを備え、導電性容器の
底部に1又は2以上の陰極となる導電性突起を上記凹部
より突出するように設けたので、電解を実施した時、陰
極となる導電性突起と陽極との間に電流が集中して有効
に流れる。その結果、陰極部を電解槽から電気的に確実
に絶縁でき、かつ陰極電流密度が向上して溶融金属の回
収率を増大させることができる。
As described above, according to the present invention, a predetermined gap is formed in the recess formed in a part of the bottom of the electrolytic cell, and the conductive part is electrically insulated from the electrolytic cell. Provide an inert container, the introduction flow path of an inert gas communicating with the gap,
A gas supply means for pumping an inert gas into the introduction flow path, and an anode held in a molten salt in an electrolytic cell; and a conductive projection serving as one or more cathodes at the bottom of the conductive container is provided in the recess. Since the electrodes are provided so as to protrude, when the electrolysis is performed, the current concentrates and flows effectively between the conductive projections serving as the cathode and the anode. As a result, the cathode part can be reliably electrically insulated from the electrolytic cell, and the cathode current density can be improved to increase the recovery rate of the molten metal.

【0021】また蓋を凹部周縁と導電性容器の上端周縁
との間に設ければ、圧送する不活性ガスのガス量を少な
くしても溶融塩が隙間に侵入することを防止できる。更
に、電解槽、導電性容器及び導電性突起をそれぞれ黒鉛
から構成し、蓋を窒化ホウ素から構成すれば、高価な窒
化ホウ素のバルク材の使用量を減少させて、比較的安価
で大容量の電解還元装置を得ることができる。
Further, if the lid is provided between the periphery of the concave portion and the periphery of the upper end of the conductive container, it is possible to prevent the molten salt from entering the gap even if the amount of the inert gas to be fed is reduced. Furthermore, if the electrolytic cell, the conductive container, and the conductive protrusions are each made of graphite, and the lid is made of boron nitride, the amount of expensive boron nitride bulk material can be reduced, and a relatively inexpensive and large-capacity battery can be used. An electrolytic reduction device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解還元装置の中央縦断面図。FIG. 1 is a central longitudinal sectional view of an electrolytic reduction device of the present invention.

【図2】本発明の別の電解還元装置の中央縦断面図。FIG. 2 is a central longitudinal sectional view of another electrolytic reduction device of the present invention.

【図3】(a) 本発明の別の導電性容器を示す図3
(b)のA−A線断面図。
FIG. 3A shows another conductive container of the present invention.
FIG. 2B is a sectional view taken along line AA.

【図3】(b) 図3(a)の平面図。FIG. 3 (b) is a plan view of FIG. 3 (a).

【図4】従来の電解還元装置を示す図1に対応する断面
図。
FIG. 4 is a sectional view corresponding to FIG. 1, showing a conventional electrolytic reduction device.

【図5】従来の別の電解還元装置を示す図1に対応する
一部断面斜視図。
FIG. 5 is a partial sectional perspective view corresponding to FIG. 1 showing another conventional electrolytic reduction apparatus.

【符号の説明】[Explanation of symbols]

11 凹部 12 電解槽 12a 導入流路 13 導電性容器 13a 導電性突起 14 絶縁材 16 蓋 17 ヒータ 18 溶融塩 19 陽極 DESCRIPTION OF SYMBOLS 11 Concave part 12 Electrolysis tank 12a Introducing channel 13 Conductive container 13a Conductive protrusion 14 Insulating material 16 Cover 17 Heater 18 Molten salt 19 Anode

フロントページの続き (72)発明者 星野 康史 茨城県那珂郡那珂町大字向山字六人頭 1002番地の14 三菱マテリアル株式会社 総合研究所 環境・エネルギー研究所 内 (72)発明者 高澤 寛 茨城県那珂郡那珂町大字向山字六人頭 1002番地の14 三菱マテリアル株式会社 総合研究所 環境・エネルギー研究所 内 (72)発明者 尾上 毅 茨城県那珂郡那珂町大字向山字六人頭 1002番地の14 三菱マテリアル株式会社 総合研究所 環境・エネルギー研究所 内 (56)参考文献 特開 平11−229173(JP,A) 特開 平8−67998(JP,A) 特開 平3−271389(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 7/00,3/34 Continued on front page (72) Inventor Yasushi Hoshino 14-headed character, Mukaiyama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 1002 14 Mitsubishi Materials Corporation General Research Institute Environmental and Energy Research Laboratory (72) Inventor Hiroshi Takazawa Naka, Ibaraki Prefecture Mitsubishi Materials Co., Ltd.Environmental and Energy Research Laboratories, 1002, 1002, Mukaiyama-shi, 6-head, Naka-machi, Gunma (72) Inventor Takeshi Takeshi, Okayama, Naka-machi, Naka-gun, Naka-gun, Ibaraki Pref. Materials Co., Ltd. Research Laboratory Environment and Energy Research Laboratory (56) References JP-A-11-229173 (JP, A) JP-A-8-67998 (JP, A) JP-A-3-271389 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C25C 7/00, 3/34

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融塩(18)を貯え底部の一部に凹部(11)
が形成された電解槽(12)と、 前記凹部(11)内に前記凹部(11)と所定の隙間をあけかつ
前記電解槽(12)と電気的に絶縁して設けられた導電性容
器(13)と、 前記隙間に連通する不活性ガスの導入流路(12a)と、 前記電解槽(12)内に吹出すように前記導入流路(12a)に
不活性ガスを圧送するガス供給手段と、 前記電解槽(12)の外部に設けられ前記溶融塩(18)を溶融
状態にして前記電解槽(12)の電解液とするヒータ(17)
と、 前記電解槽(12)の溶融塩(18)中に保持される陽極(19)と
を備えた電解還元装置であって、 前記電解槽(12)の凹部(11)周縁と前記導電性容器(13)の
上端周縁とを覆う蓋(16)が設けられ、 前記導電性容器(13)の底部に1又は2以上の陰極となる
導電性突起(13a)が前記凹部(11)より突出するように設
けられたことを特徴とする電解還元装置。
1. A recess (11) for storing a molten salt (18) in a part of a bottom portion.
Formed in the electrolytic cell (12), a conductive container provided in the concave part (11) with a predetermined gap between the concave part (11) and electrically insulated from the electrolytic cell (12) ( 13), an introduction path (12a) of an inert gas communicating with the gap, and a gas supply means for pressure-feeding the inert gas to the introduction path (12a) so as to blow out into the electrolytic cell (12). A heater (17) provided outside of the electrolytic cell (12) to bring the molten salt (18) into a molten state and use the electrolytic solution of the electrolytic cell (12) as an electrolytic solution.
And an anode (19) held in a molten salt (18) of the electrolytic cell (12), wherein the electrolytic cell (12) has a periphery of a concave portion (11) and the conductive material. A lid (16) is provided to cover the periphery of the upper end of the container (13), and a conductive projection (13a) serving as one or more cathodes protrudes from the recess (11) at the bottom of the conductive container (13). An electrolytic reduction device, characterized in that it is provided to perform
【請求項2】 複数の導電性突起(13a)が導電性容器(1
3)の底部中心に対して対称に設けられた請求項1記載の
電解還元装置。
2. A method according to claim 1, wherein the plurality of conductive protrusions are provided in a conductive container.
3. The electrolytic reduction device according to claim 1, wherein the device is provided symmetrically with respect to the center of the bottom of (3).
【請求項3】 蓋(16)が絶縁性部材である請求項1記載
の電解還元装置。
3. The electrolytic reduction device according to claim 1, wherein the lid is an insulating member.
【請求項4】 導電性容器(13)が絶縁材(14)を介して電
解槽(12)の底部に設置された請求項1ないし3いずれか
記載の電解還元装置。
4. The electrolytic reduction apparatus according to claim 1, wherein the conductive container (13) is provided at the bottom of the electrolytic cell (12) via an insulating material (14).
【請求項5】 電解槽(12)、導電性容器(13)及び導電性
突起(13a)がそれぞれ黒鉛からなり、蓋(16)が窒化ホウ
素からなる請求項1ないし4いずれか記載の電解還元装
置。
5. The electrolytic reduction according to claim 1, wherein the electrolytic cell (12), the conductive container (13) and the conductive protrusion (13a) are each made of graphite, and the lid (16) is made of boron nitride. apparatus.
JP11020891A 1999-01-29 1999-01-29 Electrolytic reduction device Expired - Lifetime JP2997265B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020891A JP2997265B1 (en) 1999-01-29 1999-01-29 Electrolytic reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020891A JP2997265B1 (en) 1999-01-29 1999-01-29 Electrolytic reduction device

Publications (2)

Publication Number Publication Date
JP2997265B1 true JP2997265B1 (en) 2000-01-11
JP2000219990A JP2000219990A (en) 2000-08-08

Family

ID=12039855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020891A Expired - Lifetime JP2997265B1 (en) 1999-01-29 1999-01-29 Electrolytic reduction device

Country Status (1)

Country Link
JP (1) JP2997265B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460535B2 (en) 2009-04-30 2013-06-11 Infinium, Inc. Primary production of elements
JP7377633B2 (en) * 2019-06-21 2023-11-10 三菱重工業株式会社 electrolytic smelting furnace

Also Published As

Publication number Publication date
JP2000219990A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
EP0544033B1 (en) Electric furnace
KR101770839B1 (en) Apparatus and Method for reduction of a solid feedstock
JP3812951B2 (en) Multipolar electrolyzer for metal recovery by electrolysis of molten electrolyte
CN108778568A (en) The mouth of a river, casting device and casting method
JPH032958B2 (en)
CA1280715C (en) Electrolytic cell with anode having projections and surrounded by partition
JP2997265B1 (en) Electrolytic reduction device
CN209843832U (en) Liquid metal battery
JP2957157B2 (en) Electrolytic reduction device
US4257855A (en) Apparatus and methods for the electrolytic production of aluminum metal
JPH0748688A (en) Neodymium-iron alloy producing device
CN215209652U (en) Electrochemical device suitable for anode melting of high-temperature molten salt
GB1046705A (en) Improvements in or relating to the operation of electrolytic reduction cells for theproduction of aluminium
CN104562092A (en) Multi-anode lithium metal electrolytic bath
US4204035A (en) Sodium insert container for a sodium-sulfur cell and its method of use
CN101522953A (en) A method and an electrolysis cell for production of a metal from a molten chloride
JP3022871B1 (en) Electrolytic reduction device
US20100200420A1 (en) Control of by-pass current in multi-polar light metal reduction cells
US4158743A (en) Electric resistance furnace
JPH028446B2 (en)
US11629419B2 (en) Anode for aluminium electrolysis
JPS586990A (en) Electrolytic reduction cell
CN219808015U (en) Laboratory lithium metal electrolytic device
CN217757686U (en) Electrolytic cell hearth structure integrally formed by adopting cold ramming paste
JPH0211676B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921