JP2996792B2 - Measuring method of electrostatic charge amount and apparatus used therefor - Google Patents

Measuring method of electrostatic charge amount and apparatus used therefor

Info

Publication number
JP2996792B2
JP2996792B2 JP3299044A JP29904491A JP2996792B2 JP 2996792 B2 JP2996792 B2 JP 2996792B2 JP 3299044 A JP3299044 A JP 3299044A JP 29904491 A JP29904491 A JP 29904491A JP 2996792 B2 JP2996792 B2 JP 2996792B2
Authority
JP
Japan
Prior art keywords
organic solvent
polar organic
charged
charged object
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3299044A
Other languages
Japanese (ja)
Other versions
JPH05133990A (en
Inventor
忠弘 大見
博之 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3299044A priority Critical patent/JP2996792B2/en
Publication of JPH05133990A publication Critical patent/JPH05133990A/en
Application granted granted Critical
Publication of JP2996792B2 publication Critical patent/JP2996792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、帯電物体の静電気帯電
量の計測方法及びそれに使用する計測装置に関し、特
に、帯電物体表面の静電気の測定に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of electrostatic charge on a charged object and a measuring apparatus used therefor, and more particularly, to a method suitable for measuring static electricity on the surface of a charged object.

【0002】[0002]

【従来の技術】帯電物体の帯電量の計測装置として、金
属製の内容器と外容器の二重容器よりなり、内容器は大
地から絶縁されているが外容器は接地されており、内容
器と外容器との間に電圧計及びキャパシタを接続したフ
ァラデーケージと呼ばれる計測装置が知られている。帯
電物体の帯電量の計測は、内容器の中に帯電物体を入れ
ることによって行われる。
2. Description of the Related Art As a device for measuring the amount of charge of a charged object, it comprises a double container of a metal inner container and an outer container. The inner container is insulated from the ground, but the outer container is grounded. There is known a measuring device called a Faraday cage in which a voltmeter and a capacitor are connected between the outer container and a voltmeter. The measurement of the charge amount of the charged object is performed by putting the charged object in an inner container.

【0003】また、フイルム及び糸のように連続して移
動する帯電物体の帯電量は、移動経路の途中にその一部
を取り囲むように設置した模擬ファラデーケージによっ
て測定されている。
The amount of charge of a charged object that moves continuously, such as a film and a thread, is measured by a simulated Faraday cage installed on a movement path so as to surround a part thereof.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来の計測装置は、以下に示す問題点がある。まず、測
定すべき帯電物体を完全に金属製の内容器内に入れて計
測しなければならないので、容器に入りきらない比較的
大きな寸法の帯電物体の計測が出来ない。また、得られ
た測定値は帯電物体の表面及び内部の全電荷の積分値で
あり、帯電物体の表面電荷のみの測定や局所的な電荷の
測定ができない。したがって、電荷分布が不均一な帯電
物体或は正負の電荷が混在する帯電物体については、そ
の測定値をどのように評価するかが困難であった。
However, the above-mentioned conventional measuring apparatus has the following problems. First, since a charged object to be measured must be completely placed in a metal inner container for measurement, it is not possible to measure a charged object having a relatively large size that cannot be accommodated in a container. Further, the obtained measurement value is an integrated value of all charges on the surface and inside of the charged object, and it is impossible to measure only the surface charge of the charged object or to locally measure the charge. Therefore, it is difficult to evaluate the measured value of a charged object having a non-uniform charge distribution or a charged object having a mixture of positive and negative charges.

【0005】一方、模擬ファラデーケージを使用した測
定では、零点が重要な基準値となるので零調整を頻繁に
行う必要があり、計測管理が繁雑であるという問題があ
った。
On the other hand, in the measurement using the simulated Faraday cage, since the zero point is an important reference value, it is necessary to frequently perform the zero adjustment, and there is a problem that the measurement management is complicated.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、前記の
従来技術の問題点を解消し、帯電物体の表面のみの電荷
を簡単且つ正確に計測することのできる方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method capable of simply and accurately measuring the electric charge only on the surface of a charged object. .

【0007】本発明者は、上記の目的を達成するために
数多くの実験を積み重ねた結果、極性有機溶媒を帯電物
体と接触させると、帯電物体表面のみの電荷が正負を問
わず帯電物体表面から極性有機溶媒に移動することを見
いだし、本発明を完成するに到った。
The inventor of the present invention has conducted a number of experiments to achieve the above object. As a result, when a polar organic solvent is brought into contact with a charged object, only the surface of the charged object is charged from the surface of the charged object regardless of whether the charge is positive or negative. They have found that they migrate to polar organic solvents and have completed the present invention.

【0008】即ち、本発明は、帯電物体に極性有機溶媒
を液または蒸気で接触させ、極性有機溶媒が蒸気のとき
は帯電物体の表面で極性有機溶媒の蒸気を凝縮させ、帯
電物体の静電気を液状態の極性有機溶媒に移行せしめた
後、回収した極性有機溶媒の静電気帯電量を計測するこ
とを特徴とする静電気帯電量の計測方法である。
That is, according to the present invention, a polar organic solvent is brought into contact with a charged object with a liquid or a vapor, and when the polar organic solvent is a vapor, the vapor of the polar organic solvent is condensed on the surface of the charged object to discharge static electricity of the charged object. This is a method for measuring the amount of electrostatic charge, characterized by measuring the amount of electrostatic charge of a recovered polar organic solvent after transferring to a polar organic solvent in a liquid state.

【0009】表1は、綿布で擦って帯電させたテフロン
板(30cm角)にイソプロピルアルコール(以下、I
PAという。)を表1の処理時間だけ接触させた後、テ
フロン板に付着したIPAを自然乾燥させ、前後の帯電
圧の変化をまとめたものである。
Table 1 shows that a Teflon plate (30 cm square) charged by rubbing with a cotton cloth is charged with isopropyl alcohol (hereinafter referred to as I).
PA. ) Is contacted for the treatment time shown in Table 1, and then the IPA adhering to the Teflon plate is air-dried, and changes in the charged voltage before and after are summarized.

【0010】テフロン板をIPAに浸漬する、IPAを
テフロン板にスプレーする、或いはIPAの蒸気をテフ
ロン板に接触させるだけで、−26〜−25kVに帯電
したテフロン板は容易に0kVに除電できる。ただし、
極性有機溶媒を帯電物体に蒸気で接触させた場合には、
帯電物体表面で溶媒蒸気から液への相変化、即ち、帯電
物体表面での凝縮現象が生じることが必要である。
The Teflon plate charged to -26 to -25 kV can be easily discharged to 0 kV simply by immersing the Teflon plate in IPA, spraying IPA on the Teflon plate, or bringing the vapor of IPA into contact with the Teflon plate. However,
When a polar organic solvent is brought into contact with a charged object with steam,
It is necessary that a phase change from a solvent vapor to a liquid occurs on the surface of the charged object, that is, a condensation phenomenon occurs on the surface of the charged object.

【0011】[0011]

【表1】 [Table 1]

【0012】また、上記と同様に摩擦帯電したテフロン
円板(直径125mm、厚み2mm)を市販のファラデ
ーケージ(以下、FCと呼ぶ。コンデンサー容量は10
0pFである。)に入れてその帯電量を計測したとこ
ろ、−0.14μCであった。この円板を取り出してI
PA 10mlをテフロン円板全体に均一に振りかけ、
全量をFC内に捕集し、IPAの帯電量を計測したとこ
ろ、同じく−0.14μCであった。さらに、IPAを
振りかけた後のテフロン円板を自然乾燥させた後、再び
テフロン円板をFCに入れて計測したが、その帯電量は
0μCであった。以上のことからテフロン板の電荷はす
べてIPAに移行したことがわかる。
A Teflon disk (125 mm in diameter and 2 mm in thickness) triboelectrically charged in the same manner as described above is used as a commercially available Faraday cage (hereinafter referred to as FC.
0 pF. ) Was measured and the charge amount was -0.14 [mu] C. Take out this disk and I
Sprinkle 10 ml of PA evenly over the entire Teflon disk,
When the whole amount was collected in the FC and the amount of charge of the IPA was measured, it was also -0.14 μC. Further, after the Teflon disk sprinkled with IPA was air-dried, the Teflon disk was again placed in the FC and measured, and the charge amount was 0 μC. From the above, it can be seen that all the charges on the Teflon plate have been transferred to IPA.

【0013】表2は、摩擦帯電した上記と同様のテフロ
ン板(30cm角)及びガラス板(20cm角)と接触
させたIPAをFCに入れてIPAの電荷を測定したも
のである。IPA 10mlをテフロン板及びガラス板
に均一に振りかけ、全量をFC内に捕集した。帯電した
テフロン板の場合はIPA中に負の電荷が、ガラス板の
場合は正の電荷がそれぞれ移行している。即ち、帯電物
体からIPA側へは正負電荷のいずれもが移動する。た
だし、帯電処理しないものの場合には同一操作を行って
もIPA中の電荷は検出されない。
Table 2 shows the results of measuring the charge of the IPA by putting the IPA in contact with a frictionally charged Teflon plate (30 cm square) and a glass plate (20 cm square) similar to the above into a FC. 10 ml of IPA was evenly sprinkled on a Teflon plate and a glass plate, and the whole amount was collected in the FC. In the case of a charged Teflon plate, a negative charge is transferred during IPA, and in the case of a glass plate, a positive charge is transferred. That is, both positive and negative charges move from the charged object to the IPA side. However, in the case where the charging process is not performed, the charge in the IPA is not detected even if the same operation is performed.

【0014】[0014]

【表2】 [Table 2]

【0015】さらに、テフロン板を綿布でよく擦ってそ
の表面を帯電させた後、IPAをまんべんなくふりか
け、落下したIPAをFCに入れて帯電量の時間変化を
調べた。その結果、8時間後にはFC内のIPAは完全
に蒸発したが、IPAが蒸発しても、また、時間経過に
よっても計測値は変化せず一定であった。
Further, the surface of the Teflon plate was rubbed thoroughly with a cotton cloth to charge the surface, and then IPA was sprinkled evenly, and the dropped IPA was put into the FC to check the time change of the charge amount. As a result, the IPA in the FC was completely evaporated after 8 hours, but the measured value did not change and remained constant even when the IPA was evaporated or with the passage of time.

【0016】以上述べたように、帯電物体を極性有機溶
媒と接触させると、正負のいずれの電荷も極性有機溶媒
に移行し、時間の経過によっても電荷は消滅せず、ま
た、たとえ、極性有機溶媒の蒸発があっても移動した電
荷は蒸気側に一切移動しない。
As described above, when a charged object is brought into contact with a polar organic solvent, both positive and negative charges are transferred to the polar organic solvent, and the charge does not disappear over time. Even if the solvent is evaporated, the transferred electric charge does not move to the vapor side at all.

【0017】本発明は、このような知見に基づき完成さ
れたものである。
The present invention has been completed based on such findings.

【0018】本発明における帯電物体は、極性有機溶媒
に溶解しないものであれば、表面に静電気を帯びた物体
が何等制限なく採用される。
As the charged object in the present invention, an object charged with static electricity on the surface is used without any limitation as long as it is not dissolved in a polar organic solvent.

【0019】本発明における極性有機溶媒は、公知のも
のが何等制限されず使用できる。特に帯電物体の表面電
荷を効率的に且つ完全に移動させためには、双極子モー
メントが0.5デバイ(Debye)以上のものが好適
である。本発明において好適に使用しうる極性有機溶媒
を具体的に例示すれば、アセトン、メチルエチルケトン
等のケトン類;メタノール、エタノール、イソプロピル
アルコール等のアルコール類;フェノール、クレゾール
等のフェノール類;ジクロロメタン、1,1,1−トリ
クロロメタン等の塩素化炭化水素が好ましく、特に炭素
数3以下のアルコールが電荷移動効果の点から最も好ま
しい。
As the polar organic solvent in the present invention, known organic solvents can be used without any limitation. In particular, in order to transfer the surface charge of the charged object efficiently and completely, those having a dipole moment of 0.5 Debye or more are preferable. Specific examples of polar organic solvents that can be suitably used in the present invention include ketones such as acetone and methyl ethyl ketone; alcohols such as methanol, ethanol and isopropyl alcohol; phenols such as phenol and cresol; Chlorinated hydrocarbons such as 1,1-trichloromethane are preferred, and alcohols having 3 or less carbon atoms are most preferred from the viewpoint of charge transfer effect.

【0020】また、極性有機溶媒が引火性である場合に
は安全性の面から上記の極性有機溶媒に水を加えてもよ
い。極性有機溶媒中の水分濃度は60重量%以下では除
電性能は一定であるため、上記の極性有機溶媒中に水分
が60重量%以下含まれていても本発明の効果は十分に
達成できる。
When the polar organic solvent is flammable, water may be added to the above-mentioned polar organic solvent from the viewpoint of safety. Since the static elimination performance is constant at a water concentration of 60% by weight or less in the polar organic solvent, the effects of the present invention can be sufficiently achieved even when the polar organic solvent contains 60% by weight or less of water.

【0021】帯電物体に極性有機溶媒を接触させる方法
は、上記の極性有機溶媒を液体状態でノズル等から直接
吹きかけて帯電物体と接触させる方法、加熱して蒸気状
態にしてノズルから噴射させ帯電物体と接触させる方法
等が一般に採用される。
The method for bringing a charged organic substance into contact with a polar organic solvent includes a method in which the polar organic solvent is sprayed directly from a nozzle or the like in a liquid state to make contact with the charged substance, And the like.

【0022】極性有機溶媒溶媒を液体で使用する場合に
は、極性有機溶媒の抵抗率が高いときに極性有機溶媒が
ノズル内を流動することにより極性有機溶媒自体に流動
帯電が生じ、その分だけ帯電量が加算される。従って、
ノズル材質は金属等の導体を採用し、ノズル部を接地短
絡することにより溶媒の電荷の消失を行うことが好まし
い。
When the polar organic solvent is used as a liquid, when the polar organic solvent has a high resistivity, the polar organic solvent flows through the nozzle, causing flow charging of the polar organic solvent itself. The charge amount is added. Therefore,
It is preferable that the material of the nozzle employs a conductor such as a metal, and the charge of the solvent is eliminated by short-circuiting the nozzle portion to ground.

【0023】更に、抵抗率の小さい極性有機溶媒を使用
した場合、ノズルから噴射された極性有機溶媒がノズル
から帯電物体に到る間の橋渡しとなって連続した導電体
を形成することがあると、帯電物体の静電気が極性有機
溶媒を通ってノズルから逃げるおそれがある。これを防
ぐためには、ノズルから噴射された極性有機溶媒がノズ
ルから帯電物体に到る間は不連続の液滴となって、帯電
物体と極性有機溶媒の供給系を空気によって完全に絶縁
することが好ましい。
Further, when a polar organic solvent having a low resistivity is used, the polar organic solvent ejected from the nozzle may form a continuous conductor by bridging the nozzle to the charged object. In addition, the static electricity of the charged object may escape from the nozzle through the polar organic solvent. To prevent this, the polar organic solvent ejected from the nozzle becomes discontinuous droplets from the nozzle to the charged object, and the charged object and the polar organic solvent supply system are completely insulated by air. Is preferred.

【0024】極性有機溶媒を帯電物体に液で接触させた
場合には、極性有機溶媒は液の状態のまま回収される。
一方、極性有機溶媒を帯電物体に蒸気で接触させた場合
には、帯電物体表面で溶媒蒸気を凝縮させて極性有機溶
媒を液の状態で回収する必要がある。
When a polar organic solvent is brought into contact with a charged object with a liquid, the polar organic solvent is recovered in a liquid state.
On the other hand, when the polar organic solvent is brought into contact with the charged object with vapor, it is necessary to condense the solvent vapor on the surface of the charged object and recover the polar organic solvent in a liquid state.

【0025】帯電物体から落下した極性有機溶媒は、公
知の測定装置でその静電気帯電量の計測が行われる。測
定装置としては、前記したFCが好適に使用できる。
The amount of electrostatic charge of the polar organic solvent dropped from the charged object is measured by a known measuring device. As the measuring device, the above-mentioned FC can be suitably used.

【0026】本発明の方法においては、次のような静電
気帯電量測定装置が好適に使用できる。即ち、少なくと
も表面が導電体で構成された内容器と外容器の二重容器
と、該二重容器の上方に位置して帯電物体に極性有機溶
媒を吹きかける散布手段とよりなり、内容器は大地から
絶縁されているが外容器は接地されており、内容器と外
容器との間に電圧計及びキャパシタを接続した電気量測
定手段を備えた静電気帯電量計測装置である。
In the method of the present invention, the following electrostatic charge amount measuring device can be suitably used. That is, the container comprises a double container of an inner container and an outer container having at least surfaces made of a conductor, and spraying means positioned above the double container and spraying a polar organic solvent on the charged object. The electrostatic container is insulated from the inner container, but the outer container is grounded, and is an electrostatic charge amount measuring device provided with an electric quantity measuring means in which a voltmeter and a capacitor are connected between the inner container and the outer container.

【0027】図1は、本発明の静電気帯電量計測装置の
代表的な態様を示す概略図である。
FIG. 1 is a schematic diagram showing a typical embodiment of the electrostatic charge amount measuring device of the present invention.

【0028】本装置は、極性有機溶媒の貯蔵タンク1
0、帯電物体に極性有機溶媒を吹きかけるノズル11、
帯電物体から落ちる極性有機溶媒を受け入れる内容器1
2、内容器12を取り囲むように設置され、大地に接地
短絡された外容器13、この内容器と外容器との間に接
続された静電気電圧計14、及び静電気電圧計と並列に
接続されたキャパシタ15により構成されている。
The present apparatus comprises a storage tank 1 for storing a polar organic solvent.
0, a nozzle 11 for spraying a polar organic solvent on the charged object,
Inner container 1 that accepts polar organic solvent falling from charged objects
2. An outer container 13 installed so as to surround the inner container 12 and grounded and short-circuited to the ground, an electrostatic voltmeter 14 connected between the inner container and the outer container, and connected in parallel with the electrostatic voltmeter. It is composed of a capacitor 15.

【0029】極性有機溶媒の貯蔵タンク10には、窒素
ガス供給配管16からの窒素ガスの圧力によりタンク内
の極性有機溶媒を配管17を通じてノズル11に供給出
来るようになっている。ノズル11は、導電体、例えば
金属で製作され、ノズル自体は接地されている。
The polar organic solvent in the storage tank 10 can be supplied to the nozzle 11 through the pipe 17 by the pressure of the nitrogen gas from the nitrogen gas supply pipe 16 through the pipe 17. The nozzle 11 is made of a conductor, for example, metal, and the nozzle itself is grounded.

【0030】内容器12とその周囲を取囲む外容器13
は、少なくとも表面が導電体で形成されていればよい。
例えば、プラスチック等の絶縁体の表面に金属箔等の導
電体を形成させたものでもよく、また、全体がステンレ
ススチール、銅、鉄等の金属で形成されていてもよい。
その形状および寸法は、帯電物体から落下する極性有機
溶媒を完全に回収できるように適宜決定すればよい。
An inner container 12 and an outer container 13 surrounding the inner container 12
It is sufficient that at least the surface is formed of a conductor.
For example, a conductor such as a metal foil may be formed on the surface of an insulator such as plastic, or the whole may be formed of a metal such as stainless steel, copper, or iron.
The shape and dimensions may be appropriately determined so that the polar organic solvent falling from the charged object can be completely recovered.

【0031】内容器12と外容器13は上部が大気に開
放されており、帯電物体20は内容器12の上方に設置
される。帯電物体に噴射され、帯電物体と接触したのち
落下した極性有機溶媒は内容器12に回収される。
The inner container 12 and the outer container 13 are open at the top to the atmosphere, and the charged object 20 is placed above the inner container 12. The polar organic solvent that is sprayed on the charged object and falls after coming into contact with the charged object is collected in the inner container 12.

【0032】この内容器と外容器との間に静電気電圧計
14が接続されており、さらに静電気電圧計14に並列
にキャパシタ15が接続されている。キャパシタは絶縁
のよいスチロールコンデンサ、セラミックコンデンサ等
を用いるのが好ましい。
An electrostatic voltmeter 14 is connected between the inner container and the outer container, and a capacitor 15 is connected in parallel with the electrostatic voltmeter 14. It is preferable to use a styrene capacitor, a ceramic capacitor, or the like having good insulation as the capacitor.

【0033】キャパシタの静電容量(C0)は、一般に
は次のおよびの条件に合うように決定すればよい。
Generally, the capacitance (C 0 ) of the capacitor may be determined so as to satisfy the following conditions.

【0034】 測定電位が測定器の測定範囲内になる
ようにC0を選ぶ。
C 0 is selected so that the measured potential is within the measurement range of the measuring instrument.

【0035】 FCの内容器と外容器の間の静電容量
をC1、導線の静電容量をC2、電圧計の静電容量をC3
としたとき、次式を満たすようにC0を選ぶ。
The capacitance between the inner container of the FC and the outer container is C 1 , the capacitance of the conductor is C 2 , and the capacitance of the voltmeter is C 3
Then, C 0 is selected so as to satisfy the following equation.

【0036】C0>>C1+C2+C3 内容器の電位を電位計に導く導線はシールドケーブルを
使用することが好ましい。
[0036] C 0 >> C 1 + C 2 + C 3 wires leading to the potential of the inner container to the electrometer, it is preferable to use a shielded cable.

【0037】上記した静電気帯電量計測装置を使用した
帯電量の測定は次のようにして行われる。まず、内容器
12を接地することにより内容器の帯電を零にした後、
内容器を絶縁状態にする。測定を行うべき帯電物体20
は内容器の上方に設置され、ノズル11から帯電物体の
表面に極性有機溶媒を吹き掛ける。帯電物体と接触し重
力落下して内容器12内に溜った極性有機溶媒の帯電量
(Q)は、電圧計14の読み(V)とキャパシタ15の
容量(C)より、次式で計算される。
The measurement of the charge amount using the electrostatic charge amount measuring device described above is performed as follows. First, after charging the inner container to zero by grounding the inner container 12,
Make the inner container insulated. Charged object 20 to be measured
Is installed above the inner container, and sprays a polar organic solvent from the nozzle 11 onto the surface of the charged object. The charge amount (Q) of the polar organic solvent, which comes into contact with the charged object and drops by gravity and accumulates in the inner container 12, is calculated by the following equation from the reading (V) of the voltmeter 14 and the capacity (C) of the capacitor 15. You.

【0038】Q=C・V 測定の終了後、溜った極性有機溶媒はドレーンバルブ1
8を開くことによりドレーン19から外部に排出する。
Q = C · V After completion of the measurement, the collected polar organic solvent is drain valve 1
8 is discharged to the outside from the drain 19 by opening.

【0039】[0039]

【発明の効果】本発明の静電気帯電量の計測方法は、帯
電物体と極性有機溶媒とを接触させると帯電物体表面に
ある正負両極の静電気を極性有機溶媒側に完全に移動さ
せることができる性質を利用している。これによって、
極性有機溶媒中の帯電量から帯電物体の帯電量を正確に
計測評価することができる。
The method for measuring the amount of electrostatic charge according to the present invention is characterized in that when a charged object is brought into contact with a polar organic solvent, both positive and negative static electricity on the surface of the charged object can be completely transferred to the polar organic solvent side. I use. by this,
The charge amount of the charged object can be accurately measured and evaluated from the charge amount in the polar organic solvent.

【0040】本発明においては、帯電物体をFCの内容
器内に直接入れないため、内容器に入りきらない比較的
大きな寸法の帯電物体でもその帯電量の計測が出来る。
In the present invention, since the charged object is not directly put in the inner container of the FC, the charged amount of the charged object having a relatively large size that cannot be accommodated in the inner container can be measured.

【0041】また、本発明によれば、帯電物体の表面電
荷のみの測定ができる。
Further, according to the present invention, only the surface charge of a charged object can be measured.

【0042】さらに、体積抵抗率の大きい帯電物体の場
合、極性有機溶媒と接触した部分の電荷のみが極性有機
溶媒に不可逆的に電荷移動するため、帯電物体の局部的
な帯電量を測定することもでき、また、電荷密度分布を
求めることができる。
Further, in the case of a charged object having a large volume resistivity, only the charge of the portion in contact with the polar organic solvent is irreversibly transferred to the polar organic solvent. And the charge density distribution can be determined.

【0043】さらにまた、移動する帯電物体の測定で
は、内容器の零調整が簡単に行うことができるので計測
管理が容易となる。
Further, in the measurement of the moving charged object, the zero adjustment of the inner container can be easily performed, so that the measurement management becomes easy.

【0044】[0044]

【実施例】【Example】

実施例1 図1に示した静電気帯電量測定装置により各種材料を摩
擦帯電させ、IPAを液体の状態で吹き掛け、表面電荷
量を測定した。このとき用いたキャパシタの容量は40
0pFである。結果を表3に示した。
Example 1 Various materials were frictionally charged by the electrostatic charge amount measuring device shown in FIG. 1, and IPA was sprayed in a liquid state to measure the surface charge amount. The capacity of the capacitor used at this time is 40
0 pF. The results are shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】実施例2 実施例1において、帯電物体に吹きかけるIPAを液か
ら蒸気に変えたこと以外は実施例1と同様に行った。貯
蔵タンク10の外部にヒーターを取り付け、該タンクと
ノズル11を結ぶ配管中にバルブを取り付け、このバル
ブの開閉により帯電物体表面に蒸気を供給した。実施例
1と同様に各種材料を摩擦帯電させ、蒸気を吹きかけ、
帯電物体表面で液に相変化させて帯電物体表面から落下
した液の電荷量を測定した。その結果を表4に示した。
蒸気であっても液とほぼ同様な結果が得られた。
Example 2 Example 2 was carried out in the same manner as in Example 1, except that the IPA sprayed on the charged object was changed from liquid to vapor. A heater was attached to the outside of the storage tank 10, a valve was installed in a pipe connecting the tank and the nozzle 11, and steam was supplied to the surface of the charged object by opening and closing the valve. Various materials are triboelectrically charged and steam is sprayed in the same manner as in Example 1,
The phase of the liquid was changed to liquid on the surface of the charged object, and the amount of charge of the liquid dropped from the surface of the charged object was measured. Table 4 shows the results.
Almost the same results were obtained with vapor as with liquid.

【0047】[0047]

【表4】 [Table 4]

【0048】実施例3 IPAのかわりに表5に示した極性有機溶媒を用いた他
は実施例1と全く同様にしてテフロン製シリコンウェハ
用キャリアの帯電量を計測した。その結果を表5に示し
た。
Example 3 The charge amount of the Teflon silicon wafer carrier was measured in exactly the same manner as in Example 1 except that the polar organic solvents shown in Table 5 were used instead of IPA. Table 5 shows the results.

【0049】[0049]

【表5】 [Table 5]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の静電気帯電量計測装置の概略図
である。
FIG. 1 is a schematic view of an electrostatic charge amount measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

10 貯蔵タンク 11 ノズル 12 内容器 13 外容器 14 静電気電圧計 15 キャパシタ 16 窒素ガス供給配管 17 配管 18 ドレーンバルブ 19 ドレーン 20 帯電物体 DESCRIPTION OF SYMBOLS 10 Storage tank 11 Nozzle 12 Inner container 13 Outer container 14 Electrostatic voltmeter 15 Capacitor 16 Nitrogen gas supply pipe 17 Pipe 18 Drain valve 19 Drain 20 Charged object

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 29/24 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) G01R 29/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】帯電物体に極性有機溶媒を液または蒸気で
接触させ、極性有機溶媒が蒸気のときは帯電物体の表面
で極性有機溶媒の蒸気を凝縮させ、帯電物体の静電気を
液状態の極性有機溶媒に移行せしめた後、回収した極性
有機溶媒の静電気帯電量を計測することを特徴とする静
電気帯電量の計測方法。
1. A charged organic substance is brought into contact with a polar organic solvent by liquid or vapor, and when the polar organic solvent is vapor, the vapor of the polar organic solvent is condensed on the surface of the charged substance, and the static electricity of the charged substance is converted into a liquid state polarity. A method for measuring the amount of electrostatic charge of a polar organic solvent collected after transferring to an organic solvent.
【請求項2】少なくとも表面が導電体で構成された内容
器と外容器の二重容器と、該二重容器の上方に位置して
帯電物体に極性有機溶媒を吹きかける散布手段とよりな
り、内容器は大地から絶縁されているが外容器は接地さ
れており、内容器と外容器との間に電圧計及びキャパシ
タを接続した電気量測定手段を備えたことを特徴とする
静電気帯電量計測装置。
2. A double container comprising an inner container and an outer container having at least a surface made of a conductor, and spraying means positioned above the double container and spraying a polar organic solvent on the charged object. The container is insulated from the ground, but the outer container is grounded, and is equipped with an electric quantity measuring means having a voltmeter and a capacitor connected between the inner container and the outer container, characterized in that the electrostatic charge amount measuring device is provided. .
JP3299044A 1991-11-14 1991-11-14 Measuring method of electrostatic charge amount and apparatus used therefor Expired - Fee Related JP2996792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3299044A JP2996792B2 (en) 1991-11-14 1991-11-14 Measuring method of electrostatic charge amount and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299044A JP2996792B2 (en) 1991-11-14 1991-11-14 Measuring method of electrostatic charge amount and apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH05133990A JPH05133990A (en) 1993-05-28
JP2996792B2 true JP2996792B2 (en) 2000-01-11

Family

ID=17867488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299044A Expired - Fee Related JP2996792B2 (en) 1991-11-14 1991-11-14 Measuring method of electrostatic charge amount and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP2996792B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186171A (en) * 2006-01-16 2007-07-26 East Japan Railway Co Voltage detector and voltage detection method
JP2020110746A (en) * 2019-01-08 2020-07-27 文修 斎藤 Micro droplet ejector
JP2020112153A (en) * 2019-03-08 2020-07-27 文修 斎藤 Micro drop injection device
JP2020112155A (en) * 2019-03-09 2020-07-27 文修 斎藤 Micro drop injection device

Also Published As

Publication number Publication date
JPH05133990A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
Cooke Charging of insulator surfaces by ionization and transport in gases
Wåhlin et al. Sliding electrification of Teflon by metals
Peart Powder electrostatics: theory, techniques and applications
Jaitly et al. In-situ insulator surface charge measurements in dielectric bridged vacuum gaps using an electrostatic probe
Grosvenor et al. The influence of water on electrostatic charge retention and dissipation in pharmaceutical compacts for powder coating
JP2996792B2 (en) Measuring method of electrostatic charge amount and apparatus used therefor
Grimsrud et al. Measurement of ions within a pulsed electron capture detector by mass spectrometry
Chubb Instrumentation and standards for testing static control materials
US4397702A (en) Fabrication of non-conductive charged sensing probe unit
RU2616769C2 (en) Boron-containing coating for detecting neutrons
Williams The relation between contact charge transfer and chemical donor properties
KR930003143B1 (en) Method of fabricating a semiconductor device
US4284495A (en) Coating apparatus and method
Briggs et al. The contact angle of poly (methyl methacrylate) cast against glass
Carlile et al. Physical properties of contamination particle traps in a process plasma
JP2010523249A (en) Fingerprint detection
Nimvari et al. Investigation of the role of temperature on contact electrification of polyethylene particles
Miller et al. Operation of a Diffusion Cloud Chamber with Hydrogen at Pressures up to 15 Atmospheres
Blacker et al. Electrostatic charge occurrence, significance and measurement
Matsui et al. Polarity-dependent discharge current from charged insulator
Bista et al. Adaptive two capacitor model to describe slide electrification in moving water drops
Kronig et al. On the electrical breakdown in liquefied gases
Cooper The practical estimation of electrostatic hazards
Burmester et al. Electrical transport through polystyrene films
Kraemer Properties of electrically charged aerosols

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees