JP2995739B2 - Eye gaze detection device - Google Patents

Eye gaze detection device

Info

Publication number
JP2995739B2
JP2995739B2 JP1028967A JP2896789A JP2995739B2 JP 2995739 B2 JP2995739 B2 JP 2995739B2 JP 1028967 A JP1028967 A JP 1028967A JP 2896789 A JP2896789 A JP 2896789A JP 2995739 B2 JP2995739 B2 JP 2995739B2
Authority
JP
Japan
Prior art keywords
light receiving
eyeball
image
distance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028967A
Other languages
Japanese (ja)
Other versions
JPH02209126A (en
Inventor
明彦 長野
一樹 小西
十九一 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1028967A priority Critical patent/JP2995739B2/en
Publication of JPH02209126A publication Critical patent/JPH02209126A/en
Priority to US07/807,621 priority patent/US5225862A/en
Application granted granted Critical
Publication of JP2995739B2 publication Critical patent/JP2995739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2213/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B2213/02Viewfinders
    • G03B2213/025Sightline detection

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は視線検出装置に関し、例えばカメラのような
光学装置において撮影系による被写体像が形成されてい
る観察面上の観察者(撮影者)が観察している注視点方
向の軸、所謂視線(視軸)を観察者の眼球面上を照明し
たときに形成される反射像を利用して検出するようにし
た視線検出装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a line-of-sight detection device, for example, an observer (photographer) on an observation surface on which a subject image is formed by a photographing system in an optical device such as a camera. The present invention relates to a gaze detection device that detects an axis in the direction of a gazing point, that is, a so-called gaze (viewing axis), using a reflection image formed when illuminating an eyeball of an observer. .

(従来の技術) 従来より観察者が観察面上のどの位置を観察している
かを検出する所謂視線(視軸)を検出する視線検出装置
が種々と提案されている。
(Prior Art) Conventionally, various eye-gaze detecting devices for detecting a so-called eye-gaze (a visual axis) for detecting which position on an observation surface the observer is observing have been proposed.

例えば特開昭61−172552号公報においては、光源から
の光束を被検眼の前眼部へ投射し、角膜および虹彩から
の反射光に基づく反射像の結像状態を利用して視軸(注
視点)を求めている。
For example, in Japanese Patent Application Laid-Open No. Sho 61-172552, a light beam from a light source is projected onto the anterior segment of the eye to be examined, and a visual axis (note) is formed by utilizing the image formation state of a reflected image based on light reflected from the cornea and the iris. Perspective).

第4図は同公報で提案されている視線検出方法の原理
説明図である。
FIG. 4 is an explanatory view of the principle of the eye gaze detection method proposed in the publication.

同図において4は観察者に対して不感の赤外光を放射
する発光ダイオード等の光源であり、投光レンズ6の焦
点面に配置されている。
In the figure, reference numeral 4 denotes a light source such as a light emitting diode which emits infrared light insensitive to an observer, and is disposed on a focal plane of the light projecting lens 6.

光源4より発光した赤外光は投光レンズ6により平行
光となりハーフミラ10で反射し、眼球101の角膜1を照
明する。このとき角膜1の表面で反射した赤外光の一部
はハーフミラ10を透過し受光レンズ7により集光されイ
メージセンサ9上の位置d′に結像する(第1プルキン
エ像)。また虹彩3の端部a、bはハーフミラ10、受光
レンズ7を介してイメージセンサ9上の位置a′、b′
に結像する。受光レンズ7の光軸アに対する眼球の光軸
イの回転角θが小さい場合、虹彩3の端部a、bのZ座
標をZa、Zbとすると、虹彩3の中心位置cの座標Zcは と表わされる。
The infrared light emitted from the light source 4 is converted into parallel light by the light projecting lens 6, reflected by the half mirror 10, and illuminates the cornea 1 of the eyeball 101. At this time, a part of the infrared light reflected on the surface of the cornea 1 passes through the half mirror 10, is condensed by the light receiving lens 7, and forms an image at the position d 'on the image sensor 9 (first Purkinje image). The ends a and b of the iris 3 are located at positions a 'and b' on the image sensor 9 via the half mirror 10 and the light receiving lens 7.
Image. If the rotation angle θ of the optical axis a of the eyeball with respect to the optical axis a of the light receiving lens 7 is small, and the Z coordinates of the ends a and b of the iris 3 are Za and Zb, the coordinate Zc of the center position c of the iris 3 is It is expressed as

また、第1プルキンエ像の発生位置dのZ座標をZd、
角膜1の曲率中心Oと虹彩3の中心Cまでの距離を▲
▼とすると眼球光軸イの回転角θは ▲▼・sinθ≒Zc−Zd……(1) の関係式を略満足する。このためイメージセンサ9上に
投影された各特異点(第1プルキンエ像d及び虹彩の端
部a、b)の位置を検出することにより眼球光軸イの回
転角θを求めることができる。この時(1)式は ……(2) とかきかえられる。但し、βは第1プルキンエ像の発生
位置dと受光レンズ7との距離と受光レンズ7とイ
メージセンサ9との距離で決まる倍率で、通常ほぼ
一定の値となっている。
Further, the Z coordinate of the generation position d of the first Purkinje image is Zd,
The distance between the center of curvature O of the cornea 1 and the center C of the iris 3 is ▲
Assuming that ▼, the rotation angle θ of the eyeball optical axis a substantially satisfies the relational expression of ▼▼ ・ sin θ ≒ Zc−Zd (1). Therefore, by detecting the position of each singular point (the first Purkinje image d and the ends a and b of the iris) projected on the image sensor 9, the rotation angle θ of the optical axis a of the eyeball can be obtained. At this time, equation (1) is …… (2) Can be rewritten. However, beta is made at a magnification determined by the distance 0 between the distance 1 and the light receiving lens 7 and the image sensor 9 of the generation position d and the light receiving lens 7 of the first Purkinje image, typically a substantially constant value.

このように観察者の被検眼の視線の方向(注視点)を
検出することにより、例えば一眼レフカメラにおいては
撮影者がピント面上のどの位置を観察しているかを知る
ことができる。
As described above, by detecting the direction of the line of sight (point of sight) of the eye to be examined by the observer, for example, in a single-lens reflex camera, it is possible to know which position on the focus plane the photographer is observing.

これは例えば自動焦点検出装置において測距点を画面
中心のみならず画面内の複数箇所に設けた場合、観察者
がそのうちの1つの測距点を選択して自動焦点検出を行
うとする場合、その1つを選択入力する手間を省き観察
者が観察している点を測距点と見なし、該測距点を自動
的に選択して自動焦点検出を行うのに有効である。
This is, for example, in the case where distance measuring points are provided not only at the center of the screen but also at a plurality of positions in the screen in the automatic focus detection device, when the observer selects one of the distance measuring points and performs automatic focus detection, It is effective to save the trouble of selecting and inputting one of them and to regard the point observed by the observer as a ranging point, and to automatically select the ranging point to perform automatic focus detection.

(発明が解決しようとしている問題点) しかしながら前記特開昭61−172552号公報で提案され
ている視線検出装置を例えばカメラのファインダをのぞ
く観察者の視線検出に適用する場合、照明手段と受光手
段で構成される視線検出光学系と、観察者の眼球の相対
的位置関係が一定でなく異ってくる。この為、例えば第
4図において受光レンズ7と第1プルキンエ像の発生位
置dとの距離が所定の値とならず異なってきて
(2)式で求められる倍率βの値が一定とならず、この
結果眼球光軸の回転角θに誤差が生じてくるという問題
点があった。
(Problems to be Solved by the Invention) However, when the gaze detection device proposed in the above-mentioned Japanese Patent Application Laid-Open No. 61-172552 is applied to the gaze detection of an observer other than a finder of a camera, for example, an illuminating means and a light receiving means are required. And the relative positional relationship between the eye-gaze detection optical system and the eyeball of the observer are not constant but different. Therefore, for example, in FIG. 4, the distance 1 between the light receiving lens 7 and the generation position d of the first Purkinje image does not become a predetermined value but differs, and the value of the magnification β obtained by Expression (2) does not become constant. As a result, there is a problem that an error occurs in the rotation angle θ of the optical axis of the eyeball.

本発明は観察者が観察面上のどの位置を観察している
か、即ち観察者の視線を視線検出装置の所定面と観察者
の眼球の所定点までの距離を検出する距離検出手段を設
けることにより、常に高精度に検出することができる視
線検出装置の提供を目的とする。
According to the present invention, there is provided distance detecting means for detecting which position on the observation surface the observer is observing, that is, detecting the distance between the observer's line of sight to a predetermined surface of the line-of-sight detection device and a predetermined point of the observer's eyeball. Accordingly, it is an object of the present invention to provide a gaze detecting device that can always detect with high accuracy.

(問題点を解決するための手段) 本発明の視線検出装置は、 (1−1)赤外光にて眼球を照明する照明手段と、 前記眼球に生じる第1プルキンエ像を受光る受光手段
と、 前記受光手段に含まれるイメージセンサ面上に結像する
複数の第1プルキンエ像の間隔から前記照明手段または
前記受光手段の所定面から前記眼球に生じる第1プルキ
ンエ像までの距離を求め、前記距離と、前記受光手段に
て受光した第1プルキンエ像及び虹彩像の位置とを用い
て視線を演算する演算手段とを有することを特徴として
いる。
(Means for Solving the Problems) The gaze detection device of the present invention includes: (1-1) an illuminating unit that illuminates an eyeball with infrared light; and a light receiving unit that receives a first Purkinje image generated in the eyeball. Obtaining a distance from a predetermined surface of the illuminating unit or the light receiving unit to a first Purkinje image generated in the eyeball from an interval of the plurality of first Purkinje images formed on the image sensor surface included in the light receiving unit; It is characterized in that it has a calculating means for calculating the line of sight using the distance and the positions of the first Purkinje image and the iris image received by the light receiving means.

特に、 (1−1−1)前記受光手段は前記受光面よりも光軸前
方に前記光軸からずれた位置に配置される一対の受光レ
ンズを有し、第1プルキンエ像を複数に分割したことを
特徴している。
In particular, (1-1-1) the light receiving means has a pair of light receiving lenses disposed at a position shifted from the optical axis ahead of the light receiving surface with respect to the optical axis, and divides the first Purkinje image into a plurality. It is characterized by:

(1−2)複数の赤外光光源にて眼球を照明する照明手
段と、 前記眼球に生じる第1プルキンエ像を受光する受光手段
と、 前記受光手段に含まれるイメージセンサ面上に結像する
複数の第1プルキンエ像の間隔と、前記複数の赤外光光
源の間隔から前記照明手段または前記受光手段の所定面
から前記眼球に生じる第1プルキンエ像までの距離を求
め、前記距離と、前記受光手段にて受光した第1プルキ
ンエ像および虹彩像の位置とを用いて視線を演算する演
算手段とを有することを特徴としている。
(1-2) Illuminating means for illuminating an eyeball with a plurality of infrared light sources, light receiving means for receiving a first Purkinje image generated in the eyeball, and image formation on an image sensor surface included in the light receiving means The distance between the plurality of first Purkinje images and the distance between the plurality of infrared light sources and the distance from the predetermined surface of the illuminating means or the light receiving means to the first Purkinje image generated in the eyeball are determined. Calculating means for calculating the line of sight using the positions of the first Purkinje image and the iris image received by the light receiving means.

(実施例) 第1図は本発明の第1実施例の要部概略図である。第
2図(A)、(B)は第1図の照明手段と受光手段を展
開したときの説明図である。
(Embodiment) FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. 2 (A) and 2 (B) are explanatory views when the lighting means and the light receiving means of FIG. 1 are developed.

図中101は被検者(観察者)の眼球、1は被検者の眼
球の角膜、2は同じく強膜、3は虹彩である。O′は眼
球101の回転中心、Oは角膜1の曲率中心、a、bは各
々虹彩3の端部、d、eは各々後述する光源4、5に基
づく第1プルキンエ像の発生位置である。4、5は各々
光源で被検者に不感である赤外光を放射する発光ダイオ
ード等である。又光源4、5は投光レンズの焦点面近傍
に配置されている。投光レンズ6は光源4、5からの光
束を略平行光束としてハーフミラー10を介して角膜1面
上を照明している。ここで光源4は投光レンズ6の光軸
上にあり、光源5は投光レンズ6の光軸より−Z軸方向
に距離S0離れた位置に配置されている。
In the figure, 101 is the eyeball of the subject (observer), 1 is the cornea of the subject's eyeball, 2 is the sclera, and 3 is the iris. O 'is the center of rotation of the eyeball 101, O is the center of curvature of the cornea 1, a and b are the ends of the iris 3, d and e are the positions where the first Purkinje image is generated based on the light sources 4 and 5 described later, respectively. . Reference numerals 4 and 5 denote light-emitting diodes and the like, each of which is a light source and emits infrared light insensitive to a subject. The light sources 4 and 5 are arranged near the focal plane of the light projecting lens. The light projecting lens 6 illuminates the surface of the cornea 1 via the half mirror 10 with the light beams from the light sources 4 and 5 as substantially parallel light beams. Here, the light source 4 is on the optical axis of the light projecting lens 6, and the light source 5 is arranged at a position away from the optical axis of the light projecting lens 6 by a distance S 0 in the −Z-axis direction.

尚、光源4、投光レンズ6は照明手段の一要素を構成
している。
Note that the light source 4 and the light projecting lens 6 constitute one element of the illumination means.

7は受光レンズであり角膜1近傍に形成された第1プ
ルキンエ像d、eをイメージセンサ9面上に結像してい
る。
Reference numeral 7 denotes a light receiving lens which forms first Purkinje images d and e formed near the cornea 1 on the image sensor 9 surface.

尚、受光レンズ7、イメージセンサ9は受光手段の一
要素を構成している。
The light receiving lens 7 and the image sensor 9 constitute one element of the light receiving means.

11は演算手段であり、後述するようにイメージセンサ
9からの出力信号を利用して、被検者の視線を演算し求
めている。
Numeral 11 denotes arithmetic means, which calculates the line of sight of the subject using an output signal from the image sensor 9 as described later.

尚、光源5と演算手段11の一部とで後述する距離検出
手段を構成している。
The light source 5 and a part of the calculating means 11 constitute a distance detecting means described later.

アは受光レンズ7の光軸で図中のX軸と一致してい
る。イは眼球の光軸でX軸に対して角度θ傾いている。
A is the optical axis of the light receiving lens 7 and coincides with the X axis in the figure. A is inclined by an angle θ with respect to the X axis in the optical axis of the eyeball.

次に第2図(A)、(B)を用いて本実施例の視線検
出装置の特徴と被検者の眼球から該装置の所定面(受光
レンズ7)までの距離を検出する方法について説明す
る。
Next, with reference to FIGS. 2 (A) and 2 (B), a description will be given of the features of the visual line detection device of this embodiment and a method of detecting the distance from the subject's eyeball to a predetermined surface (light receiving lens 7) of the device. I do.

尚、第2図(A)、(B)においてハーフミラー10は
省略してある。
The half mirror 10 is omitted in FIGS. 2 (A) and 2 (B).

光源4及び光源5より発光した赤外光は投光レンズ6
により平行光となり眼球の角膜1を照明する。この時、
角膜1の曲率中心Oより角膜1側の距離(≒γ/2:
γは角膜1の曲率半径)の位置に角膜1の表面で反射し
た光束による第1プルキンエ像d、eが発生する。ここ
で点dは光源4に対する第1プルキンエ像でも座標をZ
d、点eは光源5に対する第1プルキンエ像でZ座標をZ
eとすると となる。ここでは投光レンズ6の焦点距離である。
また第1プルキンエ像d、eは第2図(B)に示すよう
に受光レンズ7によりイメージセンサ9上の座標Zd′、
Ze′上の位置に投影される。ここで、受光レンズ7と第
1プルキンエ像の発生位置(d、e)までの距離を
、イメージセンサ9間での距離を、受光レンズ
7とイメージセンサ9までの距離をとおくと となる。ここで受光光学系の倍率βは(4)式を変形し
と求められる。
The infrared light emitted from the light sources 4 and 5 is
Illuminates the cornea 1 of the eyeball. At this time,
Distance 4 on the corneal 1 side from the center of curvature O of the cornea 1 (≒ γ / 2:
(γ is the radius of curvature of the cornea 1), the first Purkinje images d and e are generated by the light beam reflected on the surface of the cornea 1. Here, the point d has the coordinates Z in the first Purkinje image for the light source 4 as well.
d, point e is the first Purkinje image for light source 5 and the Z coordinate is Z
e Becomes Here, 2 is the focal length of the light projecting lens 6.
The first Purkinje images d and e are coordinated Zd 'on the image sensor 9 by the light receiving lens 7 as shown in FIG.
Projected to a position on Ze '. Here, the distance between the light receiving lens 7 and the position (d, e) where the first Purkinje image is generated is defined as
1 , the distance between the image sensors 9 is 1 , and the distance between the light receiving lens 7 and the image sensor 9 is 0. Becomes Here, the magnification β of the light receiving optical system is obtained by modifying equation (4). Is required.

第1図において、虹彩3の端部a、bのイメージセン
サ9上での座標をZa′、Zb′、▲▼≒(Cは虹
彩3の端部a、bの中点)をおくと、眼球の光軸イの回
転角θは(2)式及び(5)式より となる。
In FIG. 1, the coordinates of the ends a and b of the iris 3 on the image sensor 9 are Za ′, Zb ′, and ≒ ▼ 4 (C is the middle point between the ends a and b of the iris 3). , The rotation angle θ of the optical axis a of the eyeball is obtained from the equations (2) and (5). Becomes

本実施例では演算手段11により(6)式の演算を用
い、眼球の光軸イの回転角θを検出し、眼球の視軸を求
め、これにより被検者の視線を検出している。
In this embodiment, the rotation angle θ of the optical axis a of the eyeball is detected by the calculation means 11 using the calculation of the expression (6), and the visual axis of the eyeball is obtained, thereby detecting the line of sight of the subject.

このように本実施例では通常の照明用光源4に加え、
距離検出用光源5を設け、これにより被検者の視線を精
度良く検出していることを特徴としている。
As described above, in this embodiment, in addition to the normal light source 4 for illumination,
It is characterized in that a distance detecting light source 5 is provided, whereby the line of sight of the subject is detected with high accuracy.

第3図は本発明の第2実施例の要部概略図である。図
中第1図に示した要素と同一要素には同符番を付してい
る。
FIG. 3 is a schematic view of a main part of a second embodiment of the present invention. In the figure, the same elements as those shown in FIG. 1 are denoted by the same reference numerals.

図中8は新たに付加した受光レンズである。 In the figure, reference numeral 8 denotes a newly added light receiving lens.

本実施例においては距離検出手段としての1組の受光
レンズ7、8を各々投光レンズ6の光軸と相対的に一致
する軸ア(X軸)から、ある距離離して配置しているこ
とを特徴としている。
In this embodiment, a pair of light receiving lenses 7 and 8 as distance detecting means are arranged at a certain distance from an axis A (X axis) which relatively matches the optical axis of the light projecting lens 6. It is characterized by.

光源4より発光した赤外光は投光レンズ6により平行
光となりハーフミラ10により反射され、角膜1を照明す
る。角膜1の表面で反射した赤外光により第1プルキン
エ像dが形成される。この第1プルキンエ像dからの光
束はハーフミラ10を透過し、受光レンズ7、8によりイ
メージセンサ9上の位置P、Qに各々結像する。
The infrared light emitted from the light source 4 becomes parallel light by the light projecting lens 6 and is reflected by the half mirror 10 to illuminate the cornea 1. The first Purkinje image d is formed by the infrared light reflected on the surface of the cornea 1. The light beam from the first Purkinje image d passes through the half mirror 10 and forms images at the positions P and Q on the image sensor 9 by the light receiving lenses 7 and 8, respectively.

ここで第1プルキンエ像の発生位置dのZ座標をZd、
第1プルキンエ像dの受光レンズ7によるイメージセン
サ9面上の投影位置pのZ座標をZp、第1プルキンエ像
dの受光レンズ8によるイメージセンサ9面上の投影位
置qのZ座標をZq、受光レンズ7のX軸からのシフト量
をS2、受光レンズ8のX軸からのシフト量を−S3とする
と、受光レンズ7、8と第1プルキンエ像の発生位置d
との距離となる。但し、は受光レンズ7、8からイメージセ
ンサ9までの距離である。ここで受光光学系の倍率βは
(7)式を変形して と求められる。
Here, the Z coordinate of the generation position d of the first Purkinje image is Zd,
The Z coordinate of the projection position p of the first Purkinje image d on the image sensor 9 surface by the light receiving lens 7 is Zp, the Z coordinate of the projection position q of the first Purkinje image d on the image sensor 9 surface by the light receiving lens 8 is Zq, Assuming that the shift amount of the light receiving lens 7 from the X axis is S 2 and the shift amount of the light receiving lens 8 from the X axis is −S 3 , the light receiving lenses 7 and 8 and the position where the first Purkinje image is generated d
The distance 1 with Becomes Here, 0 is the distance from the light receiving lenses 7 and 8 to the image sensor 9. Here, the magnification β of the light receiving optical system is obtained by modifying equation (7). Is required.

いま、受光レンズ7による虹彩3の端部a、bのイメ
ージセンサ9への投影像の座標をZa′、Zb′とすると眼
球の光軸イの回転角θは(2)式、(8)式より となる。
Now, assuming that the coordinates of the projected images of the ends a and b of the iris 3 on the image sensor 9 by the light receiving lens 7 are Za ′ and Zb ′, the rotation angle θ of the optical axis a of the eyeball is represented by the following equation (2). From the formula Becomes

本実施例では演算手段11により(9)式の演算を行
い、眼球の光軸イの回転角θを検出し、眼球の視軸を求
め、これより被検者の視線を検出している。
In this embodiment, the calculation means 11 performs the calculation of the expression (9), detects the rotation angle θ of the optical axis a of the eyeball, obtains the visual axis of the eyeball, and detects the line of sight of the subject from this.

このように本実施例では2つの受光レンズ7、8を用
い、各々の受光レンズにより第1プルキンエ像をイメー
ジセンサ上に各々形成し、該イメージセンサ上に形成さ
れた第1プルキンエ像の座標及び該第1プルキンエ像か
ら受光レンズ7、8までの距離を利用して被検者の
視線を精度良く検出していることを特徴としている。
As described above, in the present embodiment, two light receiving lenses 7 and 8 are used, and a first Purkinje image is formed on each image sensor by each light receiving lens, and the coordinates and the coordinates of the first Purkinje image formed on the image sensor are determined. The method is characterized in that the line of sight of the subject is accurately detected using the distance 1 from the first Purkinje image to the light receiving lenses 7 and 8.

(発明の効果) (ア−1)請求項1に記載した発明は赤外光にて眼球を
照明する照明手段と、 前記眼球に生じる第1プルキンエ像を受光する受光手段
と、 前記受光手段に含まれるイメージセンサ面上に結像する
複数の第1プルキンエ像の間隔から前記照明手段または
前記受光手段の所定面から前記眼球に生じる第1プルキ
ンエ像までの距離を求め、前記距離と、前記受光手段に
て受光した第1プルキンエ像及び虹彩像の位置とを用い
て視線を演算する演算手段とを有することにより、前記
照明手段又は前記受光手段の所定面から眼球までの距離
が一定でない場合にも、高精度な視線検出を行うことが
できる視線検出装置を提供することができる。
(Effects of the Invention) (A-1) The invention described in claim 1 includes an illuminating unit that illuminates an eyeball with infrared light, a light receiving unit that receives a first Purkinje image generated in the eyeball, and a light receiving unit. A distance from a predetermined surface of the illuminating means or the light receiving means to a first Purkinje image generated in the eyeball is obtained from an interval of the plurality of first Purkinje images formed on the included image sensor surface, and the distance and the light receiving Calculating means for calculating the line of sight using the position of the first Purkinje image and the iris image received by the means, when the distance from a predetermined surface of the lighting means or the light receiving means to the eyeball is not constant. Also, it is possible to provide a gaze detection device capable of performing highly accurate gaze detection.

(ア−2)請求項2に記載した発明は請求項1に記載し
た発明において、前記受光手段は前記受光面よりも光軸
前方に前記光軸からずれた位置に配置される一対の受光
レンズを有し、第1プルキンエ像を複数に分割したこと
により、イメージセンサ面上では、複数の第1プルキン
エ像を発生させることができ、照明手段の光源が1つで
あっても、前記照明手段又は前記受光手段の所定面から
前記眼球に生じる第1プルキンエ像までの距離を求める
ことができる。
(A-2) The invention described in claim 2 is the invention according to claim 1, wherein the light receiving means is disposed at a position shifted from the optical axis forward of the optical axis with respect to the light receiving surface. By dividing the first Purkinje image into a plurality of parts, a plurality of first Purkinje images can be generated on the image sensor surface. Alternatively, a distance from a predetermined surface of the light receiving unit to a first Purkinje image generated in the eyeball can be obtained.

(ア−3)請求項3に記載した発明は複数の赤外光光源
にて眼球を照明する照明手段と、 前記眼球に生じる第1プルキンエ像を受光する受光手段
と、前記受光手段に含まれるイメージセンサ面上に結像
する複数の第1プルキンエ像の間隔と、前記複数の赤外
光光源の間隔から前記照明手段または前記受光手段の所
定面から前記眼球に生じる第1プルキンエ像までの距離
を求め、前記距離と、前記受光手段にて受光した第1プ
ルキンエ像および虹彩像の位置とを用いて視線を演算す
る演算手段とを有することにより、前記照明手段又は前
記受光手段の所定面から眼球までの距離が一定でない場
合にも、高精度な視線検出を行うことができる視線検出
装置を提供することができる。
(A-3) The invention according to claim 3 is included in the illuminating means for illuminating the eyeball with a plurality of infrared light sources, the light receiving means for receiving the first Purkinje image generated in the eyeball, and the light receiving means. A distance between a plurality of first Purkinje images formed on the image sensor surface and a distance from a predetermined surface of the illuminating means or the light receiving means to a first Purkinje image generated on the eyeball from the distance between the plurality of infrared light sources; Calculating the line of sight by using the distance and the position of the first Purkinje image and the iris image received by the light receiving means, and thereby, from a predetermined surface of the lighting means or the light receiving means. It is possible to provide a gaze detection device capable of performing highly accurate gaze detection even when the distance to the eyeball is not constant.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の要部概略図、第2図
(A)、(B)は第1図の照明手段と受光手段の説明
図、第3図は本発明の第2実施例の要部概略図、第4図
は従来の視線検出装置の要部概略図である。 図中101は眼球、1は角膜、2は強膜、3は虹彩、
4、5は各々光源、6は投光レンズ、7、8は受光レン
ズ、9はイメージセンサー、10はハーフミラー、11は演
算手段、である。
FIG. 1 is a schematic view of a main part of a first embodiment of the present invention, FIGS. 2 (A) and 2 (B) are explanatory views of the illuminating means and light receiving means of FIG. 1, and FIG. FIG. 4 is a schematic view of a main part of a conventional eye gaze detecting apparatus. In the figure, 101 is an eyeball, 1 is a cornea, 2 is a sclera, 3 is an iris,
Reference numerals 4 and 5 denote light sources, 6 a light projecting lens, 7 and 8 light receiving lenses, 9 an image sensor, 10 a half mirror, and 11 an arithmetic means.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) A61B 3/113 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) A61B 3/113

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】赤外光にて眼球を照明する照明手段と、 前記眼球に生じる第1プルキンエ像を受光する受光手段
と、 前記受光手段に含まれるイメージセンサ面上に結像する
複数の第1プルキンエ像の間隔から前記照明手段または
前記受光手段の所定面から前記眼球に生じる第1プルキ
ンエ像までの距離を求め、前記距離と、前記受光手段に
て受光した第1プルキンエ像及び虹彩像の位置とを用い
て視線を演算する演算手段とを有することを特徴とする
視線検出装置。
An illumination unit configured to illuminate an eyeball with infrared light; a light reception unit receiving a first Purkinje image generated in the eyeball; and a plurality of image sensors formed on an image sensor surface included in the light reception unit. A distance from a predetermined surface of the illuminating means or the light receiving means to a first Purkinje image generated in the eyeball is obtained from an interval of one Purkinje image, and the distance and the first Purkinje image and the iris image received by the light receiving means are obtained. A gaze detecting device comprising: a calculation unit configured to calculate a gaze using the position.
【請求項2】前記受光手段は前記受光面よりも光軸前方
に前記光軸からずれた位置に配置される一対の受光レン
ズを有し、第1プルキンエ像を複数に分割したことを特
徴とする請求項1に記載の視線検出装置。
2. The apparatus according to claim 1, wherein said light receiving means has a pair of light receiving lenses disposed at a position deviated from said optical axis ahead of said light receiving surface with respect to said optical axis, and divides said first Purkinje image into a plurality. The eye gaze detecting device according to claim 1.
【請求項3】複数の赤外光光源にて眼球を照明する照明
手段と、 前記眼球に生じる第1プルキンエ像を受光する受光手段
と、 前記受光手段に含まれるイメージセンサ面上に結像する
複数の第1プルキンエ像の間隔と、前記複数の赤外光光
源の間隔から前記照明手段または前記受光手段の所定面
から前記眼球に生じる第1プルキンエ像までの距離を求
め、前記距離と、前記受光手段にて受光した第1プルキ
ンエ像および虹彩像の位置とを用いて視線を演算する演
算手段とを有することを特徴とする視線検出装置。
3. An illumination means for illuminating an eyeball with a plurality of infrared light sources, a light receiving means for receiving a first Purkinje image generated in the eyeball, and an image formed on an image sensor surface included in the light receiving means. The distance between the plurality of first Purkinje images and the distance between the plurality of infrared light sources and the distance from the predetermined surface of the illuminating means or the light receiving means to the first Purkinje image generated in the eyeball are determined. A gaze detecting device comprising: a calculating unit configured to calculate a line of sight using the positions of the first Purkinje image and the iris image received by the light receiving unit.
JP1028967A 1989-02-08 1989-02-08 Eye gaze detection device Expired - Lifetime JP2995739B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1028967A JP2995739B2 (en) 1989-02-08 1989-02-08 Eye gaze detection device
US07/807,621 US5225862A (en) 1989-02-08 1991-12-13 Visual axis detector using plural reflected image of a light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028967A JP2995739B2 (en) 1989-02-08 1989-02-08 Eye gaze detection device

Publications (2)

Publication Number Publication Date
JPH02209126A JPH02209126A (en) 1990-08-20
JP2995739B2 true JP2995739B2 (en) 1999-12-27

Family

ID=12263183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028967A Expired - Lifetime JP2995739B2 (en) 1989-02-08 1989-02-08 Eye gaze detection device

Country Status (1)

Country Link
JP (1) JP2995739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2300193B1 (en) * 2006-07-06 2009-05-08 Universidad De Murcia PROCEDURE FOR LIVE MEASUREMENT OF THE ALIGNMENT OF OPTICAL EYE COMPONENTS AND DEVICE FOR PRACTICE OF THE SAME.

Also Published As

Publication number Publication date
JPH02209126A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
US5225862A (en) Visual axis detector using plural reflected image of a light source
US5036347A (en) Visual line detecting device and camera having the same
US5386258A (en) Optical apparatus having a visual axis direction detecting device
JP2803222B2 (en) Eye gaze detection device
JP2939988B2 (en) Eye gaze detection device
JPH0323431A (en) Photography device with gaze point detecting means
JPH02189128A (en) Optical apparatus having close observation point detecting means
JP2861349B2 (en) Optical device having line-of-sight detecting means
JP2995739B2 (en) Eye gaze detection device
JPH06230271A (en) Line of sight detector
JP2939989B2 (en) Eye gaze detection device
JP2939982B2 (en) Eye gaze detection device
JP2911125B2 (en) Eye gaze detection device
JP2754663B2 (en) Gaze detection method and gaze detection device
JP2995878B2 (en) Optical device having line-of-sight detection device
JP3134320B2 (en) Eye gaze detection device
JP2950759B2 (en) Optical equipment having a line-of-sight detection device
JP2803223B2 (en) Eye gaze detection device
JP2733260B2 (en) Detection device and optical equipment
JP2939990B2 (en) Eye gaze detection device
JP2925147B2 (en) Eye gaze detection device and optical equipment
JP2941847B2 (en) Eye gaze detection device
JPH04138431A (en) Camera having detection means for line of sight
JPH03293367A (en) Camera provided with detection device for line of sight
JPH02209125A (en) Line of sight detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10