JP2995583B2 - Composite carbon fiber used for carbon bonded carbon fiber composite material - Google Patents

Composite carbon fiber used for carbon bonded carbon fiber composite material

Info

Publication number
JP2995583B2
JP2995583B2 JP3033059A JP3305991A JP2995583B2 JP 2995583 B2 JP2995583 B2 JP 2995583B2 JP 3033059 A JP3033059 A JP 3033059A JP 3305991 A JP3305991 A JP 3305991A JP 2995583 B2 JP2995583 B2 JP 2995583B2
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
composite
silicon carbide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3033059A
Other languages
Japanese (ja)
Other versions
JPH04272237A (en
Inventor
庸博 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP3033059A priority Critical patent/JP2995583B2/en
Publication of JPH04272237A publication Critical patent/JPH04272237A/en
Application granted granted Critical
Publication of JP2995583B2 publication Critical patent/JP2995583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複合炭素繊維に関し、
詳しくは宇宙、航空、防衛用の炭素結合炭素繊維複合材
や自動車部品等の炭素結合炭素繊維複合材料に使用さ
れる複合炭素繊維に関するものである。
The present invention relates to a composite carbon fiber,
For more information, Carbon-bonded carbon fiber composites for space, aviation and defense
The present invention relates to a composite carbon fiber used for a carbon-bonded carbon fiber composite material such as a material and an automobile part.

【0002】[0002]

【従来の技術】炭素結合炭素繊維複合材料(C/C複合
体)、特に高温下での高強度軽量構造体として常用さ
れていることは周知である。しかし、炭素結合炭素繊維
複合材料(C/C複合体)は、マトリックス炭素の基材
たる炭素繊維に起因して耐摩耗性、耐酸化性及び弾性な
どの点で限界があった。
2. Description of the Related Art It is well known that carbon-bonded carbon fiber composite materials (C / C composites) are commonly used as high-strength lightweight structures, especially at high temperatures. However, the carbon-bonded carbon fiber composite material (C / C composite) is a matrix carbon base material.
Abrasion resistance, oxidation resistance and elasticity
There was a limit in every respect.

【0003】このため従来は、炭素繊維表面にCVD処
理やPVD処理、メッキ、溶射をして、SiC、WC、
TiC、W、Mo、Cuなどを沈積被覆して酸化性ガス
との反応を低くおさえたり、摺動特性を改善することが
試みられてきた
[0003] Therefore, conventionally, the surface of carbon fiber is subjected to CVD processing, PVD processing, plating, and thermal spraying to obtain SiC, WC,
Attempts have been made to deposit TiC, W, Mo, Cu and the like to suppress the reaction with oxidizing gas and improve the sliding characteristics .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来か
ら行われてきた炭素繊維表面への金属などのCVD処
理、PVD処理、メッキ処理、溶射などによる沈積被覆
処理は図4に示すように炭素繊維19表面と被膜物質
21とがファン・デル・ワールス力等の物理的接着によ
って結合しているため、炭素繊維19表面と被膜物質2
1との界面接着力が十分でなく、マトリックス炭素との
複合体にして高温下で負荷をかけて繰り返し使用した場
合、強度劣化が速いという問題があるだけでなく、耐摩
耗性、耐酸化性及び弾性にも限界があった。
However, the conventional deposition, coating, or the like of a metal or the like on a carbon fiber surface by a CVD process, a PVD process, a plating process, a thermal spraying process, etc. , as shown in FIG. Since the surface of the carbon fiber 19 and the coating material 21 are bonded to each other by physical adhesion such as van der Waals force,
When the composite with matrix carbon is repeatedly used under a high temperature under a high load due to insufficient interfacial adhesion with No. 1 , not only the problem of rapid deterioration of strength but also the wear resistance
Wear, oxidation resistance and elasticity were also limited.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
問題点に対しなされたものであり、高温下でも製造され
た複合材料が強度劣化を起こすことがないだけでなく、
耐摩耗性、耐酸化性及び弾性に優れる炭素結合炭素繊維
複合材料の原料となる炭素繊維を見い出すことを目的と
する。すなわち、本発明は炭素結合炭素繊維複合材料
(C/C複合体)に用いられる炭素繊維において、前記
炭素繊維の表面層を炭化珪素に転化した複合炭素繊維で
あって、上記炭化珪素の結晶構造が2Hあるいは3Cの
ポリタイプ、又は2Hと3Cのポリタイプの混合物を主
成分として成ることを特徴とする複合炭素繊維を要旨と
するものである。
The present invention SUMMARY OF THE INVENTION, which has been made with respect to the above-mentioned problems, not only is no Succoth to put the composite material produced strength degradation at high temperatures,
Carbon bonded carbon fiber with excellent wear resistance, oxidation resistance and elasticity
An object of the present invention is to find carbon fibers used as a raw material of a composite material . That is, the present invention provides a carbon-bonded carbon fiber composite material.
(C / C composite)
A composite carbon fiber obtained by converting a surface layer of carbon fiber into silicon carbide, wherein the crystal structure of the silicon carbide is mainly composed of a polytype of 2H or 3C, or a mixture of a polytype of 2H and 3C. The gist of the present invention is a composite carbon fiber.

【0006】さて、炭素繊維表面層を炭化珪素に転化す
る方法としては、珪素蒸気又は各種珪素化合物と反応さ
せるか、パックセメンテーションを応用した方法がある
が、最も好ましい方法として一酸化珪素ガスと炭素繊維
を次式のように反応させる方法があげられる。 SiO(g)+2C=SiC+CO(g) この方法を用いることによって、図3に示すように炭素
繊維19の形状、寸法を保持したままラムズデール記法
による2H、3C、4H、15R、6Hなどの結晶構造
(ポリタイプ)を持った珪化層20を形成することがで
きる。
As a method of converting the carbon fiber surface layer into silicon carbide, there is a method of reacting with silicon vapor or various silicon compounds, or a method of applying pack cementation. The most preferable method is a method of converting silicon monoxide gas. There is a method of reacting carbon fibers according to the following formula. SiO (g) + 2C = SiC + CO (g) By using this method, the crystal structure of 2H, 3C, 4H, 15R, 6H or the like by Ramsdale notation while maintaining the shape and dimensions of the carbon fiber 19 as shown in FIG. The silicide layer 20 having (polytype) can be formed.

【0007】この反応は1200℃〜2000℃の温度
範囲で加熱することにより進行する。ここで、一酸化珪
素ガスを発生させるには、珪素粉と二酸化珪素粉の混合
体、又は炭化珪素粉と二酸化珪素粉の混合体、あるいは
炭素粉と二酸化珪素粉の混合体、その他、各種珪素化合
物を1200℃〜2000℃に加熱することにより行な
うことができる。
This reaction proceeds by heating in a temperature range of 1200 ° C. to 2000 ° C. Here, in order to generate silicon monoxide gas, a mixture of silicon powder and silicon dioxide powder, a mixture of silicon carbide powder and silicon dioxide powder, a mixture of carbon powder and silicon dioxide powder, and other various silicon It can be carried out by heating the compound to 1200 ° C to 2000 ° C.

【0008】炭素繊維と一酸化珪素とを反応させて炭素
繊維表面を炭化珪素に転化させるとき、処理温度を12
00℃〜1650℃の範囲で選択することによって、炭
素繊維表面の珪化層の中に未反応炭素を残留させ、結晶
構造が2Hのポリタイプを主成分とする炭化珪素を生成
させることができ、炭化珪素分の重量割合である珪化率
をいろいろ変えたものをつくることができる。又、処理
温度のほかに処理時間を調節することによっても炭素繊
維表面の珪化層の厚さをコントロールすることができ
る。その他にも、一酸化珪素の濃度を調節することによ
って珪化率、珪化層の厚さをコントロールすることがで
きる。
When the surface of carbon fiber is converted into silicon carbide by reacting carbon fiber with silicon monoxide, the treatment temperature is set at 12
By selecting in the range of 00 ° C to 1650 ° C, unreacted carbon remains in the silicide layer on the surface of the carbon fiber, and silicon carbide having a crystal structure of 2H as a main component can be generated, It is possible to produce a material in which the silicidation rate, which is the weight ratio of silicon carbide, is variously changed. The thickness of the silicide layer on the carbon fiber surface can also be controlled by adjusting the processing time in addition to the processing temperature. In addition, the silicidation rate and the thickness of the silicide layer can be controlled by adjusting the concentration of silicon monoxide.

【0009】同様に、炭素繊維と一酸化珪素との反応温
度を1650℃〜2000℃の範囲で選択することによ
って、炭素繊維表面の珪化層の中に未反応炭素を残留さ
せ、結晶構造が2Hと3Cのポリタイプの混合物、ある
いは3Cのポリタイプを主成分とする炭化珪素を生成す
ることができる。
Similarly, by selecting the reaction temperature between carbon fiber and silicon monoxide in the range of 1650 ° C. to 2000 ° C., unreacted carbon remains in the silicide layer on the surface of carbon fiber, and the crystal structure becomes 2H. And 3C polytype, or silicon carbide mainly containing 3C polytype.

【0010】炭素繊維表面層を炭化珪素に転化した複合
炭素繊維全体の中の未反応炭素を少なくとも10重量%
以上は残留させておくことが望ましい。このことによっ
て炭素と炭化珪素の海島構造による炭素繊維のフレキシ
ビリティーを確保することができる。
At least 10% by weight of unreacted carbon in the entire composite carbon fiber in which the carbon fiber surface layer has been converted to silicon carbide.
It is desirable to keep the above. Thereby, the flexibility of the carbon fiber due to the sea-island structure of carbon and silicon carbide can be ensured.

【0011】次に炭素繊維を連続的に焼成して製造する
方法について図面を用いて説明する。図1は本発明の複
合炭素繊維を製造する装置の概略図である。図1におい
て、1は炭化前繊維又は炭素繊維であり、予熱ヒーター
2を用いて150℃〜300℃で処理する。炉内の雰囲
気ガスはガス供給口3より導入し、排気ガスは炉内の排
気ガス口7及び13より取り出す。
Next, a method of continuously firing and producing carbon fibers will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus for producing a composite carbon fiber of the present invention. In FIG. 1, reference numeral 1 denotes a pre-carbonized fiber or a carbon fiber, which is treated at 150 ° C. to 300 ° C. using a preheater 2. Atmosphere gas in the furnace is introduced from the gas supply port 3, and exhaust gas is taken out from the exhaust gas ports 7 and 13 in the furnace.

【0012】又、炉内のシール用水浴17を配した水封
部からはシール用ガスを供給口15より流し、炉内の排
気ガス口7及び13より取り出す。
Further, a sealing gas flows from a supply port 15 from a water seal portion provided with a sealing water bath 17 in the furnace, and is taken out from exhaust gas ports 7 and 13 in the furnace.

【0013】予熱処理を受けた繊維は焼成炭化用ヒータ
ー5によって1000℃〜3000℃で加熱され炭化さ
れる。以上の処理を受けた炭素繊維はスリット12とス
リット14によって区切られた珪化帯域へ移り、表面層
を炭化珪素に転化される。ここで、珪化用ヒーター6を
用いて珪化帯域を1200℃〜2000℃になるように
する。又、一酸化珪素ガスは黒鉛ルツボ9内の一酸化珪
素ガス発生源10を1200℃〜2000℃に加熱する
ことによって発生させることができ、それを一酸化珪素
ガス供給口11より導入して炭素繊維と反応させる。1
200℃〜2000℃に加熱するには誘導加熱コイル8
を用いて黒鉛ルツボ9を加熱すればよい。残留一酸化珪
素ガスは炉内の排気ガス口13より排出する。
The fiber subjected to the preheat treatment is heated at 1000 ° C. to 3000 ° C. by the carbonizing heater 5 and carbonized. The carbon fiber that has been subjected to the above processing moves to the silicidation zone divided by the slits 12 and 14, and the surface layer is converted into silicon carbide. Here, the silicidation zone is adjusted to 1200 ° C. to 2000 ° C. using the heater 6 for silicification. Further, the silicon monoxide gas can be generated by heating the silicon monoxide gas generation source 10 in the graphite crucible 9 to 1200 ° C. to 2000 ° C. React with fiber. 1
Induction heating coil 8 for heating to 200 ℃ ~ 2000 ℃
Can be used to heat the graphite crucible 9. The residual silicon monoxide gas is exhausted from an exhaust gas port 13 in the furnace.

【0014】表面層を炭化珪素に転化された炭素繊維は
スリット14とスリット18によって区切られた冷却帯
域を通って冷却され、スリット16を設けた水封部から
出てくる。
The carbon fiber whose surface layer has been converted into silicon carbide is cooled through a cooling zone defined by slits 14 and 18 and emerges from a water seal portion provided with slits 16.

【0015】ここで用いられる炭素繊維については特に
制限はないが、炭化珪素への転化反応のしやすさの点か
らはピッチ系炭素繊維が適している。
The carbon fibers used here are not particularly limited, but pitch-based carbon fibers are suitable from the viewpoint of easy conversion to silicon carbide.

【0016】[0016]

【発明の作用】本発明では炭素繊維表面層を一酸化珪素
ガスが浸透拡散していき、炭素繊維自体と反応させて炭
化珪素に転化させることが特徴になっており、CVD法
やPVD法、あるいはメッキ、溶射、塗布のように炭素
繊維表面の上に同一物質、又は別物質を沈積被膜化した
ものとは根本的に違っている。
The present invention is characterized in that silicon monoxide gas permeates and diffuses through the carbon fiber surface layer and reacts with the carbon fiber itself to convert it to silicon carbide. Or, it is fundamentally different from the one in which the same substance or another substance is deposited and coated on the carbon fiber surface such as plating, thermal spraying, and coating.

【0017】つまり、CVD法やPVD法、あるいはメ
ッキ、溶射、塗布などによって得られた炭素繊維表面は
沈積被膜物質と炭素繊維表面がファン・デル・ワールス
力等による物理的接着のみで結合しており、複合材料の
繊維フィラーとして用いられた場合、高温下での繰り返
し使用では沈積被膜物質が熱膨張差等が原因となって剥
離を起こし、強度劣化をはやめる。
That is, the surface of the carbon fiber obtained by the CVD method, the PVD method, or plating, thermal spraying, coating, or the like is formed by bonding the deposited film material and the carbon fiber surface only by physical adhesion by van der Waals force or the like. When used as a fiber filler of a composite material, when repeatedly used at a high temperature, the deposited coating material is peeled off due to a difference in thermal expansion and the like, and the deterioration of strength is stopped.

【0018】しかし、本発明の炭素繊維表面の炭化珪素
層は繊維自体が一酸化珪素と反応して変化したものであ
るから境界は完全な連続の組織となっており、高温下で
の繰り返し使用によって珪化層が剥離することはない。
However, the silicon carbide layer on the surface of the carbon fiber of the present invention has a completely continuous structure at its boundary since the fiber itself has been changed by reacting with silicon monoxide. The silicide layer does not peel off.

【0019】又、本発明の炭素繊維表面の炭化珪素層は
炭素繊維のポロシティーと同一であるので、CVD法や
PVD法による沈積被膜のようにほとんどポアーを持た
ないものにくらべ耐熱衝撃性が高く、マトリックスが炭
化珪素層の微少ポアー中に入り込むことによって、いわ
ゆる投錨効果がはたらくので、マトリックスと、より強
固に結合される。
Further, since the silicon carbide layer on the surface of the carbon fiber of the present invention has the same porosity as that of the carbon fiber, the silicon carbide layer has a lower thermal shock resistance than those having almost no pores such as a deposited film formed by a CVD method or a PVD method. Since the matrix is high and penetrates into the micropores of the silicon carbide layer, a so-called anchor effect works, so that the matrix is more firmly bonded to the matrix.

【0020】一方、結晶構造がはたす作用としては、本
発明の炭素繊維表面の炭化珪素の結晶構造を2Hのポリ
タイプを主成分とすることによって、この複合炭素繊維
の柔軟性が増すことが判明した。理由は明らかではない
が、2Hの炭化珪素結晶成分のイオン的凝集エネルギー
の寄与が大きいためと推定できる。
On the other hand, it was found that the function of the crystal structure is to increase the flexibility of the composite carbon fiber by making the crystal structure of silicon carbide on the surface of the carbon fiber of the present invention a 2H polytype as a main component. did. Although the reason is not clear, it can be presumed that the contribution of the ionic cohesion energy of the silicon carbide crystal component of 2H is large.

【0021】又、炭素繊維表面の炭化珪素の結晶構造を
3Cのポリタイプを主成分とすることによって3Cの炭
化珪素結晶成分固有の1200℃以上での強度増加の特
徴を発揮させ、複合材料の高温強度を高めることが可能
となる。
Further, by making the crystal structure of silicon carbide on the surface of the carbon fiber a 3C polytype as a main component, the characteristic of increasing the strength at 1200 ° C. or more inherent in the 3C silicon carbide crystal component is exhibited, and High temperature strength can be increased.

【0022】同様にして、炭素繊維表面の炭化珪素の結
晶構造を2Hと3Cのポリタイプの混合物を主成分とす
ることによって、それぞれ柔軟性と高温高強度特性をあ
わせ持つ複合炭素繊維を得ることができる。
Similarly, a composite carbon fiber having both flexibility and high-temperature and high-strength characteristics can be obtained by making the crystal structure of silicon carbide on the surface of the carbon fiber mainly a mixture of polytypes of 2H and 3C. Can be.

【0023】そのほかにも、複合材料の耐摩耗性の点で
通常の炭素繊維フィラーの場合にくらべ本発明の複合炭
素繊維フィラーでは3Cのポリタイプの結晶構造を持つ
炭化珪素成分の作用で大巾に向上することが判明した。
In addition, the composite carbon fiber filler of the present invention has a large 3D polycrystalline structure due to the action of a silicon carbide component having a 3C polytype crystal structure, in comparison with the ordinary carbon fiber filler in terms of the wear resistance of the composite material. It was found to improve.

【0024】本発明は炭素繊維単体のほか、組み立てが
一次元やそれ以上の次元構造をとった各種のマットや
布、あるいは各種の不織布やヤーンなどの形態をとった
ものも含み、炭素繊維単体と同様極めて有効である。次
に、本発明を実施例によって具体的に説明する。
The present invention includes not only single carbon fibers but also various mats or cloths assembled in one-dimensional or higher dimensions, or various non-woven fabrics or yarns. It is extremely effective as well. Next, the present invention will be specifically described with reference to examples.

【0025】[0025]

【実施例】ピッチ系繊維(2デニール、フィラメント数
10000)を図1に示す装置を用いて焼成炭化、及び
珪化処理を行なった。ガス供給口3からは所定量の酸素
を含んだ窒素ガスを送り、ガス供給口15からは窒素ガ
スを送り込んだ。
EXAMPLE A pitch-based fiber (2 denier, number of filaments 10,000) was calcined by carbonization and silicidation using the apparatus shown in FIG. A nitrogen gas containing a predetermined amount of oxygen was sent from the gas supply port 3, and a nitrogen gas was sent from the gas supply port 15.

【0026】一酸化珪素ガス発生源10は珪素粉と二酸
化珪素粉の混合体300g(モル比1:1)を黒鉛ルツ
ボ9に入れ、誘導加熱によって1600℃に加熱して、
一酸化珪素を発生させた。炉内の温度は予熱ヒーター
2、焼成炭化用ヒーター5、珪化用ヒーター6を用いて
図2のように調整した。このようにして得られた表層が
2Hのポリタイプを主成分とした炭化珪素より成る複合
炭素繊維は柔軟性に富んだものであった
The silicon monoxide gas generating source 10 puts 300 g (molar ratio 1: 1) of a mixture of silicon powder and silicon dioxide powder into a graphite crucible 9 and heats it to 1600 ° C. by induction heating.
Silicon monoxide was generated. The temperature in the furnace was adjusted as shown in FIG. 2 using a preheater 2, a calcination heater 5, and a silicification heater 6. The thus obtained composite carbon fiber having a surface layer made of silicon carbide having a 2H polytype as a main component was rich in flexibility .

【0027】[0027]

【発明の効果】以上説明したように、本発明の炭素結合
炭素繊維複合材料(C/C複合体)に用いられる複合炭
素繊維は炭素繊維の表面層を炭化珪素に転化し、珪化層
結晶構造が2Hあるいは3Cのポリタイプ、又は、2
Hと3Cのポリタイプの混合物を主成分として成る炭化
珪素に転化させているため、耐摩耗性と耐酸化性及び弾
性に優れた炭素結合炭素繊維複合体を作製することがで
きる。
As described above, the carbon bond of the present invention
Composite carbon used for carbon fiber composite material (C / C composite)
The elementary fiber converts the surface layer of carbon fiber into silicon carbide,
Polytypes of crystal structure 2H or 3C, or 2
Since a mixture of H and 3C polytype is converted into silicon carbide having a main component, wear resistance, oxidation resistance and elasticity are improved.
It is possible to produce carbon-bonded carbon fiber composites
Wear.

【0028】又、2Hのポリタイプの特徴である柔軟性
と3Cのポリタイプの特徴である1200℃以上におけ
る機械的強度の増加作用等を利用して高温域まで強度劣
化の起こらない炭素結合炭素繊維複合材料を得ることが
できる。
Also, utilizing the flexibility characteristic of the 2H polytype and the mechanical strength increasing effect at 1200 ° C. or higher, which is a characteristic of the 3C polytype, carbon-bonded carbon which does not undergo strength deterioration up to high temperatures. A fiber composite can be obtained.

【0029】なお、本発明の複合炭素複繊維の製造上、
珪化処理温度、処理時間、一酸化珪素ガス濃度等を自由
に調整することによって、いろいろな珪化率を持った炭
素繊維を得ることができ、炭素結合炭素繊維複合体より
成るメカニカルシール等の摺動特性も簡単に制御するこ
とができる。
In the production of the composite carbon bicomponent fiber of the present invention,
By freely adjusting the silicidation temperature, treatment time, silicon monoxide gas concentration, etc., it is possible to obtain carbon fibers with various silicidation rates, and to slide mechanical seals made of carbon-bonded carbon fiber composites. Characteristics can also be easily controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合炭素繊維を製造する装置の断面図
である。
FIG. 1 is a cross-sectional view of an apparatus for producing a composite carbon fiber of the present invention.

【図2】図1に示す複合炭素繊維の製造装置内の温度分
布の一例を示すグラフである。
FIG. 2 is a graph showing an example of a temperature distribution in the composite carbon fiber manufacturing apparatus shown in FIG.

【図3】炭素繊維及び本発明の複合炭素繊維の断面図で
ある。
FIG. 3 is a cross-sectional view of a carbon fiber and a composite carbon fiber of the present invention.

【図4】炭素繊維及びCVD、PVD、塗布等による表
面コーティングされた複合炭素繊維の断面図である。
FIG. 4 is a cross-sectional view of a carbon fiber and a composite carbon fiber whose surface is coated by CVD, PVD, coating, or the like.

【符号の説明】[Explanation of symbols]

1 繊維 2 予熱ヒーター 3、15 ガス供給口 4、12、14、16、18 スリット 5 焼成炭化用ヒーター 6 珪化用ヒーター 7、13 排気ガス口 8 誘導加熱コイル 9 黒鉛ルツボ 10 一酸化珪素ガス発生源 11 一酸化珪素ガス供給口 17 シール用水浴 19 炭素繊維 20 珪化層 21 被膜物質 DESCRIPTION OF SYMBOLS 1 Fiber 2 Preheater 3,15 Gas supply port 4,12,14,16,18 Slit 5 Heater for firing carbonization 6 Heater for silicification 7,13 Exhaust gas port 8 Induction heating coil 9 Graphite crucible 10 Silicon monoxide gas source 11 Silicon Monoxide Gas Supply Port 17 Water Bath for Sealing 19 Carbon Fiber 20 Silicide Layer 21 Coating Material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 11/00 C04B 35/52 G ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI D06M 11/00 C04B 35/52 G

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素結合炭素繊維複合材料(C/C複合
体)に用いられる炭素繊維において、前記炭素繊維の表
面層を炭化珪素に転化した複合炭素繊維であって、上記
炭化珪素の結晶構造が2Hあるいは3Cのポリタイプ、
又は、2Hと3Cのポリタイプの混合物を主成分として
成ることを特徴とする複合炭素繊維。
1. A carbon-bonded carbon fiber composite material (C / C composite)
The carbon fibers used in the body)
A composite carbon fiber in which a face layer is converted into silicon carbide, wherein the silicon carbide has a polytype of 2H or 3C crystal structure,
Alternatively, a composite carbon fiber comprising a mixture of a polytype of 2H and 3C as a main component.
JP3033059A 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material Expired - Fee Related JP2995583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033059A JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033059A JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Publications (2)

Publication Number Publication Date
JPH04272237A JPH04272237A (en) 1992-09-29
JP2995583B2 true JP2995583B2 (en) 1999-12-27

Family

ID=12376178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033059A Expired - Fee Related JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP2995583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737547B2 (en) 2009-09-04 2015-06-17 東洋炭素株式会社 Method for producing silicon carbide-coated graphite particles and silicon carbide-coated graphite particles
JP6261384B2 (en) * 2014-03-03 2018-01-17 太平洋セメント株式会社 Method for producing silicon carbide

Also Published As

Publication number Publication date
JPH04272237A (en) 1992-09-29

Similar Documents

Publication Publication Date Title
Dhami et al. Oxidation-resistant carbon-carbon composites up to 1700° C
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
US4476178A (en) Composite silicon carbide coatings for carbon-carbon materials
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0234788A (en) Fire-proof composite material and method for its manufacture
US6277440B1 (en) Preparation of ceramic matrix composites by infiltration of fibrous preforms with fluids or slurries and subsequent pyrolysis
US20070172659A1 (en) Anti-oxidation coating for carbon composites
Hannache et al. Boron nitride chemical vapour infiltration of fibrous materials from BCl3 NH3 H2 or BF3 NH3 mixtures: A thermodynamic and experimental approach
JP2995583B2 (en) Composite carbon fiber used for carbon bonded carbon fiber composite material
Maury et al. Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers
US5017527A (en) Mechanical seals of SiC-coated graphite by rate-controlled generation of SiO and process therefor
JP4070816B2 (en) Thermochemical treatment of non-porous or porous materials containing carbon in halogenated atmospheres.
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0699865B2 (en) Composite carbon fiber and manufacturing method thereof
US4544412A (en) Deposition of improved SiC coatings on carbon-base materials
Thevenot et al. Boron nitride obtained from molecular precursors: Aminoboranes used as a BN source for coatings, matrix, and Si3N4–BN composite ceramic preparation
JP2733788B2 (en) Manufacturing method of carbon fiber coated with carbide ceramics
US2839426A (en) Method of coating carbonaceous articles with silicon nitride
JPH04300327A (en) Conjugate carbon fiber
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
GB2161151A (en) Composite SiC/Si3N4 coating for carbon-carbon materials
JPH06305863A (en) Production of carbon fiber-reinforced carbon composite material coated with silicon carbide
Savage Gas phase impregnation/densification of carbon-carbon and other high-temperature composite materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees