JP2993164B2 - Axial flow type fluid machine - Google Patents

Axial flow type fluid machine

Info

Publication number
JP2993164B2
JP2993164B2 JP3072776A JP7277691A JP2993164B2 JP 2993164 B2 JP2993164 B2 JP 2993164B2 JP 3072776 A JP3072776 A JP 3072776A JP 7277691 A JP7277691 A JP 7277691A JP 2993164 B2 JP2993164 B2 JP 2993164B2
Authority
JP
Japan
Prior art keywords
blade
front guide
impeller
flow path
type fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3072776A
Other languages
Japanese (ja)
Other versions
JPH04308400A (en
Inventor
共由 岡村
嘉浩 長岡
定司 田中
国雄 高田
健二 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3072776A priority Critical patent/JP2993164B2/en
Publication of JPH04308400A publication Critical patent/JPH04308400A/en
Application granted granted Critical
Publication of JP2993164B2 publication Critical patent/JP2993164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非圧縮性流体に用いる軸
流形流体機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial flow type fluid machine used for an incompressible fluid.

【0002】[0002]

【従来の技術】軸流形流体機械例えばポンプは一般に吸
込みベルマウス,前置案内羽根,羽根車,後置案内羽根
及び吐出管からなっている。羽根車は原動機により駆動
されるポンプ軸に取付けられ、羽根車の回転により流体
は前置案内羽根側から後置案内羽根側へ吐き出される。
2. Description of the Related Art An axial flow type fluid machine such as a pump generally comprises a suction bell mouth, a front guide blade, an impeller, a rear guide blade, and a discharge pipe. The impeller is mounted on a pump shaft driven by a prime mover, and fluid is discharged from the front guide blade side to the rear guide blade side by rotation of the impeller.

【0003】なお、この種の軸流形流体機械の構造を示
す公知例として、日本機械学会 ポンプ図集分科会編:
「機械図集ポンプ」(昭和46年12月,日本機械学会
p.57及びp.59)がある。
[0003] As a known example showing the structure of this type of axial flow type fluid machine, a pump diagram collection subcommittee of the Japan Society of Mechanical Engineers:
“Mechanical Drawing Pump” (December 1972, The Japan Society of Mechanical Engineers)
p.57 and p.59).

【0004】[0004]

【発明が解決しようとする課題】ポンプの高速小型化は
高比速度比(高Ns化)により達成されるが、それには
ハブ比を小さくして流路面積の増大を図る必要がある。
ポンプ直径Dg の円筒断面の展開図を図20(a)に示
す。羽根車羽根翼素の取付け角βi′ は次式で表され
る。
The high-speed miniaturization of the pump can be achieved by a high specific speed ratio (high Ns). To achieve this, it is necessary to reduce the hub ratio and increase the flow passage area.
The developed view of a cylindrical cross-section of a pump diameter D g shown in FIG. 20 (a). The mounting angle β i ′ of the impeller blade blade element is expressed by the following equation.

【0005】[0005]

【数1】 (Equation 1)

【0006】図20(b)の速度三角形から次のことが
らがわかる。すなわち、ハブ比が小さくなるとハブ比に
比例して周速Uが小さくなるが、軸方向の流入速度C1
は半径に比例して小さくならないため、流入角β1 は非
常に大きくなってくる。従って、羽根取付け角βi は図
7に示すようにハブ側が急激に大きくなる。
The following can be understood from the velocity triangle shown in FIG. That is, as the hub ratio decreases, the peripheral speed U decreases in proportion to the hub ratio, but the axial inflow speed C 1
Does not decrease in proportion to the radius, the inflow angle β 1 becomes very large. Therefore, the blade mounting angle β i rapidly increases on the hub side as shown in FIG.

【0007】一方、羽根翼素の負荷は次式で表される。On the other hand, the load on the blade blade is expressed by the following equation.

【0008】[0008]

【数2】 (Equation 2)

【0009】ハブからティップにわたり羽根車の出す設
計理論揚程(一定)は、ハブに近づくほどWは小さ
くなりβは大きくなるので、羽根翼素の負荷及び揚
力係数は大きくなる。羽根の負荷(CL・l/t)と半径
との関係は、図5に示す。本図から一般に半径が小さく
なると極度に負荷が増大することがわかる。従って、こ
の負荷増大に対処するために羽根翼素の迎角αを大きく
する必要があり、数1式からハブ側の羽根取付け角(β
i )は一層大きくなる。
[0009] design theory lift issuing from the hub of the impeller over tip (constant), since W is small becomes beta increases closer to the hub, the load and lift coefficient of the wing blade element increases. Relationship between the load of the blade and (C L · l / t) and the radius is shown in FIG. From this figure, it can be seen that the load generally increases extremely as the radius decreases. Therefore, in order to cope with this increase in load, it is necessary to increase the angle of attack α of the blade blade element.
i ) is even larger.

【0010】このように従来技術では高Ns化に必要な
ハブ比を小さくすると、ティップの羽根角とのハブ側の
羽根角の差異が大となり非常に捩じれた羽根となり製作
上及び羽根の強度上好ましくないという問題点を有して
いる。
As described above, in the prior art, when the hub ratio required for increasing the Ns is reduced, the difference between the tip blade angle and the hub blade angle becomes large, resulting in a very twisted blade. There is a problem that it is not preferable.

【0011】一方、図6に示すように翼素で大きな揚力
係数を得るため迎角(α)を大きくすると、抗揚比が急
激に増加し羽根車の損失が増大するとともに失速点まで
の余裕がすくなくなるという問題も存在する。
On the other hand, as shown in FIG. 6, when the angle of attack (α) is increased in order to obtain a large lift coefficient with the blade element, the lift ratio increases sharply, the loss of the impeller increases, and the margin to the stall point is increased. There is also a problem that it will be reduced.

【0012】上述のとおり、従来技術においてはハブ比
を小さくすると羽根車の捩じりが大きくなり製作上及び
強度上好ましくないという問題及び羽根車の性能が低下
するという問題があった。
As described above, in the prior art, when the hub ratio is reduced, the torsion of the impeller is increased, which is not preferable in terms of manufacturing and strength, and the performance of the impeller is reduced.

【0013】本発明は、ハブとティップ間の羽根の捩じ
れが小さくなるため羽根の製作が容易となるとともに、
羽根の強度が向上する軸流形流体機械を提供することを
目的とする。
According to the present invention, since the twist of the blade between the hub and the tip is reduced, the manufacture of the blade is facilitated.
It is an object of the present invention to provide an axial flow type fluid machine with improved blade strength.

【0014】[0014]

【課題を解決するための手段】上記目的は、ハブに固定
した前置案内羽根と、この前置案内羽根から流出する流
れの速度を流入速度ベクトルとして設計理論揚程から定
まる速度三角形を満たす翼列をもつ羽根車及び後置案内
羽根を備える軸流形流体機械において、前記前置案内羽
根はハブ側の円筒断面において羽根厚中心線が下流に向
って回転軸方向に対して前記羽根車の回転方向と反対側
に傾く羽根翼素とティップ側の円筒断面において羽根厚
中心線が回転軸方向と平行な羽根翼素とを接続して形成
することによって、達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a front guide vane fixed to a hub and a cascade satisfying a speed triangle determined from a design theoretical head using a velocity of a flow flowing out of the front guide vane as an inflow velocity vector. In the axial-flow type fluid machine provided with an impeller having a front guide blade and a rear guide vane, the front guide vane has a blade thickness center line facing downstream in a hub-side cylindrical cross section and the rotation of the impeller relative to a rotation axis direction. This is achieved by connecting and forming a blade blade element inclined in a direction opposite to the direction and a blade blade center line parallel to the rotation axis direction in the cylindrical section on the tip side.

【0015】又、上記目的はハブに固定した前置案内羽
根と、この前置案内羽根から流出する流れの速度を流入
速度ベクトルとして設計理論揚程から定まる速度三角形
を満たす翼列をもつ羽根車及び後置案内羽根を備える軸
流形流体機械において、前記前置案羽根はハブ側の円筒
断面において羽根厚中心線が下流に向って回転軸方向に
対して前記羽根車の回転方向と反対側に傾く羽根翼素が
半径方向において流路中間まで伸ばすことによって、達
成される。
[0015] Further, the object is to provide an impeller having a front guide blade fixed to a hub, a blade row satisfying a speed triangle determined from a design theoretical head using a velocity of a flow flowing out of the front guide blade as an inflow velocity vector. In the axial-flow type fluid machine including the rear guide blades, the front blades may be arranged such that the blade thickness center line faces downstream in the cylindrical section on the hub side and is located on the side opposite to the rotation direction of the impeller with respect to the rotation axis direction. This is achieved by the fact that the inclined vane element extends radially to the middle of the flow path.

【0016】更に、上記目的は、ハブに固定した前置案
内羽根と、この前置案内羽根から流出する流れの速度を
流入速度ベクトルとして設計理論揚程から定まる速度三
角形を満たす翼列をもつ羽根車及び後置案内羽根を備え
る軸流形流体機械において、前記前置案羽根は円筒断面
において羽根厚中心線が下流に向って回転軸方向に対し
て前記羽根車の回転方向と反対側に傾く羽根翼素を半径
方向において流路全長に伸ばし、ティップの羽根翼素を
円筒断面において羽根厚中心線が回転軸と平行にするこ
とによって、達成される。
Furthermore, an object of the present invention is to provide an impeller having a front guide blade fixed to a hub, and a cascade satisfying a speed triangle determined from a design theoretical head using a velocity of a flow flowing out of the front guide blade as an inflow velocity vector. In the axial-flow type fluid machine including the rear guide blade, the front proposed blade is a blade in which a blade thickness center line in a cylindrical cross section is inclined toward a downstream side with respect to a rotation axis direction in a direction opposite to a rotation direction of the impeller. This is achieved by extending the blade elements in the radial direction to the full length of the flow path and making the blade blade elements of the tip parallel to the axis of rotation in the cylindrical cross section.

【0017】[0017]

【作用】羽根車前段に設けたハブ側断面の前置案内羽根
は羽根車の回転と逆方向の旋回流を羽根車に付与する。
その結果羽根車への相対流入角は小さくなり、ハブ面と
ティップ面の羽根取付け角の差が小さくなり即ち羽根の
捩じりが小さくなる。一方、ハブ側の羽根翼素の流入速
度が増大する。その結果、半径方向に一様に全揚程を出
すように設計するとハブ面の負荷は軽減されハブ面の翼
性能は向上する。
The front guide blade provided at the front end of the impeller and having a hub-side cross section gives the impeller a swirling flow in a direction opposite to the rotation of the impeller.
As a result, the relative inflow angle to the impeller becomes small, and the difference in the blade mounting angle between the hub surface and the tip surface becomes small, that is, the torsion of the blade becomes small. On the other hand, the inflow speed of the blade blade element on the hub side increases. As a result, if the head is designed so as to provide a full head in the radial direction, the load on the hub surface is reduced and the blade performance on the hub surface is improved.

【0018】[0018]

【実施例】以下本発明の一実施例を図1により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0019】軸流ポンプの水中軸受(図示せず)で支持
される回転軸4に取付けられた羽根車1の下側には前置
案内羽根2が、羽根車1の上側には後置案内羽根3が設
けられている。前置案内羽根2はティップ側でベルマウ
ス5に固定され、ハブ側でベルマウス5を固定してい
る。図1のポンプ吸込み流路形状(A−A線横断面)を
図2に示す。図1においてハブ側(直径Dg′)における
円筒断面の展開図を図3に示す。また、図1のティップ
側(直径Dg″)における円筒断面の展開図を図4に示
す。
A front guide blade 2 is provided below the impeller 1 mounted on the rotary shaft 4 supported by a submerged bearing (not shown) of the axial flow pump, and a rear guide blade is provided above the impeller 1. A blade 3 is provided. The front guide blade 2 is fixed to the bell mouth 5 on the tip side, and the bell mouth 5 is fixed on the hub side. FIG. 2 shows the shape of the pump suction channel (cross section taken along line AA) of FIG. FIG. 3 is a developed view of a cylindrical cross section on the hub side (diameter D g ′) in FIG. FIG. 4 is a developed view of a cylindrical cross section on the tip side (diameter D g ″) in FIG.

【0020】前置案内羽根2のハブ円筒断面2a(直径
gh)と円筒断面2c(直径Dg)間は、図2及び図3に
示すように反りのある翼型を適用し、羽根車1の回転と
逆方向の旋回が得られるようになっている。また円筒断
面2cとティップ側円筒断面2bの間は図2及び図3に
示すように反りの無い翼形が回転軸(流入方向)と平行
(迎角零)に設定されている。前置案内羽根2の翼素形
状は、ハブ円筒断面2aから円筒断面2cに向かうに従
って徐々に反り及び転向角が小さくなり、円筒断面2c
で共に零になるように設定してある。
Between the hub cylindrical section 2a (diameter D gh ) and the cylindrical section 2c (diameter D g ) of the front guide blade 2, a warped airfoil is applied as shown in FIGS. A rotation in a direction opposite to that of the rotation of 1 is obtained. Further, between the cylindrical section 2c and the tip-side cylindrical section 2b, a non-warped airfoil is set parallel to the rotation axis (inflow direction) (zero angle of attack) as shown in FIGS. The blade shape of the front guide blade 2 is such that the warp and the turning angle gradually decrease from the hub cylindrical section 2a to the cylindrical section 2c, and the cylindrical section 2c
Are set so that both become zero.

【0021】このような軸流ポンプにおいてポンプの下
側から流れが流入したときの羽根車1の速度三角形を図
3(b)及び図4(b)に示す。図3(b)に示すよう
にハブ側円筒断面で前置案内羽根2に軸方向に流入した
流れは、前置案内羽根2により案内羽根出口すなわち羽
根車入口においては、羽根車1の回転方向と逆方向の旋
回成分Cu1をもつ速度ベクトルC1 となる。従って、羽
根車1へは相対速度W1 となって流入する。羽根車1で
はW1 からW2 に減速し、後置案内羽根3へ絶対速度C
2 として出て行く。図3(b)及び図20(b)の速度
三角形から、本発明の流入角β1 と従来技術の流入角β
1′ は次のような関係がある。
FIGS. 3 (b) and 4 (b) show the speed triangle of the impeller 1 when the flow flows from below the pump in such an axial flow pump. As shown in FIG. 3 (b), the flow axially flowing into the front guide blade 2 in the hub-side cylindrical cross section is rotated by the front guide blade 2 at the guide blade outlet, that is, at the impeller inlet. And a velocity vector C 1 having a turning component C u1 in the opposite direction. Therefore, it flows into the impeller 1 at the relative speed W 1 . The impeller 1 decelerates from W 1 to W 2 , and sends the absolute speed C to the rear guide blade 3.
Go out as two . From the velocity triangles of FIGS. 3B and 20B, the inflow angle β 1 of the present invention and the inflow angle β of the prior art are shown.
1 ′ has the following relationship.

【0022】[0022]

【数3】 (Equation 3)

【0023】従って、本発明の羽根取付け角βi は従来
技術の値より小さくなり、図7に示すようにハブ円筒断
面2aにおいても異常に大きな値とはならない。
Accordingly, the blade mounting angle β i of the present invention is smaller than that of the conventional art, and does not become an abnormally large value even in the hub cylindrical section 2a as shown in FIG.

【0024】また、数2式に示す羽根翼素の負荷に関し
ても本発明では、右辺のβ及びWが小さくなるた
め左辺の負荷の値も小さくなる。従って、羽根翼素の迎
角(α)も小さく設定でき、羽根取付け角β1 は小さく
なる。
Further, in the present invention with regard loads vane blade element shown in equation (2), the load value of the left side for right of beta and W decreases also decreases. Therefore, the angle of attack (α) of the blade blade element can be set small, and the blade mounting angle β 1 becomes small.

【0025】一方、ポンプはキャビテーション性能も重
要な性能の一つである。前置案内羽根2は増速翼列のた
め羽根車入口の圧力は前置案内羽根2がない場合に比べ
圧力が低下し、キャビテーションが発生しやすいと考え
られる。羽根翼素のキャビテーション係数Kb は、次式
で表される。
On the other hand, the cavitation performance of the pump is one of the important performances. Since the front guide blades 2 have a speed increasing cascade, the pressure at the inlet of the impeller is reduced as compared with the case where the front guide blades 2 are not provided, and cavitation is likely to occur. The cavitation coefficient K b of the blade blade is represented by the following equation.

【0026】[0026]

【数4】 (Equation 4)

【0027】NPSH=10mと仮定して数4式により
求めた羽根翼素のキャビテーション係数Kb を図8に示
す。キャビテーション係数Kb はある値以下になると性
能が低下するので、耐キャビテーション性能の観点から
はKb が高いほどよい。従来技術においては、ハブ側の
キャビテーション係数はティップ側に比べ非常に大きい
ため、もともとキャビテーションはハブ側では生じにく
くなっている。従って、前置案内羽根2により少々圧力
が低下してもキャビテーションの発生状態は従来と変わ
らずティップ側がキャビテーション性能に関する制約断
面となる。ティップ側は従来技術と同じ形状であるの
で、キャビテーション性能に関しては従来技術と同等の
性能が得られる。
[0027] The NPSH = 10 m and cavitation K b of vane blade element obtained by Formula 4 by assuming shown in FIG. If the cavitation coefficient Kb falls below a certain value, the performance is reduced. Therefore, from the viewpoint of anti-cavitation performance, the higher the Kb, the better. In the prior art, since the cavitation coefficient on the hub side is much larger than that on the tip side, cavitation is originally unlikely to occur on the hub side. Therefore, even if the pressure is slightly reduced by the front guide vanes 2, the state of cavitation does not change as in the related art, and the tip side becomes a restricted cross section regarding the cavitation performance. Since the tip side has the same shape as that of the related art, the same cavitation performance as that of the related art can be obtained.

【0028】このように本発明によれば、ハブの羽根取
付け角βi を小さく設定でき、高比速度比に必要なハブ
比の低減を、羽根車1の製作性,強度及び性能の低下を
もたらすこと無く実現することができる。
As described above, according to the present invention, the blade mounting angle β i of the hub can be set small, the hub ratio required for a high specific speed ratio can be reduced, and the productivity, strength and performance of the impeller 1 can be reduced. It can be realized without bringing.

【0029】図9,図10に第二の実施例を示す。図1
0は図9のB−B線横断面図である。ハブ6からティッ
プまでに至る前置案内羽根2の枚数はベルマウス5を固
定するに強度上十分な最低限の数(実施例では4枚)と
して、他は、反り付案内羽根を設ける半径位置(Dg
2)までのみ羽根を設け、吸込み流路の羽根間の面積を
広くして夾雑物の通過性を高めた構造である。
FIGS. 9 and 10 show a second embodiment. FIG.
0 is a cross-sectional view taken along the line BB of FIG. The number of the front guide blades 2 from the hub 6 to the tip is the minimum number (four in the embodiment) sufficient in strength to fix the bell mouth 5, and the other is the radial position where the warped guide blades are provided. (D g /
The blades are provided only up to 2), and the area between the blades in the suction channel is widened to increase the permeability of impurities.

【0030】第三の実施例を図11及び図12に示す。
図12は図11のC−C線横断面図である。前置第一案
内羽根2の製作性を良くするため、案内羽根2はハブ6
から削り出し加工し、そのハブ6をベルマウス5の支柱
を兼ねている前置第二案内羽根にボルトにて接合した構
造である。第一案内羽根2での前縁稜線2dと回転軸中
心線となす角γは90゜以下とした夾雑物のからみつき
を防止している。
A third embodiment is shown in FIGS.
FIG. 12 is a cross-sectional view taken along line CC of FIG. In order to improve the manufacturability of the front first guide blade 2, the guide blade 2 is
And the hub 6 is joined to the front second guide blade also serving as a support of the bell mouth 5 by a bolt. The angle γ between the leading edge ridge line 2d of the first guide blade 2 and the center axis of the rotating shaft is set to 90 ° or less to prevent entanglement of impurities.

【0031】第四の実施例を図13及び図14に示す。
図14は、図13のD−D線の横断面図である。前置案
内羽根2はオープン形の羽根であるため、ハブ側で案内
された流れは、径の大なる側の主流の影響を受け、羽根
数が少ないと十分な案内効果が得られない場合がある。
従って、そのような場合も前置案内羽根2の案内効果が
十分得られるようにするため、案内羽根2のティップ全
周に円筒10を設けた構造としたものである。
FIG. 13 and FIG. 14 show a fourth embodiment.
FIG. 14 is a cross-sectional view taken along line DD of FIG. Since the front guide blade 2 is an open type blade, the flow guided on the hub side is affected by the main flow on the side with a large diameter, and if the number of blades is small, a sufficient guide effect may not be obtained. is there.
Therefore, in such a case, in order to sufficiently obtain the guiding effect of the front guide blade 2, the cylinder 10 is provided around the entire tip of the guide blade 2.

【0032】第五の実施例を図15に示す。可動翼羽根
車1を備えたポンプに対し、前置案内羽根2を可動翼化
した構造である。前置案内羽根2はポンプ外部からのリ
ンク機構あるいは油圧、あるいは電気信号等の可動用伝
達機構12を経て案内羽根角度駆動装置11に伝えら
れ、羽根車1の羽根角に適合した羽根角に設定されるよ
うになっている。本装置により所要の運転点に最適な羽
根角に設定され効率の高い運転が可能となる。
FIG. 15 shows a fifth embodiment. In the pump provided with the movable blade impeller 1, the front guide blade 2 is a movable blade. The front guide blade 2 is transmitted to a guide blade angle driving device 11 via a link mechanism from the outside of the pump or a movable transmission mechanism 12 of hydraulic pressure, electric signal, or the like, and is set to a blade angle suitable for the blade angle of the impeller 1. It is supposed to be. With this device, the blade angle is set to the optimal one for the required operating point, and high-efficiency operation becomes possible.

【0033】第六の実施例を図16(a)に示す。前置
案内羽根翼素のハブ6から半径方向への積み重ね方を半
径方向から旋回を与える方向に角度θだけ傾斜させた案
内羽根となっている。図16(b)に示すように、案内
羽根2でガイドされ誘起される周方向速度成分Cu1によ
り遠心力が流体に作用し2次流れとして半径方向の流れ
r1が発生し、損失が生じポンプ効率を低下させる要因
となる。本実施例はこの2次流れを抑制する作用があ
り、損失の増大を防止することができる。
FIG. 16A shows a sixth embodiment. The guide blades are such that the way of stacking the front guide blade blades in the radial direction from the hub 6 is inclined by an angle θ in the direction in which the turning is performed from the radial direction. As shown in FIG. 16 (b), a centrifugal force acts on the fluid due to the circumferential velocity component C u1 guided and induced by the guide blade 2, and a radial flow C r1 is generated as a secondary flow, and loss occurs. It becomes a factor to lower the pump efficiency. The present embodiment has the function of suppressing this secondary flow, and can prevent an increase in loss.

【0034】図17及び図18に第七及び第八の実施例
を示す。ポンプ吸込み流路8が傘型流路の場合で、ポン
プピット及びベルマウスがなく吸込み流路から直接ポン
プに流入する場合である。図17は前置案内羽根2に本
発明を適用した場合であり、図18は吸込みコーン上に
高さの低い前置案内羽根2を設けた場合である。
FIGS. 17 and 18 show the seventh and eighth embodiments. This is a case where the pump suction flow path 8 is an umbrella-shaped flow path and flows directly into the pump from the suction flow path without the pump pit and the bell mouth. FIG. 17 shows a case where the present invention is applied to the front guide blade 2, and FIG. 18 shows a case where the front guide blade 2 having a low height is provided on the suction cone.

【0035】[0035]

【発明の効果】本発明によれば軸流羽根車のハブ側の相
対流速を増すことができ、羽根車羽根翼素への相対速度
の流入角が小さくなり且つ翼素の揚力係数も小さく設定
できるため迎角も小さくなり、羽根車羽根の取付け角
(周方向と翼弦とのなす角)を小さくできるので、ハブ
側断面の羽根の取付け角とティップ断面の羽根取付け角
の差を小さく設定することができ、ハブとティップ間の
羽根の捩じれが小さくなるため羽根の製作が容易となる
とともに、羽根の強度が向上する。
According to the present invention, the relative flow velocity on the hub side of the axial impeller can be increased, the angle of inflow of the relative velocity to the impeller blade element is reduced, and the lift coefficient of the blade element is set small. The angle of attack can be reduced because it can be done, and the mounting angle of the impeller blade (the angle between the circumferential direction and the chord) can be reduced, so the difference between the mounting angle of the blade on the hub side section and the blade mounting angle on the tip section is set small. The twist of the blade between the hub and the tip is reduced, so that the manufacture of the blade is facilitated and the strength of the blade is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の縦断面図。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】(a)(b)は図1のハブ側円筒断面(直径
g′)の展開図と羽根車の速度三角形を示す図。
3 (a) and 3 (b) are a development view of a hub-side cylindrical cross section (diameter D g ′) of FIG. 1 and a view showing a speed triangle of an impeller.

【図4】図1のティップ側円筒断面(直径Dg″)の展開
図と羽根車の速度三角形を示す図。
FIG. 4 is a development view of a tip-side cylindrical cross section (diameter D g ″) of FIG. 1 and a diagram showing a speed triangle of an impeller.

【図5】羽根車の半径と羽根翼素の負荷との関係を示し
た図。
FIG. 5 is a diagram showing a relationship between a radius of an impeller and a load of a blade blade element.

【図6】羽根翼素の迎角と抗揚比との関係を示す図。FIG. 6 is a diagram showing the relationship between the angle of attack of the blade blade and the lift ratio.

【図7】羽根車の半径と羽根翼素の取付け角の関係を示
す図。
FIG. 7 is a diagram showing the relationship between the radius of an impeller and the mounting angle of a blade element.

【図8】羽根車の半径と羽根翼素のキャビテーション係
数との関係を示す図。
FIG. 8 is a diagram showing a relationship between a radius of an impeller and a cavitation coefficient of a blade blade element.

【図9】第二の実施例を示す縦断面図。FIG. 9 is a longitudinal sectional view showing a second embodiment.

【図10】図9のB−B線の横断面図。FIG. 10 is a transverse sectional view taken along the line BB of FIG. 9;

【図11】第三の実施例を示す縦断面図。FIG. 11 is a longitudinal sectional view showing a third embodiment.

【図12】図11のC−C線の横断面図。FIG. 12 is a transverse sectional view taken along line CC of FIG. 11;

【図13】第四の実施例を示す縦断面図。FIG. 13 is a longitudinal sectional view showing a fourth embodiment.

【図14】図13のD−D線の横断面図。FIG. 14 is a transverse sectional view taken along line DD of FIG. 13;

【図15】第五の実施例を示す縦断面図。FIG. 15 is a longitudinal sectional view showing a fifth embodiment.

【図16】(a)(b)は第六の実施例を示す説明図及
び詳細図。
16A and 16B are an explanatory view and a detailed view showing a sixth embodiment.

【図17】第七の実施例を示す縦断面図。FIG. 17 is a longitudinal sectional view showing a seventh embodiment.

【図18】第八の実施例を示す縦断面図。FIG. 18 is a longitudinal sectional view showing an eighth embodiment.

【図19】(a)(b)は従来の羽根の構成図と、速度
三角形図である。
19A and 19B are a configuration diagram of a conventional blade and a speed triangular diagram.

【符号の説明】[Explanation of symbols]

1…羽根車、2…前置案内羽根、3…後置案内羽根、4
…軸、5…ベルマウス、6…ハブ、7…吐出管、8…傘
型吸込み流路。
DESCRIPTION OF SYMBOLS 1 ... Impeller, 2 ... Front guide blade, 3 ... Rear guide blade, 4
... Shaft, 5 ... Bell mouth, 6 ... Hub, 7 ... Discharge pipe, 8 ... Umbrella-shaped suction flow path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 国雄 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (72)発明者 大谷 健二 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (56)参考文献 特開 平3−67097(JP,A) 実開 昭57−69999(JP,U) (58)調査した分野(Int.Cl.6,DB名) F04D 29/40 - 29/56 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunio Takada 603, Kandamachi, Tsuchiura-shi, Ibaraki Prefecture Inside the Tsuchiura Plant, Hitachi, Ltd. (72) Kenji Otani 603, Kandamachi-cho, Tsuchiura-shi, Ibaraki Hitachi, Ltd. (56) References JP-A-3-67097 (JP, A) JP-A-57-69999 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F04D 29 / 40-29 / 56

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハブを固定した前置案内羽根と、この前置
案内羽根から流出する流れの速度を流入速度ベクトルと
して設計理論揚程から定まる速度三角形を満たす翼列を
もつ羽根車及び後置案内羽根を備える軸流型流体機械に
おいて、前記前置案内羽根はハブ側の円筒断面において
羽根厚中心線が下流に向って回転軸方向に対して前記羽
根車の回転方向と反対側に傾く羽根翼素とティップ側の
円筒断面において羽根厚中心線が回転軸方向と平行な羽
根翼素とを接続して形成し、前記前置案内羽根は羽根翼
素が半径方向において流路全長に伸びるものと、流路の
中間まで伸びるものとで構成したことを特徴とする軸流
形流体機械。
1. An impeller having a front guide blade to which a hub is fixed, a blade row satisfying a speed triangle determined from a design theoretical head using a velocity of a flow flowing out of the front guide blade as an inflow velocity vector, and a rear guide. In the axial-flow type fluid machine provided with the blades, the front guide blades may be configured such that a blade thickness center line is directed downstream in a cylindrical section on a hub side, and is inclined in a direction opposite to a rotation direction of the impeller with respect to a rotation axis direction. In the element and the cylindrical section on the tip side, the blade thickness center line connects and forms the blade blade element parallel to the rotation axis direction, and the front guide blade is such that the blade blade element extends the entire length of the flow path in the radial direction. An axial flow type fluid machine comprising: a member extending to a middle of a flow path.
【請求項2】請求項1記載のものにおいて、前記前置案
内羽根は羽根翼素が半径方向において流路中間まで伸び
るもののティップ外周に円筒状のリングを設けることを
特徴とする軸流形流体機械。
2. An axial flow type fluid according to claim 1, wherein said front guide vane is provided with a cylindrical ring on the outer periphery of the tip, although the vane blade element extends to the middle of the flow path in the radial direction. machine.
【請求項3】請求項1記載のものにおいて、前記羽根車
及び前置案内羽根を可動翼としたことを特徴とする軸流
形流体機械。
3. An axial flow type fluid machine according to claim 1, wherein said impeller and said front guide blade are movable blades.
【請求項4】ハブを固定した前置案内羽根と、この前置
案内羽根から流出する流れの速度を流入速度ベクトルと
して設計理論揚程から定まる速度三角形を満たす翼列と
をもつ羽根車及び後置案内羽根を備える軸流型流体機械
において、前記前置案内羽根はハブ側の円筒断面におい
て羽根厚中心線が下流に向って回転軸方向に対して前記
羽根車の回転方向と反対側に傾く羽根翼素と、ティップ
側の円筒断面において羽根厚中心線が回転軸方向と平行
な羽根翼素とを接続して形成し、この案内羽根は羽根翼
素が半径方向において流路全長に伸びるものと、流路中
間まで伸びるものとで構成し、前記流路全長にわたるも
のは流路中間までのものより、流路の上流側に配置する
ことを特徴とする軸流形流体機械。
4. An impeller having a front guide blade to which a hub is fixed, a cascade satisfying a speed triangle determined from a design theoretical head using a velocity of a flow flowing out of the front guide blade as an inflow velocity vector and a rear wheel. In the axial-flow type fluid machine provided with guide vanes, the front guide vanes are blades in which a blade thickness center line in a cylindrical cross section on the hub side is inclined toward a downstream side with respect to a rotation axis direction in a direction opposite to a rotation direction of the impeller. The blade element is formed by connecting the blade thickness center line of the tip-side cylindrical cross section with the blade blade element parallel to the rotation axis direction, and the guide blade is such that the blade blade element extends the entire length of the flow path in the radial direction. An axial flow type fluid machine which is configured so as to extend to the middle of the flow path, and the one extending over the entire length of the flow path is arranged more upstream of the flow path than the one extending to the middle of the flow path.
【請求項5】請求項4記載のものにおいて、前記前置案
内羽根の羽根翼素が流路中間までのものの子午線面前
稜線と羽根車回転軸とのなす角を90度以下とすること
を特徴とする軸流形流体機械。
5. An apparatus according to claim 4, wherein an angle between a leading edge of the meridian plane of the front guide vane up to the middle of the flow path and a ridge line and an impeller rotation axis is 90 degrees or less. An axial flow type fluid machine characterized by the following.
JP3072776A 1991-04-05 1991-04-05 Axial flow type fluid machine Expired - Fee Related JP2993164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3072776A JP2993164B2 (en) 1991-04-05 1991-04-05 Axial flow type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3072776A JP2993164B2 (en) 1991-04-05 1991-04-05 Axial flow type fluid machine

Publications (2)

Publication Number Publication Date
JPH04308400A JPH04308400A (en) 1992-10-30
JP2993164B2 true JP2993164B2 (en) 1999-12-20

Family

ID=13499125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3072776A Expired - Fee Related JP2993164B2 (en) 1991-04-05 1991-04-05 Axial flow type fluid machine

Country Status (1)

Country Link
JP (1) JP2993164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163525B2 (en) * 2012-06-27 2015-10-20 United Technologies Corporation Turbine wheel catcher
CN108087339A (en) * 2017-12-14 2018-05-29 卧龙电气集团股份有限公司 A kind of guiding device for large axial flow fan
KR102519317B1 (en) * 2021-05-04 2023-04-10 한국생산기술연구원 Design method of impeller for pump using airfoil shape, impeller and pump by the method
KR102519320B1 (en) * 2021-07-16 2023-04-10 한국생산기술연구원 Design method of impeller for axial flow pump that satisfies design specifications and performance by meridian shape design, impeller and pump by the method

Also Published As

Publication number Publication date
JPH04308400A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
JP4288051B2 (en) Mixed flow turbine and mixed flow turbine blade
JPH0262717B2 (en)
JP2018532065A (en) Highly rigid turbomachine impeller, turbomachine including said impeller, and method of manufacture
JP6793254B2 (en) High efficiency double suction impeller
CN109844263B (en) Turbine wheel, turbine and turbocharger
JP2993164B2 (en) Axial flow type fluid machine
US3918841A (en) Pump impeller assembly
WO1990002265A1 (en) Partial height blades in a compressor impeller
US7195459B2 (en) Francis turbine
JP2004044473A (en) Impeller and centrifugal compressor
JP3350934B2 (en) Centrifugal fluid machine
JP2020186649A (en) Impeller for centrifugal compressor, centrifugal compressor and turbo charger
JPH0579545A (en) Coreless torque converter
JP4846139B2 (en) Hydraulic machine
JP2007107418A (en) Francis pump turbine
JP2003090279A (en) Hydraulic rotating machine vane
JP3822416B2 (en) Francis type pump turbine
JP3124517B2 (en) High specific speed mixed flow pump
CN114183375B (en) Non-rotating shaft type axial flow pump
JPH11173104A (en) Turbine rotor blade
JPS6344960B2 (en)
JPH03267506A (en) Stationary blade of axial flow turbine
JPH06299998A (en) Mixed flow fan
KR102558158B1 (en) Centrifugal impeller with partially opened shroud
US4305698A (en) Radial-flow turbine wheel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees