JP2990663B2 - Large-diameter Rogowski coil device and large current detection device using the same - Google Patents

Large-diameter Rogowski coil device and large current detection device using the same

Info

Publication number
JP2990663B2
JP2990663B2 JP9104039A JP10403997A JP2990663B2 JP 2990663 B2 JP2990663 B2 JP 2990663B2 JP 9104039 A JP9104039 A JP 9104039A JP 10403997 A JP10403997 A JP 10403997A JP 2990663 B2 JP2990663 B2 JP 2990663B2
Authority
JP
Japan
Prior art keywords
rogowski coil
diameter
coil
current
rogowski
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9104039A
Other languages
Japanese (ja)
Other versions
JPH10282154A (en
Inventor
福井信孝
昭 大坪
高原義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTSUKEI KOGYO KK
Original Assignee
HOTSUKEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOTSUKEI KOGYO KK filed Critical HOTSUKEI KOGYO KK
Priority to JP9104039A priority Critical patent/JP2990663B2/en
Publication of JPH10282154A publication Critical patent/JPH10282154A/en
Application granted granted Critical
Publication of JP2990663B2 publication Critical patent/JP2990663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は大電流の検出に適す
る大口径ロゴスキーコイル装置、及び、これを用いて雷
電流のように瞬時に大電流が流れる事象を観測し得るよ
うにした大電流検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter Rogowski coil device suitable for detecting a large current, and a large current which can be used to observe an event such as a lightning current in which a large current flows instantaneously. It relates to a detection device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】雷電流
のように数10kA、大きい場合には100kAあるい
はそれを超えるような大きな値を有する大電流を観測す
るためのセンサーとしては、同軸シャント、CT、光C
T、ホール素子、ロゴスキーコイル等がある。ところが
従来のこれらのセンサーには、地上構造物である鉄塔、
無線中継所、建物等のような大面積部分の全体を一括し
て測定するものがないため、センサー及び検出装置から
なる複数個の観測装置にて個別に観測し、全観測装置の
波形を加算して雷撃により流れる主電流を求めている。
2. Description of the Related Art A coaxial shunt is used as a sensor for observing a large current having a large value of several tens of kA, such as a lightning current, and a large value of 100 kA or more, such as a lightning current. CT, light C
T, Hall element, Rogowski coil and the like. However, these conventional sensors include towers, which are ground structures,
Since there is nothing to collectively measure the entire large area such as a radio relay station, building, etc., it is individually observed by multiple observation devices consisting of sensors and detection devices, and the waveforms of all observation devices are added. And seek the main current flowing by the lightning strike.

【0003】例えば図1に示すように、建物1の屋上に
鉄塔2、足場3を介してレーダードーム4と避雷針5を
設置してあるような場合、避雷針5に落雷してレーダー
ドーム4の表面を流れる雷電流(実際にはレーダードー
ム4は、FRP樹脂板を結合金具で連結してそれぞれ弓
状にし、これを複数枚組み合わせて球状にして形成して
あり、電流は結合金具を流れる)を観測するにあたり、
従来の観測形態は、鉄塔2の4本の脚に同軸シャント等
からなる観測装置6を各1台ずつ、合計4台配置し、さ
らに点検用ハシゴ1台、導波管1台を設置して観測して
いる。そのため、設備費等の観測費が掛かり過ぎて小規
模な観測しかできないという一般的な現状となってい
た。
For example, as shown in FIG. 1, when a radar dome 4 and a lightning rod 5 are installed on a rooftop of a building 1 via a steel tower 2 and a scaffold 3, lightning strikes the lightning rod 5 and the surface of the radar dome 4 (Actually, the radar dome 4 is formed by connecting the FRP resin plates with connecting metal fittings into a bow shape, combining a plurality of these and forming a spherical shape, and the current flows through the connecting metal fittings). When observing,
In the conventional observation mode, four observation devices 6 each consisting of a coaxial shunt and the like are arranged on the four legs of the tower 2 in total, and one inspection ladder and one waveguide are installed. I am observing. For this reason, the general current situation is that observation costs such as equipment costs are too high and only small-scale observations can be performed.

【0004】また図1のようなレーダードーム4への落
雷による雷電流の観測は、避雷針5に観測装置6を構成
するロゴスキーコイルを取り付けて観測することが望ま
しいとされている。ところが、強風等に対して十分な安
全性を持つようにロゴスキーコイルを取り付けようとす
ると、レーダードーム4の強度を相当高めなければなら
ず、一般的には上述のようにFRP樹脂板製のためレー
ダードーム4の強度はあまり大きいものではなく、この
ため取り付けが難しかった。また取り付け得る強度がレ
ーダードーム4にあっても、レーダーが常時電波を発し
て観測しているため作業者を雨滴と誤認するという観測
状の問題や、強い電波の人体への影響が懸念されるとい
う問題のため、観測装置の設置のたびにレーダーの停止
を行う必要があり、現実的にはほぼ可能性がなかった。
It is said that it is desirable to attach a Rogowski coil constituting an observation device 6 to a lightning arrester 5 to observe a lightning current due to a lightning strike on the radar dome 4 as shown in FIG. However, if the Rogowski coil is to be mounted so as to have sufficient safety against strong winds, etc., the strength of the radar dome 4 must be considerably increased. Therefore, the strength of the radar dome 4 was not so large, and it was difficult to mount it. In addition, even if the strength of the radar dome 4 can be attached, the radar always emits radio waves and observes it, so there is a concern about the problem of observation that the operator is mistaken for raindrops and the effect of strong radio waves on the human body. Because of this problem, it was necessary to stop the radar every time the observation equipment was installed, and there was practically no possibility.

【0005】一方、大きな面積を占める構造物全体を測
定するためには、大口径のロゴスキーコイルを製作すれ
ばよいとも考えられる。ところが、図1のような建造物
では鉄塔2の脚下端の外周に巻き回せるようなロゴスキ
ーコイル7を考えると、電線長が数百メートルになり、
コイルの巻き始め側と巻き終わり側に発生するコイル出
力電圧に数マイクロ秒の時間差が発生する。例えば、図
2に示すように直径10m、コイル径30mmのドーナ
ツ状の形状を有するロゴスキーコイル7を製作すると、
コイルの全長が31.4mでコイル巻きピッチを3mm
とすると、コイルのターン数(巻き数)は10466巻
き(31.4m÷3mm)、コイル1ターンの電線長が
94.2mm(30mm×3.14)であるから、全電
線長は約980m(10466巻き×94.2mm)と
なる。このようなロゴスキーコイル7の内側に電流印加
線8を配し、これに高周波大電流を流したと仮定する。
すると、ロゴスキーコイル7のコイルの巻き始め側と巻
き終わり側で同時に電圧が発生する。ところが、巻き始
め側の電圧が巻き始め側に接続した同軸ケーブル9まで
到達する時間と、巻き終わり側の電圧が同軸ケーブル9
まで到達する時間とを比べると、光速1μ秒での到達距
離が300mであるから、巻き終わり側の電圧が同軸ケ
ーブル9まで到達するには約3.27μ秒(980m÷
300m)だけ余計に掛かることになる。
On the other hand, in order to measure the entire structure occupying a large area, it is considered that a large-diameter Rogowski coil may be manufactured. However, in a building as shown in FIG. 1, considering a Rogowski coil 7 that can be wound around the lower end of the leg of the tower 2, the wire length becomes several hundred meters,
There is a time difference of several microseconds in the coil output voltage generated between the winding start side and the winding end side of the coil. For example, as shown in FIG. 2, when a Rogowski coil 7 having a donut shape with a diameter of 10 m and a coil diameter of 30 mm is manufactured,
The total length of the coil is 31.4m and the coil winding pitch is 3mm
Then, the number of turns (number of turns) of the coil is 10466 turns (31.4 m ÷ 3 mm), and the wire length of one turn of the coil is 94.2 mm (30 mm × 3.14), so that the total wire length is about 980 m ( 10466 turns x 94.2 mm). It is assumed that a current application line 8 is arranged inside such a Rogowski coil 7 and a high-frequency large current is applied to this.
Then, a voltage is simultaneously generated at the winding start side and winding end side of the Rogowski coil 7. However, the time required for the voltage on the winding start side to reach the coaxial cable 9 connected to the winding start side and the voltage on the winding end side are changed by the coaxial cable 9.
Compared with the time required to reach the coaxial cable 9, the reaching distance at the light speed of 1 μs is 300 m, so that the voltage at the winding end side reaches the coaxial cable 9 in about 3.27 μs (980 m ÷).
300m).

【0006】ところが、雷電流は周波数が高く、図3に
示すように立ち上がり時間が非常に速く1μ秒程度なの
で、上述のような立ち上がりまでに3μ秒以上要するよ
うな大口径のロゴスキーコイルでは良好な周波数特性を
得ることができないことになる。即ち、コイルの巻き始
め側と巻き終わり側の発生電圧の時間差が3μ秒以上な
ので、このようなロゴスキーコイルで測定できる雷電流
は立ち上がりが10μ秒以上の波形のものが限界とな
る。また、口径が大きすぎて取り扱いに不便であるとい
う問題もある。そこで本発明は、大面積構造物等の全体
を一括して測定出来るセンサーとしての大口径ロゴスキ
ーコイル装置及びこれを用いた大電流検出装置を提供す
ることを目的とする。
However, since the lightning current has a high frequency and the rise time is very fast, as shown in FIG. 3, on the order of 1 μs, it is good for a large-diameter Rogowski coil which requires 3 μs or more before the rise as described above. Frequency characteristics cannot be obtained. That is, since the time difference between the voltage generated on the winding start side and the winding end side of the coil is 3 μs or more, the lightning current that can be measured by such a Rogowski coil is limited to a waveform with a rise of 10 μs or more. In addition, there is also a problem that the diameter is too large to be inconvenient to handle. Therefore, an object of the present invention is to provide a large-diameter Rogowski coil device as a sensor that can collectively measure the entirety of a large-area structure or the like, and a large-current detection device using the same.

【0007】[0007]

【課題を解決するための手段】本発明に係る大口径ロゴ
スキーコイル装置は、上記目的を達成するために、所望
の径を有するドーナツ状のロゴスキーコイルを構成可能
でかつそれぞれ独立して結線した複数の分割コイル体
と、該分割コイル体のそれぞれに接続し、対応する分割
コイル体の出力を積分して出力する積分アンプと、これ
ら各積分アンプの出力を加算する加算アンプとからなる
ことを特徴とする。
In order to achieve the above object, a large-diameter Rogowski coil device according to the present invention is capable of forming donut-shaped Rogowski coils having a desired diameter and independently connecting each other. A plurality of divided coil bodies, an integrating amplifier connected to each of the divided coil bodies and integrating and outputting an output of the corresponding divided coil body, and an adding amplifier for adding the output of each of the integrating amplifiers. It is characterized by.

【0008】本発明に係る大電流検出装置は、上記目的
を達成するために、上記大口径ロゴスキーコイル装置
に、少なくとも該大口径ロゴスキーコイル装置の上記加
算アンプ出力の演算処理を行う手段を接続してなること
を特徴とする。
In order to achieve the above object, the large current detecting device according to the present invention is provided with means for performing, at least for the large-diameter Rogowski coil device, at least arithmetic processing of the addition amplifier output of the large-diameter Rogowski coil device. It is characterized by being connected.

【0009】[0009]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。なお以下では従来と共通する部分に
は共通する符号を付して説明する。図4は本発明の一実
施形態に係る大口径ロゴスキーコイル装置と大電流検出
装置を用いて図1に示す雨量レーダーに落雷する雷電流
を観測するための装置を構成した例を示す。本実施形態
の装置は、鉄塔2上のレーダードーム4の基礎部、即ち
図示の例では足場3の周囲に大口径ロゴスキーコイル1
0を配して避雷針5に落雷する雷電流を観測するもので
ある。
Embodiments of the present invention will be described below with reference to the drawings. In the following, description will be made by assigning common reference numerals to parts common to the related art. FIG. 4 shows an example in which a large-diameter Rogowski coil device and a large-current detection device according to one embodiment of the present invention are used to configure a device for observing a lightning current that strikes the rainfall radar shown in FIG. 1. The apparatus according to the present embodiment includes a large-diameter Rogowski coil 1 around a base of a radar dome 4 on a steel tower 2, that is, around a scaffold 3 in the illustrated example.
A lightning current that strikes the lightning rod 5 with 0 is observed.

【0010】図5は本実施形態の大電流検出装置の構成
を示すブロック図である。本装置が有する大口径ロゴス
キーコイル10は、図示のように、所望の径、例えば1
0mあるいは20m、を有するように構成するために、
それぞれ独立して形成した4個の4分の1円周の1/4
ロゴスキーコイル11a、11b、11c、11dを円
形に配置して用いている。各1/4ロゴスキーコイル1
1a〜11dは、それぞれ積分アンプ12a、12b、
12c、12dに接続し、各積分アンプ12a〜12d
の出力を加算アンプ13に入力し、その出力をA/D変
換器14でA/D変換し、さらにマイクロコンピュータ
15に入力して演算処理し、図示せぬが、処理結果、即
ち検出した雷電流の波形を周知の表示装置により表示す
るようにしてある。
FIG. 5 is a block diagram showing the configuration of the large current detecting device according to this embodiment. As shown, the large-diameter Rogowski coil 10 of the present apparatus has a desired diameter, for example, 1 mm.
0 m or 20 m,
Four independently formed quarter quarter circles
Rogowski coils 11a, 11b, 11c and 11d are used in a circular arrangement. 1/4 Rogowski coil for each 1
1a to 11d are integrating amplifiers 12a and 12b, respectively.
12c, 12d, and each integrating amplifier 12a-12d
Is input to the addition amplifier 13, the output is A / D converted by the A / D converter 14, and further input to the microcomputer 15 for arithmetic processing. Although not shown, the processing result, that is, the detected lightning The current waveform is displayed on a well-known display device.

【0011】大口径ロゴスキーコイル10は、ビニール
ホースやプラスチックチューブ等の絶縁材からなる芯材
(図示を省略してある)の外周に、図6に示すように電
線を巻き付けてなるもので、同軸ケーブル16を介して
積分アンプ12a〜12dに接続している。積分アンプ
12a〜12dは、ロゴスキーコイルの芯材が空芯(絶
縁体)であるため、飽和はしないがコイル出力電圧に1
次電流波形の微分波を発生するので、1次電流と相似な
波形を得るために出力電圧を積分するものである。
The large-diameter Rogowski coil 10 is formed by winding an electric wire around an outer periphery of a core material (not shown) made of an insulating material such as a vinyl hose or a plastic tube, as shown in FIG. It is connected to integrating amplifiers 12a to 12d via a coaxial cable 16. The integrating amplifiers 12a to 12d do not saturate but have a voltage of 1 to the coil output voltage because the Rogowski coil core is an air core (insulator).
Since a differential wave of the secondary current waveform is generated, the output voltage is integrated to obtain a waveform similar to the primary current.

【0012】なお、同軸ケーブル16の長さは、各1/
4ロゴスキーコイル11a〜11dの電圧を時間差なく
各積分アンプ12a〜12dに伝送できるように、同一
の長さに製作するとよい。また、積分アンプ12a〜1
2d、加算アンプ13、A/D変換器14、マイクロコ
ンピュータ15等の電子回路、電子機器は、記録装置1
7として同軸ケーブル16により大口径ロゴスキーコイ
ル10の設置場所からはできるだけ近くに設置するとよ
い。
The length of the coaxial cable 16 is 1 /
The four Rogowski coils 11a to 11d may be manufactured to have the same length so that the voltages can be transmitted to the integrating amplifiers 12a to 12d without a time difference. In addition, the integration amplifiers 12a-1
2d, an addition amplifier 13, an A / D converter 14, an electronic circuit such as a microcomputer 15, and an electronic device include a recording device 1.
As 7, the large-diameter Rogowski coil 10 may be installed as close as possible to the installation place by the coaxial cable 16.

【0013】また、大口径ロゴスキーコイル10の径及
び分割数は、以上説明し且つ図示した実施形態のものに
限定されない。即ち本実施形態では1/4ロゴスキーコ
イルと称している分割ロゴスキーコイルで10mあるい
は20mの径のものを構成しているが、径も分割数も自
由に設定できる。もっとも、一つの分割ロゴスキーコイ
ルの長さがあまり長くなると周波数特性に一体のロゴス
キーコイルと同様の問題が生じ、また分割数があまりに
多いと接続する積分アンプの数が増えて消費電流が多く
なり、製作コストも個数増加分だけ増えるので、これら
の点を考慮すれば、大口径ロゴスキーコイル10として
の周波数特性が許す限り少ない分割数が望ましい。ただ
し、分割ロゴスキーコイルの巻きピッチと1ターンごと
の断面積は、これらにバラツキがあると外部からの電磁
誘導に対して誘導を受けてしまうので、できるだけ一定
にすることが望ましい。
The diameter and the number of divisions of the large-diameter Rogowski coil 10 are not limited to those of the embodiment described and illustrated above. That is, in the present embodiment, a divided Rogowski coil having a diameter of 10 m or 20 m is configured as a 1/4 Rogowski coil, but the diameter and the number of divisions can be freely set. However, if the length of one divided Rogowski coil is too long, the same problem as that of the integrated Rogowski coil occurs in the frequency characteristics.If the number of divisions is too large, the number of integrating amplifiers to be connected increases and the current consumption increases. In view of these points, the number of divisions is desirably as small as the frequency characteristics of the large-diameter Rogowski coil 10 allow. However, it is desirable that the winding pitch of the divided Rogowski coil and the cross-sectional area of each turn be constant as much as possible because if there is a variation in these windings, electromagnetic induction from outside is induced.

【0014】例えば図7に示すように、立ち上がり0μ
秒の雷電流(図中A)が流れたとすると、既に述べたよ
うに径が10mで非分割のロゴスキーコイルでの出力電
圧の立ち上がり特性が6μ秒、出力が1Vであれば(図
中B)、上述した4分割の1/4ロゴスキーコイル11
a〜11dの立ち上がりは、コイル電線長が4分の1で
あるためコイル出力端に出力される電圧の立ち上がり時
間も4分の1の約1.5μ秒に、コイル巻き数も4分の
1になるため発生電圧が下がって出力電圧も4分の1の
約0.25Vになる。6分割とすれば1個の分割ロゴス
キーコイルの立ち上がりは計算上は1μ秒にでき、非常
に都合がよい。
For example, as shown in FIG.
Assuming that a lightning current (A in the figure) flows for 2 seconds, as described above, if the rising characteristic of the output voltage of a non-divided Rogowski coil having a diameter of 10 m is 6 μs and the output is 1 V (B in the figure) ), The above-mentioned quartered 1/4 Rogowski coil 11
Since the coil wire length is 1/4, the rise time of a to 11d is about 1/4 of the rise time of the voltage output to the coil output end, and the number of coil turns is 1/4. , The generated voltage is lowered and the output voltage is reduced to about 0.25 V, which is one fourth. If it is divided into six, the rise of one divided Rogowski coil can be calculated in 1 μsec, which is very convenient.

【0015】なお、分割ロゴスキーコイルの出力電圧
は、同一の雷電流に対して同一の出力値を示すように校
正を行う必要がある。図8は校正のための装置構成を示
す回路図である。この装置での校正には、1/4ロゴス
キーコイル11aを1個だけ円形にしてその内部を電流
印加線8が通るようにセットし、電流印加線8に適宜の
大電流発生器18により100kAを印加し、積分アン
プ12aの出力が1.0Vとなるように積分アンプ12
aを調整する。次に1/4ロゴスキーコイル11aを撤
去して次の1/4ロゴスキーコイル11bを同様に取り
付けて調整し、残りの1/4ロゴスキーコイル11c、
11dも同様に調整する。
It is necessary to calibrate the output voltage of the divided Rogowski coil so as to show the same output value for the same lightning current. FIG. 8 is a circuit diagram showing the configuration of the device for calibration. For calibration with this apparatus, only one 1/4 Rogowski coil 11a was made circular and the inside thereof was set so that the current application line 8 passed therethrough. Is applied so that the output of the integrating amplifier 12a becomes 1.0 V.
Adjust a. Next, the 1/4 Rogowski coil 11a is removed, and the next 1/4 Rogowski coil 11b is similarly attached and adjusted.
11d is adjusted similarly.

【0016】上述のように校正を完了した1/4ロゴス
キーコイル11a〜11dを4個とも全て円形にして電
流印加線8に対してセットし、大電流発生器18から1
00kAを印加すると、積分アンプ12a〜12dの出
力は全て1.0Vで、加算アンプ13の出力は1.0V
×4倍で4.0Vで400kAとなる。そしてこのよう
な4個の1/4ロゴスキーコイル11a〜11dで1個
の円形コイルを形成し、電流印加線8に対してセットし
て100kAを印加すると、積分アンプ12a〜12d
の出力はそれぞれ0.25V、加算アンプ13の出力は
0.25V×4倍で1.0Vとなる。即ち、分割してあ
る1/4ロゴスキーコイル11a〜11dは、巻きピッ
チと断面積が一定であれば、4個のロゴスキーコイルの
長さが多少異なっていても上述のような調整により性能
的に問題がないものとなる。
The four 1/4 Rogowski coils 11a to 11d, which have been calibrated as described above, are all set in a circular shape and set on the current application line 8, and the large current generator 18
When 00 kA is applied, the outputs of the integrating amplifiers 12a to 12d are all 1.0V, and the output of the adding amplifier 13 is 1.0V.
It becomes 400 kA at 4.0 V with × 4 times. When one circular coil is formed by the four 1/4 Rogowski coils 11a to 11d and set to the current application line 8 and 100 kA is applied, the integration amplifiers 12a to 12d
Are 0.25 V, and the output of the summing amplifier 13 is 1.0 V, which is 0.25 V × 4 times. That is, the divided 1/4 Rogowski coils 11a to 11d have the same performance even if the lengths of the four Rogowski coils are slightly different if the winding pitch and the cross-sectional area are constant. There will be no problem.

【0017】[0017]

【発明の効果】本発明に係る大口径ロゴスキーコイル装
置は、以上説明してきたように、複数個の分割したロゴ
スキーコイルをそれぞれ積分アンプに接続し、その出力
を加算することにより、大面積構造物等の全体を囲んで
一括して測定できるような径のものでも簡単に構成で
き、しかも同一径で非分割のロゴスキーコイルを単体で
用いる場合に比べて周波数特性を改善でき、校正試験も
容易になり、しかも分割してあるので1個当たりの重
量、寸法等が小さくなるので取り扱いに便利であるとい
う効果がある。
As described above, the large-diameter Rogowski coil device according to the present invention has a large area by connecting a plurality of divided Rogowski coils to an integrating amplifier and adding their outputs. Calibration test can be easily configured even if it has a diameter that can collectively measure the entire structure, etc., and can improve the frequency characteristics compared to using a single non-divided Rogowski coil of the same diameter. Also, there is an effect that handling is convenient because the weight, size and the like per unit are reduced because the unit is divided.

【0018】本発明に係る大電流検出装置は、以上説明
してきたように、複数個の分割したロゴスキーコイルを
それぞれ積分アンプに接続し、その出力を加算するよう
にした大口径ロゴスキーコイル装置を用い、その出力を
演算処理するようにしたので、大面積構造物等に流れる
雷電流のような大電流波形の周波数特性を一括して且つ
忠実に観測でき、観測費用も大幅に改善できるという効
果がある。
As described above, the large current detecting device according to the present invention is a large-diameter Rogowski coil device in which a plurality of divided Rogowski coils are connected to integrating amplifiers, respectively, and the outputs thereof are added. And the output is calculated, so that the frequency characteristics of large current waveforms such as lightning current flowing in large-area structures can be collectively and faithfully observed, and the observation cost can be greatly improved. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】建物の屋上に設置したレーダードームと、その
避雷針に流れる雷電流の従来の観測装置の配置を示す図
である。
FIG. 1 is a diagram showing an arrangement of a radar dome installed on the roof of a building and a conventional observation device for lightning current flowing through a lightning rod thereof.

【図2】1個のコイルからなる大口径ロゴスキーコイル
を示す概念図である。
FIG. 2 is a conceptual diagram showing a large-diameter Rogowski coil composed of one coil.

【図3】雷電流の立ち上がり特性を示す図である。FIG. 3 is a diagram illustrating a rising characteristic of a lightning current.

【図4】本発明の一実施形態装置を示す図1相当の図で
ある。
FIG. 4 is a view corresponding to FIG. 1 showing an apparatus according to an embodiment of the present invention.

【図5】本発明に係る大口径ロゴスキーコイル装置及び
これを用いた大電流検出装置の一実施形態を示す回路図
である。
FIG. 5 is a circuit diagram showing an embodiment of a large-diameter Rogowski coil device according to the present invention and a large-current detection device using the same.

【図6】図5の大口径ロゴスキーコイル装置を構成する
1/4ロゴスキーコイルを示す図である。
FIG. 6 is a view showing a 1/4 Rogowski coil constituting the large-diameter Rogowski coil device of FIG. 5;

【図7】同一の印加電流に対する1個のコイルからなる
大口径ロゴスキーコイルと1/4ロゴスキーコイルの出
力電圧の違いを示す図である。
FIG. 7 is a diagram illustrating a difference in output voltage between a large-diameter Rogowski coil and a 1/4 Rogowski coil formed of one coil for the same applied current.

【図8】1/4ロゴスキーコイルの校正装置を示す図で
ある。
FIG. 8 is a diagram showing a calibration device for a 1/4 Rogowski coil.

【符号の説明】[Explanation of symbols]

1 建物 2 鉄塔 3 足場 4 レーダードーム 5 避雷針 8 電流印加線 10 大口径ロゴスキーコイル 11a、11b、11c、11d 1/4ロゴスキーコ
イル 12a、12b、12c、12d 積分アンプ 13 加算アンプ 14 A/D変換器 15 マイクロコンピュータ 16 同軸ケーブル 17 記録装置 18 大電流発生器
DESCRIPTION OF SYMBOLS 1 Building 2 Steel tower 3 Scaffold 4 Radar dome 5 Lightning rod 8 Current application line 10 Large-diameter Rogowski coil 11a, 11b, 11c, 11d 1/4 Rogowski coil 12a, 12b, 12c, 12d Integral amplifier 13 Addition amplifier 14 A / D Converter 15 Microcomputer 16 Coaxial cable 17 Recording device 18 Large current generator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 15/18 H01F 38/20 - 38/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 15/18 H01F 38/20-38/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所望の径を有するドーナツ状のロゴスキ
ーコイルを構成可能でかつそれぞれ独立して結線した複
数の分割コイル体と、該分割コイル体のそれぞれに接続
し、対応する分割コイル体の出力を積分して出力する積
分アンプと、これら各積分アンプの出力を加算する加算
アンプとからなることを特徴とする大口径ロゴスキーコ
イル装置。
1. A plurality of split coil bodies which can form a donut-shaped Rogowski coil having a desired diameter and are independently connected to each other, and each of the split coil bodies is connected to a corresponding one of the split coil bodies. A large-diameter Rogowski coil device comprising: an integrating amplifier for integrating and outputting an output; and an adding amplifier for adding the output of each of the integrating amplifiers.
【請求項2】 請求項1の大口径ロゴスキーコイル装置
に、少なくとも該大口径ロゴスキーコイル装置の上記加
算アンプ出力の演算処理を行う手段を接続してなること
を特徴とする大電流検出装置。
2. A large current detecting device comprising: a large-diameter Rogowski coil device according to claim 1; and at least means for calculating the addition amplifier output of said large-diameter Rogowski coil device. .
JP9104039A 1997-04-08 1997-04-08 Large-diameter Rogowski coil device and large current detection device using the same Expired - Fee Related JP2990663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9104039A JP2990663B2 (en) 1997-04-08 1997-04-08 Large-diameter Rogowski coil device and large current detection device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9104039A JP2990663B2 (en) 1997-04-08 1997-04-08 Large-diameter Rogowski coil device and large current detection device using the same

Publications (2)

Publication Number Publication Date
JPH10282154A JPH10282154A (en) 1998-10-23
JP2990663B2 true JP2990663B2 (en) 1999-12-13

Family

ID=14370091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9104039A Expired - Fee Related JP2990663B2 (en) 1997-04-08 1997-04-08 Large-diameter Rogowski coil device and large current detection device using the same

Country Status (1)

Country Link
JP (1) JP2990663B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870040B1 (en) * 2004-05-10 2006-06-09 Areva T & D Sa ROGOWSKI TYPE WINDING CURRENT TRANSFORMER HAVING PARTIAL CIRCUITS ASSOCIATED IN FORMING A COMPLETE CIRCUIT
JP5391420B2 (en) * 2009-02-24 2014-01-15 株式会社コエックス Surge current detection circuit
US9823274B2 (en) 2009-07-31 2017-11-21 Pulse Electronics, Inc. Current sensing inductive devices
US9304149B2 (en) 2012-05-31 2016-04-05 Pulse Electronics, Inc. Current sensing devices and methods
CN103235172B (en) * 2013-04-24 2015-05-20 常熟开关制造有限公司(原常熟开关厂) Current measuring method and measuring device
CN103969536B (en) * 2014-06-04 2016-06-22 贵州电力试验研究院 Instrument transformer transient characteristic method of testing based on Luo-coil Digital Simulation
CN107228899A (en) * 2017-06-30 2017-10-03 中车青岛四方机车车辆股份有限公司 Magnaflux calibrator (-ter) unit, method and device
US20200173423A1 (en) * 2017-07-11 2020-06-04 Polytech A/S Lightning detection and measurement system and method for location detection of lightning strikes on a wind turbine blade
CN114280349A (en) * 2021-11-23 2022-04-05 国网浙江省电力有限公司文成县供电公司 Lightning arrester lightning monitor

Also Published As

Publication number Publication date
JPH10282154A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
US7847543B2 (en) Precision flexible current sensor
JP2990663B2 (en) Large-diameter Rogowski coil device and large current detection device using the same
JP2011112652A (en) Method of measuring earth ground resistance of pylon using single clamp
Rodrigo et al. Influence of high frequency current transformers bandwidth on charge evaluation in partial discharge measurements
KR20010025613A (en) Grounding Resistance Measurement System for Electric Support Tower on Power Service
Perry et al. BPA 1100 kV transmission system development corona and electric field studies
CN110456176A (en) A kind of calculation method of high altitude localities ultra-high-tension power transmission line radio interference level
Wang et al. Study on the ultra-high-frequency sensors for PD detection in power transformer
CN112526417A (en) Multi-dimensional balanced magnetic field measurement system and method
JP2003240814A (en) Anti-lightning strength measurement method and device for it
JP4663846B2 (en) Pattern recognition type partial discharge detector
JP2765490B2 (en) Magnetic field waveform measurement system
US10488487B2 (en) System for mapping electromagnetic discharge fields
Filik et al. Applications of impulse current and voltage generators dedicated to lightning tests of avionics
JPH095370A (en) Method for measuring grounding resistance of earth wire of pole
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device
Karnas et al. Calibration of electric field antennae operating in the ELF-MF frequency range at the lightning research station in Rzeszow
EP3719303A1 (en) Electromagnetic measurements for a wind turbine
CN106597112A (en) Test equipment and test method thereof for testing impulse grounding resistance of transmission line pole type tower
Yang et al. Preliminary results of lightning current measurements at the 356 m high Shenzhen Meteorological Gradient Tower in South China
Mariscotti et al. A Rogowski coil for high voltage applications
Daulay et al. Partial discharge pattern detected by new design partial discharge sensors
CN111220933A (en) Transient magnetic field size obtaining method and device and transient magnetic field sensor
Romano et al. Partial Discharges Diagnostics Along Medium Voltage Cables
JPS5826387Y2 (en) Corona detection device for electrical equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees