JP2989947B2 - Optical system for projection display - Google Patents

Optical system for projection display

Info

Publication number
JP2989947B2
JP2989947B2 JP3283255A JP28325591A JP2989947B2 JP 2989947 B2 JP2989947 B2 JP 2989947B2 JP 3283255 A JP3283255 A JP 3283255A JP 28325591 A JP28325591 A JP 28325591A JP 2989947 B2 JP2989947 B2 JP 2989947B2
Authority
JP
Japan
Prior art keywords
lens
optical system
screen
projection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3283255A
Other languages
Japanese (ja)
Other versions
JPH05119283A (en
Inventor
義信 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTO KOGAKU KK
Original Assignee
NITSUTO KOGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTO KOGAKU KK filed Critical NITSUTO KOGAKU KK
Priority to JP3283255A priority Critical patent/JP2989947B2/en
Publication of JPH05119283A publication Critical patent/JPH05119283A/en
Application granted granted Critical
Publication of JP2989947B2 publication Critical patent/JP2989947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄型でかつ大きな画像
を得る為の投写型表示装置用光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system for a projection display apparatus for obtaining a thin and large image.

【0002】[0002]

【従来の技術及びその問題点】液晶表示パネルやブラウ
ン管等のディスプレイデバイスを用いて画像を拡大表示
する表示装置として、リヤ投写型表示装置が知られてい
る。例えば、40インチ程度の画面を得る装置を見た
時、第1の方式として、図1のようなブラウン管を用い
た直視管テレビだと、ブラウン管そのものの大きさがほ
ぼ装置の大きさを決定し奥行きは70cm以上にもなって
しまう。
2. Description of the Related Art A rear projection display device is known as a display device for enlarging and displaying an image using a display device such as a liquid crystal display panel or a cathode ray tube. For example, when looking at a device that obtains a screen of about 40 inches, as a first method, in the case of a direct-view tube television using a CRT as shown in FIG. 1, the size of the CRT itself almost determines the size of the device. The depth is over 70cm.

【0003】第2の方式として、図2のような7″程度
の小型ブラウン管を用いて投写する方式にしても、ブラ
ウン管及び投写レンズが大きく、前記図1の方式に比較
しても装置をそんなに薄くすることはでいないが、現
状、ブラウン管の製造能力がコスト面から最大40″程
度の中で40″を越えた大画面のディスプレイに用いら
れている。
[0003] As a second system, even when a system is used in which a small CRT of about 7 "as shown in Fig. 2 is used for projection, the CRT and the projection lens are large, and the apparatus is so much compared with the system of Fig. 1 described above. Although not made thinner, it is currently used for large-screen displays whose cathode ray tube production capacity exceeds 40 "out of a maximum of about 40" in terms of cost.

【0004】前記図2の方式において、小型ブラウン管
の代わりに、小型で薄い3″程度の液晶表示パネルを用
いると、図3のように小型化及び軽量化が図られてく
る。大画面を確保しながら、さらに装置の薄型化を図る
為に、従来から図4に示すように投影レンズをスクリー
ンに対して斜めに対向させて配置することが考えられて
おり、斜めの度合いが大きい程薄型化することができ
る。しかし、このように配置することにより、薄型化は
図れるが、この光学系ではスクリーンに投影される画像
が図5のように台形状に歪んだ画像となってしまうとい
う問題点をもっている。これは、各点の投影倍率に差が
ある為であり、対策として液晶表示パネル等を逆の台形
形状をもったものにすればスクリーン上で台形歪みを打
ち消すことができる訳だが、製造面、コスト面からみて
も現実的なものでない。
In the system shown in FIG. 2, if a small and thin liquid crystal display panel of about 3 ″ is used instead of a small cathode ray tube, the size and weight can be reduced as shown in FIG. On the other hand, in order to further reduce the thickness of the device, it has been conventionally considered to arrange the projection lens obliquely to the screen as shown in FIG. However, this arrangement can reduce the thickness, but in this optical system, the image projected on the screen becomes a trapezoidally distorted image as shown in FIG. This is because there is a difference in the projection magnification of each point. As a countermeasure, trapezoidal distortion can be canceled on the screen by making the liquid crystal display panel etc. have an inverted trapezoidal shape. But manufacturing, not intended be realistic when viewed from the cost.

【0005】この台形歪を補正する手段としては例えば
特開平1−257834号公報、特開平2−79037
号公報に記載されるようなものがある。図6は上記特開
平1−257834号公報に、図7は上記特開平2−7
9037号公報にそれぞれ開示された実施例の構成図で
ある。上記特開平1−257834号公報は図6のよう
に反射鏡を回転非対称な非球面鏡と等価な光学的作用を
持つ形状とし台形歪の補正を行い装置の薄型化を達成し
ようとしているが、反射鏡が大きく、又、複雑かつミラ
ーであるということから高精度が要求され、コスト的に
も非常に高価なものとなり、台形歪補正にも限界があっ
た。又、上記特開平2−78037号公報は図7に示さ
れているように、投影レンズによる表示パネルの像(=
台形歪をもった像)をもう1段光学系を設け、この光学
系で逆の台形歪を発生させ、スクリーン上へは歪みのな
い像を結像させるといった提案がされている。しかし、
装置の薄型化を図る為には、表示パネル、第1レンズ、
第2レンズ及びスクリーンを相対的に大きく傾けていか
なければならない。台形歪を補正する傾きの関係は上記
公報に示されている通りであるが、第1レンズと第2レ
ンズが相対的に大きく傾くことにより、第1レンズを透
過した光線が第2レンズへリレーされないという問題が
発生する。この為に第2レンズの有効径をかなり大きく
しなければならない。又、傾き偏心や、平行偏心のな
い、物平面及び像平面が光軸に垂直な通常の光学系にお
いては、光軸から同一キョリの像高へ達する光線はレン
ズ系においても当然、光軸対称なポイントを通過する訳
であり、同一像高における諸収差は一定であるが、レン
ズに傾き偏心や平行偏心がある場合、その偏心のあるメ
リディオナル断面において基準光軸から同一キョリの像
高に対する光線は図7の光線の状況をみても明らかなよ
うに、前述した光線がリレーしにくいと同時に各レンズ
において光線の入射位置や入射角度が大きく異なってく
る。近軸、幾何的な結像関係は、計算上成立しても、こ
のような場合、収差面、特に歪曲収差と非点収差が非常
に大きく発生し、又、像面の湾曲量が大きく異なる等、
ディスプレイ装置として無視できるレベルではないとい
う問題があった。そしてこのようなレンズを傾けた斜め
投写を行う偏心光学系で上記したような収差を補正した
光学系について提案している従来例もない。
As means for correcting the trapezoidal distortion, for example, JP-A-1-257834 and JP-A-2-79037
There are those described in Japanese Patent Application Publication No. H10-26095. FIG. 6 is disclosed in Japanese Patent Application Laid-Open No. 1-257834, and FIG.
BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the Example disclosed by each 9037 publication. Japanese Patent Application Laid-Open No. 1-257834 discloses that a reflecting mirror is formed into a shape having an optical action equivalent to that of a rotationally asymmetric aspherical mirror as shown in FIG. 6 to correct trapezoidal distortion and achieve a thinner device. Since the mirror is large, complicated, and a mirror, high accuracy is required, the cost is very high, and trapezoidal distortion correction is limited. Also, as shown in FIG. 7, the above-mentioned Japanese Patent Application Laid-Open No. 2-78037 discloses an image (=
It has been proposed that an image having a trapezoidal distortion) be provided with another one-stage optical system, and an inverse trapezoidal distortion is generated by this optical system to form an image without distortion on a screen. But,
In order to reduce the thickness of the device, a display panel, a first lens,
The second lens and the screen must be tilted relatively large. The relationship of the inclination for correcting the trapezoidal distortion is as described in the above-mentioned publication. However, when the first lens and the second lens are relatively largely inclined, the light transmitted through the first lens is relayed to the second lens. The problem that is not done occurs. For this reason, the effective diameter of the second lens must be considerably increased. Also, in a normal optical system in which the object plane and the image plane are perpendicular to the optical axis without tilt eccentricity and parallel eccentricity, rays reaching the same image height from the optical axis are naturally optical axis symmetric in the lens system. When the lens has a tilted eccentricity or a parallel eccentricity, if the lens has a tilted eccentricity or a parallel eccentricity, the ray from the reference optical axis to the image height of the same distance from the reference optical axis in the decentered meridional section As is clear from the situation of the light rays in FIG. 7, it is difficult to relay the above-mentioned light rays, and at the same time, the incident position and the incident angle of the light rays are greatly different in each lens. Even if the paraxial and geometrical imaging relations are established by calculation, in such a case, an aberration surface, particularly distortion and astigmatism, are very large, and the amount of curvature of the image surface is greatly different. etc,
There is a problem that the level is not negligible as a display device. There is no conventional example that proposes an optical system that corrects the above-described aberration in an eccentric optical system that performs oblique projection with such a lens tilted.

【0006】[0006]

【本発明の目的】本発明は、表示体の表示画像を投影レ
ンズにより拡大してスクリーンに投影する装置におい
て、垂直投写に対して約半分の奥行きの薄型化を図る為
に、スクリーンに対して60°入射を行う光学系におい
てレンズを傾き偏心及び平行偏心させることにより発生
する像の台形歪はもちろん、諸収差を補正し、良好な画
像性能を得ることができる、投写型表示装置用光学系の
提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device for enlarging a display image on a display body by a projection lens and projecting the image on a screen, in order to reduce the depth to about half the depth of vertical projection. An optical system for a projection display device that can correct not only the trapezoidal distortion of an image caused by tilting and eccentricity of a lens but also various aberrations and obtain good image performance in an optical system that performs 60 ° incidence. The purpose is to provide.

【0007】[0007]

【問題点を解決するための手段】本発明は上記目的を達
成する為に、基準光軸に対して垂直な状態から60°傾
いたスクリーンに対して図8のように正の屈折力をもっ
た5つのレンズ群で構成することにより、近軸的な台形
歪み補正分割し、かつ、それぞれのレンズの偏心量は、
基準光軸からの傾き偏心量をΔθn、平行偏心量をΔS
nとしたとき、Δθn、ΔSnを |Δθn|<10° |ΔSn|< 7 を満足するように配置すればよい。
In order to achieve the above object, the present invention provides a screen having a positive refracting power as shown in FIG. 8 with respect to a screen which is inclined by 60 ° from a state perpendicular to the reference optical axis. With the above five lens groups, paraxial trapezoidal distortion correction division is performed, and the amount of eccentricity of each lens is
The amount of tilt eccentricity from the reference optical axis is Δθn, and the amount of parallel eccentricity is ΔS
When n is set, Δθn and ΔSn may be arranged so as to satisfy | Δθn | <10 ° | ΔSn | <7.

【0008】[0008]

【実施例】以下、本発明の投写型表示装置用光学系につ
いて説明する。図8は本発明の光学系の近軸的な原理を
示すもので、表示体Pの原画像はレンズ1及びレンズ2
により台形歪をもった中間像Iをつくり、さらにこの中
間像Iはレンズ3及びレンズ4によりさらに同じ方向の
台形歪をもった中間像IIをつくる。そしてこの中間像II
をレンズ5によりスクリーンS上に台形歪の打ち消され
た像を結像する。レンズ1及びレンズ2の第1段目のレ
ンズ群、レンズ3及びレンズ4の第2段目のレンズ群
は、両側がテレセントリックに近い構成、又、レンズ5
は同様にテレセントリックに近い構成となっていること
から、偏心光学系にもかかわらず光線のマッチングを良
好にしている。図9(A)、(B)は本発明の数値実施
例のレンズ断面図及び光路図である。近軸計算的には、
台形歪が補正された結像関係が計算できるが、一般的に
図9(A)のようなレンズが基準光軸に対して偏心して
いる平面で、表示体面上で基準光軸に対称な複数の像高
に対して実光線で光線追跡を行うと、スクリーン上で基
準光軸に対称な位置に結像するはずが、大きく歪んでし
まう。これはレンズが偏心している為に上下の光線で各
レンズごとの入射位置及び入射角が異なることにより、
歪曲収差の発生量も大きく異なるからである。偏心光学
系では、台形歪みを補正する為のレンズに対する物平
面、像平面の傾き関係以上に偏心を含む平面内での基準
光軸より上側と下側の歪曲収差補正が重要になってく
る。この補正の為に球面レンズではなく、回転非対称な
非球面レンズを用いれば、補正が可能なことは推測しや
すいが、加工面、コスト面から現実的でない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical system for a projection display according to the present invention will be described below. FIG. 8 shows the paraxial principle of the optical system according to the present invention.
To form an intermediate image I having trapezoidal distortion, and this intermediate image I further forms an intermediate image II having trapezoidal distortion in the same direction by the lenses 3 and 4. And this intermediate image II
Is imaged on the screen S by the lens 5 with the trapezoidal distortion cancelled. The first-stage lens group of the lens 1 and the lens 2 and the second-stage lens group of the lens 3 and the lens 4 have a configuration close to telecentric on both sides.
Has a configuration close to telecentric similarly, so that light beam matching is improved despite the decentered optical system. 9A and 9B are a lens sectional view and an optical path diagram of a numerical example of the present invention. Paraxially,
An imaging relationship in which trapezoidal distortion is corrected can be calculated. Generally, as shown in FIG. 9 (A), a plurality of lenses which are eccentric with respect to the reference optical axis and which are symmetric with respect to the reference optical axis on the display body surface. If ray tracing is performed with a real ray for the image height of the image, an image should be formed at a position symmetrical to the reference optical axis on the screen, but this is greatly distorted. This is due to the fact that the incident position and incident angle of each lens are different for the upper and lower rays because the lenses are decentered,
This is because the amount of generation of distortion greatly differs. In an eccentric optical system, it is important to correct distortions above and below the reference optical axis in a plane including eccentricity more than the inclination of the object plane and the image plane with respect to the lens for correcting trapezoidal distortion. If a rotationally asymmetrical aspherical lens is used instead of a spherical lens for this correction, it is easy to guess that the correction is possible, but it is not realistic in terms of processing and cost.

【0009】この歪曲収差をはじめ諸収差を補正する為
に、一般的な補正手段である曲率のベンディング、厚
さ、間隔の変更、硝材の変更による収差補正では、光学
系が回転非対称ということからバランスよく補正するこ
とは困難で、レンズの傾き偏心及び平行偏心量を適正に
与えることにより補正が可能になる。しかし、各レンズ
の傾き偏心量をΔθn、平行偏心量をΔSnとするとき |Δθn|<10° |ΔSn|< 7 を満足しなければ、偏心光学系によって発生する歪曲収
差及び他の諸収差を良好に補正することは困難となる。
又、同時に各レンズ間の光線のマッチングが悪化し、十
分な光量も確保できない。
In order to correct various aberrations including this distortion, in general correction means such as bending of curvature, change of thickness, interval, and change of glass material, the optical system is rotationally asymmetric. It is difficult to make corrections in a well-balanced manner, and corrections can be made by appropriately giving the amount of tilt eccentricity and parallel eccentricity of the lens. However, assuming that the amount of tilt eccentricity of each lens is Δθn and the amount of parallel eccentricity is ΔSn, if | Δθn | <10 ° | ΔSn | <7 is not satisfied, distortion and other aberrations generated by the decentered optical system may be reduced. It is difficult to satisfactorily correct.
At the same time, matching of light rays between the lenses deteriorates, and a sufficient light amount cannot be secured.

【0010】次に本発明の数値実施例を示す。数値実施
例においてγiはスクリーン側より順に第i番目のレン
ズ面の曲率半径、di はスクリーン側より順に第i番目
の偏心前のレンズ厚及び空気間隔、ni とνiは夫々ス
クリーン側より順に第i番目のレンズのd線における屈
折率とアッペ数である。Δθi 及びΔSi はスクリーン
側より順に第i番目の面を基準にブロック又は単レンズ
ごとに偏心した値である。符号は図9(A)において傾
き偏心量Δθi は反時計回りの回転が正、時計回りの回
転が負、又、平行偏心量ΔSi は基準光軸に対して上方
へのシフトが正、下方へのシフトが負である。カッコで
囲まれたレンズが一体となってブロックで偏心してい
る。
Next, numerical examples of the present invention will be described. Numerical γi In embodiments the radius of curvature of the i-th lens surface in order from the screen side, d i is the i-th eccentricity front of the lens thickness or air spacing in order from the screen side, n i and [nu i than each screen side The refractive index and the Abbe number at the d-line of the ith lens in order. Δθi and ΔSi are values decentered for each block or single lens based on the ith surface in order from the screen side. 9A, the tilt eccentricity .DELTA..theta.i is positive for counterclockwise rotation and negative for clockwise rotation, and the parallel eccentricity .DELTA.Si is positive for upward shift and downward for the reference optical axis. Shift is negative. The lens enclosed in parentheses is eccentrically integrated with the block.

【0011】なお本実施例は、表示体として3″の液晶
表示パネル、スクリーンサイズは対角線長50″を想定
し、レンズ前面からスクリーンまでの投影キョリは35
45mm、表示体面の傾きは8°、スクリーンの傾きは6
0°となっている。又、本実施例は、図9(A)の方向
に対して、基準光軸を中心に90°回転した図9(B)
の方向の拡大率が1/2となっており、拡大率を縦横
1:1に補正するには、スクリーン側第5レンズ群の前
方に図9(B)の方向に屈折力をもつ、下記データのア
ナモルフィックレンズ系を挿入すればよい。アナモルフ
ィックレンズの参考例においてAriはスクリーン側より
順に第i番目のシリンドリカルレンズ面の曲率半径、A
diはスクリーン側より順に第i番目のシリンドリカルレ
ンズ厚及び空気間隔、AniとAνi は夫々スクリーン側
より順に第i番目のシリンドリカルレンズのd線におけ
る屈折率とアッペ数である。
In this embodiment, a 3 "liquid crystal display panel is assumed as a display body, the screen size is 50" diagonal, and the projection distance from the front surface of the lens to the screen is 35.
45mm, display body tilt 8 °, screen tilt 6
0 °. Further, in the present embodiment, FIG. 9B is rotated by 90 ° about the reference optical axis with respect to the direction of FIG.
In order to correct the magnification to 1: 1 in the vertical and horizontal directions, the lens has a refractive power in the direction of FIG. 9B in front of the fifth lens unit on the screen side. An anamorphic lens system for the data may be inserted. In the reference example of the anamorphic lens, Ari is the radius of curvature of the i-th cylindrical lens surface in order from the screen side, A
di is the thickness of the i-th cylindrical lens and the air gap in order from the screen side, and Ani and Aνi are the refractive index and the Abpe number of the i-th cylindrical lens in the d-line from the screen side, respectively.

【0012】[0012]

【数1】 (Equation 1)

【0013】[0013]

【数2】 (Equation 2)

【0014】[0014]

【発明の効果】以上説明してきたように本発明に係る投
写型表示装置用光学系では、光学系を5つの群に分割
し、かつレンズの傾き偏心及び平行偏心の偏心量を特定
することにより、スクリーンに対して30°入射という
光学系を達成し、薄型でしかも画像性能が維持された、
投写型表示装置用光学系を提供できる。
As described above, in the optical system for a projection type display device according to the present invention, the optical system is divided into five groups, and the amount of eccentricity of the lens eccentricity and parallel eccentricity is specified. , Achieved an optical system of 30 ° incidence on the screen, was thin and maintained the image performance,
An optical system for a projection display device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の投写型表示装置の断面図、FIG. 1 is a cross-sectional view of a conventional projection display device.

【図2】従来の投写型表示装置の断面図、FIG. 2 is a cross-sectional view of a conventional projection display device.

【図3】従来の投写型表示装置の断面図、FIG. 3 is a cross-sectional view of a conventional projection display device.

【図4】従来の斜め投影方式の投写型表示装置の断面
図、
FIG. 4 is a cross-sectional view of a conventional oblique projection type projection display device;

【図5】斜め投影方式における表示体と投影画像の結像
関係を示す図、
FIG. 5 is a diagram showing an image forming relationship between a display body and a projected image in an oblique projection system.

【図6】斜め投影方式において台形歪みの補正を行った
従来実施例、
FIG. 6 shows a conventional example in which trapezoidal distortion is corrected in the oblique projection method,

【図7】斜め投影方式において台形歪みの補正を行った
従来実施例、
FIG. 7 shows a conventional example in which trapezoidal distortion is corrected in the oblique projection method,

【図8】本実施例の基本光学系を示す図、FIG. 8 is a diagram showing a basic optical system of the present embodiment;

【図9】(A),(B)は本実施例の構成図及び光路
図、
9A and 9B are a configuration diagram and an optical path diagram of the present embodiment,

【図10】アナモルフィックレンズを装着した状態での
スポット性能と歪曲収差を示す説明図で、スクリーン上
での評価である。スポットはスクリーンに対して5倍に
拡大したものである。なお、スポットは1ケ所100本
の光線により示している。
FIG. 10 is an explanatory diagram showing spot performance and distortion when an anamorphic lens is mounted, and is an evaluation on a screen. The spot is magnified 5 times with respect to the screen. The spot is indicated by 100 light rays at one place.

【符号の説明】[Explanation of symbols]

1 レンズ 2 レンズ 3 レンズ 4 レンズ 5 レンズ P 表示体 S スクリーン I 中間像 II 中間像 Reference Signs List 1 lens 2 lens 3 lens 4 lens 5 lens P display S screen I intermediate image II intermediate image

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液晶表示パネル等の表示体の原画像を投
影レンズにより拡大してスクリーンに投影する投写型表
示装置において、投影レンズは正の屈折力をもった5つ
のレンズ群から成り、それぞれが基準光軸に対して偏心
していることを特徴とする投写型表示装置用光学系。
1. A projection display device in which an original image of a display such as a liquid crystal display panel is enlarged by a projection lens and projected on a screen, wherein the projection lens comprises five lens groups having a positive refractive power. Is eccentric with respect to a reference optical axis.
【請求項2】 スクリーンは基準光軸に対して、垂直な
状態から60°傾けたことを特徴とする請求項1に記載
の投写型表示装置用光学系。
2. The optical system according to claim 1, wherein the screen is inclined by 60 ° from a state perpendicular to the reference optical axis.
【請求項3】 上記レンズ群は、基準光軸からの傾き偏
心量をΔθn、平行偏心量をΔSnとしたとき、Δθn
およびΔSnは |Δθn|<10° |ΔSn|< 7 であることを特徴とする請求項1または2に記載の投写
型表示装置用光学系。
3. The lens group according to claim 1, wherein Δθn is the amount of tilt eccentricity from the reference optical axis and ΔSn is the amount of parallel eccentricity from the reference optical axis.
3. The optical system for a projection display device according to claim 1, wherein ΔSn and | Δθn | <10 ° | ΔSn | <7.
JP3283255A 1991-10-29 1991-10-29 Optical system for projection display Expired - Fee Related JP2989947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283255A JP2989947B2 (en) 1991-10-29 1991-10-29 Optical system for projection display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283255A JP2989947B2 (en) 1991-10-29 1991-10-29 Optical system for projection display

Publications (2)

Publication Number Publication Date
JPH05119283A JPH05119283A (en) 1993-05-18
JP2989947B2 true JP2989947B2 (en) 1999-12-13

Family

ID=17663088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283255A Expired - Fee Related JP2989947B2 (en) 1991-10-29 1991-10-29 Optical system for projection display

Country Status (1)

Country Link
JP (1) JP2989947B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896375B2 (en) 2002-08-16 2005-05-24 Infocus Corporation Rear projection display device having multiple mirrors that are substantially parallel to a screen
US7009765B2 (en) 2002-08-16 2006-03-07 Infocus Corporation Wide angle lens system having a distorted intermediate image
US7050228B2 (en) 2004-02-25 2006-05-23 Infocus Corporation Environmentally-adaptive frame assembly
US7080910B2 (en) 2003-08-19 2006-07-25 Infocus Corporation Method and system for a thermal architecture and user adjustable keystone in a display device
US7088507B2 (en) 2002-08-16 2006-08-08 Infocus Corporation Rear projection display
US7088509B2 (en) 2002-08-16 2006-08-08 Infocus Corporation Laminate screen for display device
US7090354B2 (en) 2002-08-16 2006-08-15 Infocus Corporation Projection device and screen
US7102820B2 (en) 2002-08-16 2006-09-05 Infocus Corporation Flat valley fresnel lens for a display device
US7150537B2 (en) 2002-08-16 2006-12-19 Infocus Corporation Projection television device and screen
US7175287B2 (en) 2002-08-16 2007-02-13 Infocus Corporation Wide angle projection lens
US7259912B2 (en) 2004-01-06 2007-08-21 Infocus Corporation Fresnel lens having reduced distortions
US7341353B2 (en) 2002-08-16 2008-03-11 Infocus Corporation Variable fresnel screen for use in projection device
CN110082914A (en) * 2018-01-25 2019-08-02 脸谱科技有限责任公司 Light projection system including the optical module being distorted for correction differential

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123425A (en) * 1996-04-26 2000-09-26 Minolta Co., Ltd. Projecting optical system
JP2000039585A (en) * 1998-07-23 2000-02-08 Minolta Co Ltd Projection type display device
JP3837944B2 (en) 1998-11-26 2006-10-25 コニカミノルタオプト株式会社 Oblique projection optical system
JP2000221446A (en) 1999-02-01 2000-08-11 Minolta Co Ltd Display optical system
JP2001033690A (en) 1999-07-15 2001-02-09 Minolta Co Ltd Diagonal projection optical system
US6485145B1 (en) * 1999-12-21 2002-11-26 Scram Technologies, Inc. Optical system for display panel
JP2001183583A (en) 1999-12-24 2001-07-06 Minolta Co Ltd Focusing method of eccentric optical system
JP3727543B2 (en) 2000-05-10 2005-12-14 三菱電機株式会社 Image display device
US6704484B1 (en) * 2000-09-29 2004-03-09 Scram Technologies, Inc. Poly-planar optical display imaging system
JP4518360B2 (en) * 2001-03-30 2010-08-04 フジノン株式会社 Imaging optical system for oblique incidence interferometer
US7777949B2 (en) 2002-08-16 2010-08-17 Seiko Epson Corporation Laminate screen for a display device
EP1623270A2 (en) * 2003-05-13 2006-02-08 Scram Technologies, Inc. Precision optical system for display panel
JP5092916B2 (en) * 2008-06-13 2012-12-05 株式会社日立製作所 Projection display device
JP2011232763A (en) * 2011-05-30 2011-11-17 Hitachi Ltd Projection type video display device
EP3267234B1 (en) * 2011-07-05 2019-02-27 Nittoh Inc. Projection optical system and projector apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7140735B2 (en) 2002-08-16 2006-11-28 Infocus Corporation Rear projection display device having multiple mirrors that are substantially parallel to a screen
US9217912B2 (en) 2002-08-16 2015-12-22 Seiko Epson Corporation Projection television device and screen
US6896375B2 (en) 2002-08-16 2005-05-24 Infocus Corporation Rear projection display device having multiple mirrors that are substantially parallel to a screen
US7150537B2 (en) 2002-08-16 2006-12-19 Infocus Corporation Projection television device and screen
US7088507B2 (en) 2002-08-16 2006-08-08 Infocus Corporation Rear projection display
US7088509B2 (en) 2002-08-16 2006-08-08 Infocus Corporation Laminate screen for display device
US7090354B2 (en) 2002-08-16 2006-08-15 Infocus Corporation Projection device and screen
US7102820B2 (en) 2002-08-16 2006-09-05 Infocus Corporation Flat valley fresnel lens for a display device
US10955648B2 (en) 2002-08-16 2021-03-23 Seiko Epson Corporation Projection television device and screen
US9733459B2 (en) 2002-08-16 2017-08-15 Seiko Epson Corporation Projected television device and screen
US9429826B2 (en) 2002-08-16 2016-08-30 Seiko Epson Corporation Projection television device and screen
US7175287B2 (en) 2002-08-16 2007-02-13 Infocus Corporation Wide angle projection lens
US7341353B2 (en) 2002-08-16 2008-03-11 Infocus Corporation Variable fresnel screen for use in projection device
US7009765B2 (en) 2002-08-16 2006-03-07 Infocus Corporation Wide angle lens system having a distorted intermediate image
US7080910B2 (en) 2003-08-19 2006-07-25 Infocus Corporation Method and system for a thermal architecture and user adjustable keystone in a display device
US7259912B2 (en) 2004-01-06 2007-08-21 Infocus Corporation Fresnel lens having reduced distortions
US7050228B2 (en) 2004-02-25 2006-05-23 Infocus Corporation Environmentally-adaptive frame assembly
US11598966B2 (en) 2018-01-25 2023-03-07 Meta Platforms Technologies, Llc Light projection system including an optical assembly for correction of differential distortion
CN110082914A (en) * 2018-01-25 2019-08-02 脸谱科技有限责任公司 Light projection system including the optical module being distorted for correction differential

Also Published As

Publication number Publication date
JPH05119283A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP2989947B2 (en) Optical system for projection display
US7677738B2 (en) Image projector
JP3541576B2 (en) Imaging optics
JP3658034B2 (en) Image observation optical system and imaging optical system
US6626542B2 (en) Reflection type projection optical system
JP5114828B2 (en) Projection optical unit
JP5102940B2 (en) Projection image display device and projection optical unit used therefor
US6078411A (en) Real-image finder optical system and apparatus using the same
US8279536B2 (en) Fixed focus lens and imaging system
JP2002040326A (en) Reflection type image-formation optical system
CN101140353A (en) Projecting optical unit and projecting type image display apparatus therewith
US20110285973A1 (en) Projection optical apparatus
JPH09218379A (en) Wide viewing angle liquid crystal projection lens system
JP3155337B2 (en) Visual display device
EP3343264A1 (en) Projection optical system and image projection device
JP3304694B2 (en) Oblique projection optical device
JP4973793B2 (en) Projection optical unit
JPH11194267A (en) Image-formation optical system
US6991338B2 (en) Projection optical system, projection type image display apparatus, and image display system
JP2007183671A (en) Image projector
US7554710B2 (en) Two-dimensional scanning apparatus, and image displaying apparatus
JP2004061959A (en) Projection optical system, projection type picture display device and picture display system
JP3155336B2 (en) Visual display device
JP2000241706A (en) Prism optical system
US6259564B1 (en) Finder optical system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees