JP2988574B2 - Wavelength selection method for optical signal processor - Google Patents

Wavelength selection method for optical signal processor

Info

Publication number
JP2988574B2
JP2988574B2 JP4247440A JP24744092A JP2988574B2 JP 2988574 B2 JP2988574 B2 JP 2988574B2 JP 4247440 A JP4247440 A JP 4247440A JP 24744092 A JP24744092 A JP 24744092A JP 2988574 B2 JP2988574 B2 JP 2988574B2
Authority
JP
Japan
Prior art keywords
wavelength
optical element
nonlinear
optical signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4247440A
Other languages
Japanese (ja)
Other versions
JPH06138501A (en
Inventor
伊裕 横沢
泰日児 横尾
秀知 芦高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4247440A priority Critical patent/JP2988574B2/en
Publication of JPH06138501A publication Critical patent/JPH06138501A/en
Application granted granted Critical
Publication of JP2988574B2 publication Critical patent/JP2988574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、オプトエレクトロニク
ス、光情報処理、光通信等の分野において用いられる光
信号処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal processing apparatus used in fields such as optoelectronics, optical information processing, and optical communication.

【0002】[0002]

【従来の技術およびその問題点】非線形光学材料は、レ
ーザー光の強電界下、二次以上の非線形応答を示す材料
であって、周波数変換、発振、スイッチング等の光信号
処理において重要な素材である。特に、三次非線形光学
材料は、光が有する高速性、並列性という優れた特性を
十分に発揮させた次世代の光通信、情報処理における基
幹素材として注目されている。この三次非線形光学材料
を用いた非線形光学素子は、光の照射に対して屈折率が
変化することを利用しようとするものである。本発明者
等は、三次非線形性を有するキラル化合物が直線偏光に
対し、光の強度に依存して偏光面を回転させる特性を有
することを見い出し、これを利用した光信号処理装置を
提案した。(特開平4-131833号)この効果は化
合物の共鳴域では著しく増大する。しかし、キラル化合
物は共鳴域で円偏光二色性を持つため、検出光が直線偏
光で入射しても、楕円偏光化してしまい、これが残光ノ
イズとなって非線形効果による偏光回転を感度良く検出
するための障害となり、共鳴域の大きな効果を利用でき
ないという問題があった。
2. Description of the Related Art A nonlinear optical material is a material that exhibits a second-order or higher nonlinear response under a strong electric field of laser light, and is an important material in optical signal processing such as frequency conversion, oscillation, and switching. is there. In particular, tertiary nonlinear optical materials are attracting attention as key materials in next-generation optical communication and information processing that fully exhibit the excellent characteristics of light, such as high speed and parallelism. The non-linear optical element using the third-order non-linear optical material attempts to utilize the fact that the refractive index changes with light irradiation. The present inventors have found that a chiral compound having third-order nonlinearity has a property of rotating a plane of polarization depending on the intensity of light with respect to linearly polarized light, and have proposed an optical signal processing device using this. This effect is significantly increased in the resonance region of the compound. However, chiral compounds have circular dichroism in the resonance region, so even if the detection light is incident as linearly polarized light, it becomes elliptically polarized, which becomes afterglow noise and detects polarization rotation due to the nonlinear effect with high sensitivity. There is a problem that the large effect of the resonance region cannot be used.

【0003】[0003]

【問題点を解決するための手段】本発明の目的は、前記
問題点を解決し、三次非線形性を有するキラル化合物の
共鳴域における大きな三次非線形効果を引き出しON/
OFF比の高い信号処理方法を適用できる光信号処理装
置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to obtain a large third-order nonlinear effect in the resonance region of a chiral compound having a third-order nonlinearity.
An object of the present invention is to provide an optical signal processing device to which a signal processing method having a high OFF ratio can be applied.

【0004】本発明は、偏光要素及び三次非線形性を有
するキラル化合物からなる非線形光学要素を具えてなる
非線形光学素子から構成されてなる光信号処理装置にお
いて、検出光の波長として非線形光学素子の円偏光二色
性曲線の符号が反転する波長か、あるいは検出光の波長
として非線形光学素子の円偏光二色性曲線のウインドウ
内にある波長を選択することを特徴とする光信号処理装
置の波長選択方法に関する。
The present invention relates to an optical signal processing apparatus comprising a nonlinear optical element having a polarizing element and a nonlinear optical element made of a chiral compound having a third-order nonlinearity. Wavelength selection of an optical signal processing device characterized by selecting a wavelength at which the sign of the polarization dichroism curve is inverted, or a wavelength within the window of the circular dichroism curve of the nonlinear optical element as the wavelength of the detection light. About the method.

【0005】本発明におけるキラル化合物は、大きな非
局在化π電子系を有するもので、かつ、大きな旋光性を
有するものが望ましい。このようなキラル化合物として
は、縮合芳香環を有するキラル化合物が好適であり、例
えば、光学活性ヘリセン類が挙げられる。光学活性ヘリ
セン類としては、カルボヘリセン及びヘテロヘリセンが
挙げられる。カルボヘリセンは、芳香環が5個以上、好
ましくは6個〜20個繋がった螺旋状構造を有する化合
物である。また、ヘテロヘリセンは、ベンゼンとチオフ
ェン、フラン、ピリジン、ピロール等のヘテロ環との共
縮合環からなる化合物である。さらに、カルボヘリセン
又はヘテロヘリセンは、その芳香環又は複素環に種々の
置換基が付いたものでもよい。
The chiral compound in the present invention preferably has a large delocalized π-electron system and a large optical rotation. As such a chiral compound, a chiral compound having a condensed aromatic ring is preferable, and examples thereof include optically active helicenes. Optically active helicenes include carbohelicene and heterohelicene. Carbohelicene is a compound having a helical structure in which 5 or more, preferably 6 to 20 aromatic rings are connected. Further, heterohelicene is a compound comprising a co-condensed ring of benzene and a hetero ring such as thiophene, furan, pyridine, pyrrole and the like. Further, carbohelicene or heterohelicene may have an aromatic ring or a heterocyclic ring with various substituents.

【0006】このようなカルボヘリセン及びヘテロヘリ
センは、例えば、Top.Curr.Chem.125(Stereochemistr
y),63-130(1984) に記載されている。カルボヘリセン及
びヘテロヘリセンの合成方法としては、特に制限はない
が、例えば、Wittig反応やSiegrist反応により合成した
1,2-diarylethylenes 、bis(arylvinyl)arenes等を光環
化することにより得られる。このヘリセン類は、大きな
非局在化π電子系を有するので、大きな三次非線形性を
示し、かつレーザーによる熱的、光学的損傷がないた
め、三次非線形光学材料として優れている。
Such carbohelicene and heterohelicene are described, for example, in Top. Curr. Chem. 125 (Stereochemistr.
y), 63-130 (1984). The method for synthesizing carbohelicene and heterohelicene is not particularly limited. For example, it is synthesized by Wittig reaction or Siegrist reaction
It can be obtained by photocyclization of 1,2-diarylethylenes, bis (arylvinyl) arenes and the like. Since the helicenes have a large delocalized π-electron system, they exhibit a large third-order nonlinearity and are free from thermal and optical damage caused by a laser, and are therefore excellent as third-order nonlinear optical materials.

【0007】本発明の非線形光学素子は、三次非線形性
を有するキラル化合物からなる非線形光学要素を具えて
なる。三次非線形性を有するキラル化合物からなる非線
形光学要素の形態としては、例えば、キラル化合物の溶
液、結晶、薄膜、あるいは樹脂等にドープしても良い。
本発明における三次非線形性を有するキラル化合物は、
直線偏光に対し光の強度に依存して偏光面を回転させる
特性を有する。この効果は化合物の共鳴域では著しく増
大するが、キラル化合物は共鳴域で円偏光二色性を持つ
ため、検出光が直線偏光で入射しても、楕円偏光化して
しまい、これが残光ノイズとなって非線形効果による偏
光回転を感度良く検出することができなかった。
The nonlinear optical element of the present invention comprises a nonlinear optical element made of a chiral compound having a third-order nonlinearity. The form of the nonlinear optical element made of a chiral compound having third-order nonlinearity may be, for example, doping a solution, crystal, thin film, or resin of the chiral compound.
The chiral compound having the third-order nonlinearity in the present invention,
It has the property of rotating the plane of polarization of linearly polarized light depending on the light intensity. This effect is significantly increased in the resonance region of the compound, but since the chiral compound has circular dichroism in the resonance region, even if the detection light is incident as linearly polarized light, it becomes elliptically polarized. As a result, the polarization rotation due to the nonlinear effect could not be detected with high sensitivity.

【0008】本発明においては、検出光の波長を非線形
光学素子の円偏光二色性曲線の符号が反転する波長とす
るか、あるいは、非線形光学素子の円偏光二色性曲線の
ウインドウ内にある波長とすることにより、共鳴域にお
ける大きな三次非線形効果を引き出すことができる。即
ち、図1に示すように、検出光の波長が円偏光二色性曲
線の符号が反転する波長11であるか、円偏光二色性曲
線のウインドウ内にある波長12である場合には、比楕
円率が実用上零と見なせるため、直線偏光が入射しても
ほとんど楕円化は起こらない。したがって、直線偏光で
入射した検出光はほとんど楕円化されることなく非線形
光学素子から出射されるため偏光の楕円化による残光ノ
イズを発生しない。このため、共鳴域の大きな非線形効
果をON/OFF比が良い状態で利用することができ
る。本発明において、円偏光二色性曲線の符号が反転す
る波長とは、厳密に前記条件を満たすものである必要は
なく、実用上直線偏光の楕円化による残光ノイズの影響
を無視できる範囲であればよい。また、円偏光二色性曲
線のウインドウ内にある波長とは、楕円率の絶対値が0
に近い極小となる領域の波長を意味するものである。
In the present invention, the wavelength of the detection light is a wavelength at which the sign of the circular dichroism curve of the nonlinear optical element is inverted, or is within the window of the circular dichroism curve of the nonlinear optical element. By setting the wavelength, a large third-order nonlinear effect in the resonance region can be obtained. That is, as shown in FIG. 1, when the wavelength of the detection light is the wavelength 11 at which the sign of the circular dichroism curve is inverted or the wavelength 12 is within the window of the circular dichroism curve, Since the specific ellipticity can be regarded as practically zero, even if linearly polarized light is incident, almost no ellipticity occurs. Therefore, the detection light that has entered as linearly polarized light is emitted from the non-linear optical element without being substantially elliptical, so that afterglow noise due to elliptical polarization is not generated. For this reason, a large nonlinear effect in the resonance region can be used with a good ON / OFF ratio. In the present invention, the wavelength at which the sign of the circular dichroism curve is inverted does not need to strictly satisfy the above conditions, and is practically within a range in which the effect of afterglow noise due to the ellipticalization of linearly polarized light can be ignored. I just need. The wavelength within the window of the circular dichroism curve is defined as an absolute value of the ellipticity of 0.
Means a wavelength in a region where the minimum value is close to.

【0009】[0009]

【実施例】以下に、実施例を示して本発明を具体的に説
明する。 実施例1 図2は、本発明に係わる光スイッチング装置である。2
1は三次非線形性を有するキラル化合物からなる非線形
光要素を具えてなる非線形光学素子であり、具体的に
は、チアヘプタヘリセンの(+)体の0.05%THF
溶液を光路長2mmの石英セルに入れたものである。2
7はレーザー光源である。23はレーザー光源からでた
強い制御光であって、コントローラー28により強度を
変えることができ、偏光子26により直線偏光となって
非線形光学素子21に入射する。22はレーザー光源か
ら分けた弱い検出光であり偏光子24によって制御光2
3と同方位の直線偏光となって非線形光学素子21に入
射する。制御光23がない場合、検光子25の方位は検
出光を遮断するように配置されている。制御光23が入
射すると検出光は非線形効果により偏光が回転して垂直
成分が生じ検光子25を透過する。
The present invention will be specifically described below with reference to examples. Embodiment 1 FIG. 2 shows an optical switching device according to the present invention. 2
Reference numeral 1 denotes a non-linear optical element comprising a non-linear optical element made of a chiral compound having a third-order non-linearity. Specifically, a (+)-thiaheptahelicene 0.05% THF is used.
The solution was placed in a quartz cell having an optical path length of 2 mm. 2
Reference numeral 7 denotes a laser light source. Reference numeral 23 denotes strong control light emitted from the laser light source, the intensity of which can be changed by the controller 28, and becomes linearly polarized light by the polarizer 26 and enters the nonlinear optical element 21. Reference numeral 22 denotes a weak detection light separated from the laser light source.
3 and enters the nonlinear optical element 21 as linearly polarized light having the same direction as that of the light. When there is no control light 23, the direction of the analyzer 25 is arranged so as to block the detection light. When the control light 23 is incident, the detection light is rotated by the nonlinear effect due to the non-linear effect, and a vertical component is generated and transmitted through the analyzer 25.

【0010】図3にレーザー光源の波長を本発明に係わ
る波長444.5nm、即ち図1の11の波長にした時
の制御光の強度と信号強度の関係を示す。表1に制御光
の相対強度が1の時の、信号強度とOFF時の残光ノイ
ズの大きさを444.5nmにおける残光ノイズの値を
基準にして示した。非共鳴域で本発明に係わらない波長
490nm、即ち図1の14の波長では信号は弱く検出
できなかった。共鳴域で本発明に係わらない波長435
nm、即ち図1の13の波長では残光ノイズが大きく、
信号は判別できなかった。これに対し、本発明に係わる
波長444.5nmでは信号は検出され、この時のON
/OFF比は約30であった。
FIG. 3 shows the relationship between the intensity of the control light and the signal intensity when the wavelength of the laser light source is set to the wavelength of 444.5 nm according to the present invention, that is, 11 in FIG. Table 1 shows the signal intensity and the magnitude of the afterglow noise when OFF when the relative intensity of the control light is 1, based on the value of the afterglow noise at 444.5 nm. At a wavelength of 490 nm, which is not related to the present invention, in the non-resonant region, that is, at a wavelength of 14 in FIG. 1, no signal was detected weakly. Wavelength 435 not related to the present invention in the resonance region
nm, ie, the afterglow noise is large at the wavelength of 13 in FIG.
The signal could not be determined. On the other hand, a signal is detected at a wavelength of 444.5 nm according to the present invention, and ON at this time is detected.
The / OFF ratio was about 30.

【0011】[0011]

【表1】 [Table 1]

【0012】以上のように、本発明によれば、三次非線
形性を有するキラル化合物の共鳴域における大きな三次
非線形効果を引き出し、ON/OFF比及びS/N比の
高い信号処理方法を適用できる光信号処理装置を提供す
ることができる。本実施例では制御光と検出光が同じ波
長であるが、制御光の波長が異なっても同様の効果が得
られることはいうまでもない。また、制御光と検出光を
一体化して1本の光線で制御しても効果は同じである。
As described above, according to the present invention, a light capable of extracting a large third-order nonlinear effect in the resonance region of a chiral compound having a third-order nonlinearity and applying a signal processing method having a high ON / OFF ratio and a high S / N ratio. A signal processing device can be provided. In this embodiment, the control light and the detection light have the same wavelength, but it goes without saying that the same effect can be obtained even if the wavelength of the control light is different. Further, the effect is the same even if the control light and the detection light are integrated and controlled by one light beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、チアヘプタヘリセンの円偏光二色性曲
線を示す図である。
FIG. 1 is a diagram showing a circular dichroism curve of thiaheptahelicene.

【図2】図2は、本発明の一実施例である光スイッチン
グ装置の概略図である。
FIG. 2 is a schematic diagram of an optical switching device according to one embodiment of the present invention.

【図3】図3は、図2の装置におけるスイッチング特性
を示す図である。
FIG. 3 is a diagram showing switching characteristics in the device of FIG. 2;

【符号の説明】[Explanation of symbols]

21 非線形光学素子 22 検出光 23 制御光 24 偏光子 25 検光子 26 偏光子 27 レーザー光源 28 コントローラー DESCRIPTION OF SYMBOLS 21 Nonlinear optical element 22 Detection light 23 Control light 24 Polarizer 25 Analyzer 26 Polarizer 27 Laser light source 28 Controller

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/35 JICSTファイル(JOIS)──────────────────────────────────────────────────の Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/35 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 偏光要素及び三次非線形性を有するキラ
ル化合物からなる非線形光学要素を具えてなる非線形光
学素子から構成されてなる光信号処理装置において、検
出光の波長として非線形光学素子の円偏光二色性曲線の
符号が反転する波長を選択することを特徴とする光信号
処理装置の波長選択方法
1. A optical signal processing device in which is constructed from the nonlinear optical element comprising comprise a nonlinear optical element comprising a chiral compound having a polarization component and third-order nonlinear properties, circular polarization second nonlinear optical element as the wavelength of the detection light A wavelength selection method for an optical signal processing device , wherein a wavelength at which the sign of a chromaticity curve is inverted is selected .
【請求項2】 偏光要素及び三次非線形性を有するキラ
ル化合物からなる非線形光学要素を具えてなる非線形光
学素子から構成されてなる光信号処理装置において、検
出光の波長として非線形光学素子の円偏光二色性曲線の
ウインドウ内にある波長を選択することを特徴とする光
信号処理装置の波長選択方法
2. The optical signal processing device in which is constructed from the nonlinear optical element comprising comprise a nonlinear optical element comprising a chiral compound having a polarization component and third-order nonlinear properties, circular polarization second nonlinear optical element as the wavelength of the detection light A wavelength selecting method for an optical signal processing device , wherein a wavelength within a window of a chromaticity curve is selected .
JP4247440A 1992-09-11 1992-09-17 Wavelength selection method for optical signal processor Expired - Fee Related JP2988574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4247440A JP2988574B2 (en) 1992-09-11 1992-09-17 Wavelength selection method for optical signal processor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-243724 1992-09-11
JP24372492 1992-09-11
JP4247440A JP2988574B2 (en) 1992-09-11 1992-09-17 Wavelength selection method for optical signal processor

Publications (2)

Publication Number Publication Date
JPH06138501A JPH06138501A (en) 1994-05-20
JP2988574B2 true JP2988574B2 (en) 1999-12-13

Family

ID=26536402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4247440A Expired - Fee Related JP2988574B2 (en) 1992-09-11 1992-09-17 Wavelength selection method for optical signal processor

Country Status (1)

Country Link
JP (1) JP2988574B2 (en)

Also Published As

Publication number Publication date
JPH06138501A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US4767169A (en) Thin film waveguide electrooptic modulator
Wengler et al. Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources
US4877298A (en) Thin film waveguide electrooptic modulator
EP0218938B1 (en) Nonlinear optical materials and devices
JPS61296332A (en) High performance non-linear type optical substrate
EP0301551B1 (en) Nonlinear optical element
JPH0350521A (en) Polarization blind interferometry type waveguide electro-optic modulator
Meyling et al. Full anisotropy of the stark effect on the 1B2u← 1Ag electronic transitions of tetracene and pentacene in a ρ-terphenyl host crystal
JPH03213822A (en) Polarized light nonsensitive linear waveguide photoelectric phase modulator
JP2988574B2 (en) Wavelength selection method for optical signal processor
Holtmann et al. Photorefractive properties of undoped lithium tantalate crystals for various composition
US5368782A (en) Method of operating third-order nonlinear optical element
JP2005227376A (en) Organic nonlinear optical material and nonlinear optical element using the same
JP2937281B2 (en) Third-order nonlinear optical material
US5403520A (en) Nonlinear optical device and optical signal processing unit
JP2785468B2 (en) Nonlinear optical element and optical signal processing device
JP3003819B2 (en) Nonlinear optical element and optical signal processing device
San et al. Dielectric properties of a side-chain liquid crystalline polymer under laser induced circumstances
JP2005227368A (en) Organic nonlinear optical material and nonlinear optical element using the same
JP2937280B2 (en) Third-order nonlinear optical material
JP3214129B2 (en) Nonlinear optical element
JP3214128B2 (en) Optical signal processing method
JP2861531B2 (en) Chiral nonlinear effect material
JP2725929B2 (en) Organic nonlinear optical material
JP3651917B2 (en) Optical angle modulation-intensity modulation conversion method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees