JP2988114B2 - Optical fiber amplifier - Google Patents

Optical fiber amplifier

Info

Publication number
JP2988114B2
JP2988114B2 JP4095064A JP9506492A JP2988114B2 JP 2988114 B2 JP2988114 B2 JP 2988114B2 JP 4095064 A JP4095064 A JP 4095064A JP 9506492 A JP9506492 A JP 9506492A JP 2988114 B2 JP2988114 B2 JP 2988114B2
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
transmission line
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4095064A
Other languages
Japanese (ja)
Other versions
JPH05291668A (en
Inventor
博則 早田
正明 東城
昇 倉田
和彦 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4095064A priority Critical patent/JP2988114B2/en
Publication of JPH05291668A publication Critical patent/JPH05291668A/en
Application granted granted Critical
Publication of JP2988114B2 publication Critical patent/JP2988114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光を直接増幅する光ファ
イバ増幅器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber amplifier for directly amplifying light.

【0002】[0002]

【従来の技術】近年、光ファイバ増幅器の出現により光
の分配網を構成するシステムが活発に検討されている。
ポストアンプやブ−スタ−アンプとして用いる光ファイ
バ増幅器は、入力光を10〜50mWの出力に増幅する
ために直接目に照射されると人体に悪影響を与えること
になる。その対策として伝送路に異常が生じると励起光
を遮断し、増幅作用を止めるための検出方式が種々考え
られている。以下に従来の検出方法について説明する。
2. Description of the Related Art In recent years, with the advent of optical fiber amplifiers, systems constituting a light distribution network have been actively studied.
Optical fiber amplifiers used as post-amplifiers or booster amplifiers adversely affect the human body when directly illuminated with eyes to amplify input light to an output of 10 to 50 mW. As a countermeasure, various detection methods have been considered to block the excitation light when an abnormality occurs in the transmission line and stop the amplification operation. Hereinafter, a conventional detection method will be described.

【0003】図3は従来の検出方式の1例を示すもので
ある。図において、1、2は反射戻り光によるレ−ザ発
振を抑圧する偏波無依存型の光アイソレ−タ、3は入射
光を増幅するErド−プファイバ、4は信号光を増幅す
るための励起光を入射させる波長合波器、5は励起光
源、6は反射戻り光を分岐する光分岐器、8は反射戻り
光を検出する受光素子である。9は上記受光素子のレベ
ルに応じて励起光源5を遮断する制御回路部である。
FIG. 3 shows an example of a conventional detection system. In the drawing, reference numerals 1 and 2 denote polarization-independent optical isolators for suppressing laser oscillation due to reflected return light, 3 denotes an Er-doped fiber for amplifying incident light, and 4 denotes a signal light for amplifying signal light. Reference numeral 5 denotes an excitation light source, 6 denotes an optical splitter that splits reflected return light, and 8 denotes a light receiving element that detects reflected return light. Reference numeral 9 denotes a control circuit for shutting off the excitation light source 5 according to the level of the light receiving element.

【0004】以上のように構成された光ファイバ増幅器
について、伝送路異常検出動作について説明する。Er
ド−プファイバで増幅された光信号が、光分岐器6から
次段の光ファイバ増幅器に入射するまでの伝送路におい
て光コネクタ外れや、光ファイバ断線などが生じると、
光ファイバ端面からのフレネル反射光が生じ、信号光と
逆方向に伝搬していく。この反射戻り光は光分岐器6に
より分岐されて受光素子8に入る。この受光素子8に入
射した光のレベルの応じて、制御回路部9で励起光源5
からの出力を遮断する。ここで受光素子8には、伝送路
に異常が生じていない時にも伝送路からの反射戻り光が
入射しており、伝送路異常の反射戻り光とを区別するた
めに、しきい値を設けている。このしきい値より大きな
受光パワ−を受けたときに制御回路部9で励起光源5を
遮断するようにしている。
The operation of the optical fiber amplifier configured as described above for detecting a transmission line abnormality will be described. Er
If the optical signal amplified by the dope fiber is disconnected from the optical connector or the optical fiber is disconnected in the transmission line from the optical branching device 6 to the optical fiber amplifier of the next stage,
Fresnel reflected light from the end face of the optical fiber is generated and propagates in the opposite direction to the signal light. This reflected return light is split by the optical splitter 6 and enters the light receiving element 8. In accordance with the level of light incident on the light receiving element 8, the control light source 5
Cut off the output from Here, even when there is no abnormality in the transmission line, the reflected return light from the transmission line is incident on the light receiving element 8, and a threshold value is provided to distinguish the reflected return light from the abnormal transmission line. ing. The control circuit 9 shuts off the excitation light source 5 when receiving light receiving power greater than the threshold.

【0005】[0005]

【発明が解決しようとする課題】光ファイバ端面のフレ
ネル反射光を検出する方法では、伝送路異常(光コネク
タの外れ、光ファイバ断線など)による光ファイバ端か
らの反射戻り光と、正常伝送状態時の伝送路からの反射
戻り光とを区別しなければならない。特に、光ファイバ
断線などの場合、端面の破断状態によって反射戻り光量
が異なる(通常の鏡面研磨に比べ少ない場合が多い)た
めに異常検知限となる受光レベルの設定を通常の鏡面状
態の場合より低めに設定する必要がある。
In the method of detecting the Fresnel reflected light from the end face of the optical fiber, there are two methods of detecting the reflected light returned from the end of the optical fiber due to an abnormal transmission line (detachment of the optical connector, disconnection of the optical fiber, etc.) and a normal transmission state. It must be distinguished from the reflected light returning from the transmission path at the time. In particular, in the case of an optical fiber disconnection, etc., the amount of reflected return light differs depending on the broken state of the end face (in many cases, it is smaller than normal mirror polishing), so the light reception level that is the limit of abnormality detection is set to be lower than in the normal mirror surface Must be set lower.

【0006】上記従来構成では、次段の光ファイバ増幅
器が後方励起方式の場合において、Erド−プ光ファイ
バで吸収されなかった励起光が光アイソレ−タを通過
し、前段の光増幅器に戻っていくことになる。このため
伝送路異常が生じていない場合においても受光素子で正
常伝送時の伝送路からの反射戻り光量と、次段の光ファ
イバ増幅器からの励起光の漏れ光量の和の分を受光す
る。その結果伝送路が正常な場合の受光レベルが大きく
なり、異常発生地点によっては異常時に生じる反射戻り
光の受光レベルとの差が逆転することになり、検出でき
なくなる。
In the above conventional configuration, when the next-stage optical fiber amplifier is of the backward pumping type, pump light not absorbed by the Er-doped optical fiber passes through the optical isolator and returns to the preceding-stage optical amplifier. Will go on. Therefore, even when the transmission path abnormality does not occur, the light receiving element receives the sum of the reflected return light quantity from the transmission path during normal transmission and the leakage light quantity of the excitation light from the next-stage optical fiber amplifier. As a result, the light reception level when the transmission path is normal becomes large, and the difference from the light reception level of the reflected return light generated at the time of the abnormality is reversed depending on the location where the abnormality occurs, and the detection becomes impossible.

【0007】これを防止するには次段の光増幅器にダブ
ルアイソレ−タを用いてアイソレ−ションを向上する方
法が考えられるが、励起光が大きくなってくるとアイソ
レ−タ通過後の絶対パワ−が増加することになり、伝送
路異常によって生じるフレネル反射戻り光パワ−との差
が近くなって検出できなくなる。
In order to prevent this, a method of improving the isolation by using a double isolator for the optical amplifier in the next stage is considered. However, when the pump light becomes large, the absolute power after passing through the isolator is considered. And the difference from the power of the Fresnel reflection return light caused by the transmission path abnormality becomes too close to detect.

【0008】本発明はこのような従来の課題を解決する
もので、伝送路異常が生じていない場合に次段の光ファ
イバ増幅器からの励起光漏れを防止して、正常な伝送路
異常検出手段を提供するものである。
SUMMARY OF THE INVENTION The present invention solves such a conventional problem, and prevents leakage of pumping light from an optical fiber amplifier at the next stage when a transmission line abnormality does not occur. Is provided.

【0009】[0009]

【課題を解決するための手段】伝送路異常によって生じ
る光ファイバ端面からの反射戻り光を検出するための光
分岐器を増幅後の伝送路の一部に設け、上記光分岐後に
信号光波長の光を通過し励起光波長を遮断する光フィル
タ−と、通過した光を受信する受光素子、および励起光
源の出力を制御する制御回路部で構成している。
SUMMARY OF THE INVENTION An optical splitter for detecting reflected return light from an end face of an optical fiber caused by a transmission line abnormality is provided in a part of a transmission line after amplification, and after the optical branching, a signal light wavelength is reduced. It comprises an optical filter that passes light and cuts off the wavelength of the excitation light, a light receiving element that receives the passed light, and a control circuit that controls the output of the excitation light source.

【0010】[0010]

【作用】この構成によって、後方励起方式を用いた次段
の光ファイバ増幅器からの励起光は、波長合波器でEr
ド−プファイバで信号光の増幅に寄与するとともに一部
は、信号光と逆方向の経路をたどり前段の光ファイバ増
幅器に設けた光分岐器により分岐された後、励起光の波
長をカットする光フィルタ−で遮断され受光素子に入射
しなくなる。
With this configuration, the pumping light from the next-stage optical fiber amplifier using the backward pumping system is passed through the wavelength multiplexer to Er.
The light that contributes to the amplification of the signal light with the dope fiber and partially cuts the wavelength of the pump light after being branched by the optical splitter provided in the optical fiber amplifier in the preceding stage following the path in the opposite direction to the signal light. The light is blocked by the filter and does not enter the light receiving element.

【0011】ここで前段の光増幅器と次段の光増幅器の
間で伝送路遮断が生じると、信号光の一部がフレネル反
射により戻り、前段の光増幅器に設けた光分岐器、光フ
ィルタ−を通り受光素子に光が入射される。この光が伝
送路異常によって生じるレベル以上であれば異常と判断
し、励起光源制御回路により自動的に励起光が遮断され
ることになる。
If the transmission path is interrupted between the optical amplifier at the preceding stage and the optical amplifier at the next stage, a part of the signal light returns due to Fresnel reflection, and the optical splitter and optical filter provided in the optical amplifier at the preceding stage. Passes through the light receiving element. If this light is at or above a level caused by a transmission line abnormality, it is determined that the light is abnormal, and the excitation light is automatically cut off by the excitation light source control circuit.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面にもとづいて
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の光ファイバ増幅器の構成
図である。1、2は反射戻り光によるレ−ザ発振を抑圧
する偏波無依存型の光アイソレ−タ、3は波長1.55
μmの信号光を増幅するErド−プファイバ、4は上記
Erド−プファイバ3に励起光を入射させる波長合波
器、5は波長1.48μmの励起光源である。6は増幅
後の信号光の反射戻り光を分岐する光分岐器である。7
は光フィルタ−で次段の光ファイバ増幅器(図示せず
も)からの波長1.48μmの励起光をカットし、波長
1.55μmの信号光を通過するものである。8は受光
素子で、伝送路からの反射戻り光量を受光する。9は上
記受光素子8の受光レベルに応じ励起光源5の出力を遮
断する制御回路部である。
FIG. 1 is a configuration diagram of an optical fiber amplifier according to the present invention. Reference numerals 1 and 2 denote polarization-independent optical isolators for suppressing laser oscillation due to reflected return light, and 3 denotes a wavelength of 1.55.
An Er-doped fiber 4 for amplifying a signal light of μm, a wavelength multiplexer 4 for injecting pump light into the Er-doped fiber 3, and a pump light source 5 for a wavelength of 1.48 μm. Reference numeral 6 denotes an optical splitter for splitting the reflected return light of the amplified signal light. 7
Is an optical filter which cuts off the pumping light having a wavelength of 1.48 μm from an optical fiber amplifier (not shown) at the next stage and transmits signal light having a wavelength of 1.55 μm. Reference numeral 8 denotes a light receiving element that receives the amount of reflected return light from the transmission path. Reference numeral 9 denotes a control circuit for cutting off the output of the excitation light source 5 according to the light receiving level of the light receiving element 8.

【0014】図2に受光部での伝送路からの反射戻り光
量と分岐器6の分岐端から伝送路異常発生点までの位置
との関係を示す。ここで伝送路異常は、完全鏡面による
フレネル反射光量が戻るものとして示しており、この間
に光スイッチ、光分岐器などの受動部品が挿入されてい
る場合には、反射戻り光量が受動部品の挿入損失の往復
分だけ下がることになる。
FIG. 2 shows the relationship between the amount of reflected light returning from the transmission line at the light receiving section and the position from the branch end of the branching device 6 to the point of occurrence of the transmission line abnormality. Here, the transmission path abnormality is indicated by the fact that the Fresnel reflected light amount due to a perfect mirror surface returns.If a passive component such as an optical switch or an optical splitter is inserted during this time, the reflected return light amount is reduced by the insertion of the passive component. It will be reduced by the round trip loss.

【0015】図1、2において伝送路異常検出の動作を
説明する。伝送路が正常な場合、次段の後方励起方式の
光ファイバ増幅器の励起光は、Erド−プファイバで、
信号光への増幅作用として70%程度寄与し、残りの光
の一部は光アイソレ−タを通過し(光アイソレ−タでは
20〜30dB程度透過率が低下)、前段の光ファイバ
増幅器に戻っていく。この光は前段の光ファイバ増幅器
の出力端より入射し、光分岐器6により、励起光1.4
8μmの光が分岐されることになる。この光は光フィル
タ−7によりカットされ、受光素子8には入射しない。
一方伝送路の接続端や、光受動部品などから反射する信
号光の微弱な反射戻り光量は、光フィルタ−7を通過
し、受光素子8に入射する。この微弱な反射戻り光量よ
り大きな光が検出されたときに、伝送路の異常が検出さ
れることになる。
The operation of detecting a transmission line abnormality will be described with reference to FIGS. When the transmission path is normal, the pump light of the next-stage backward pumping optical fiber amplifier is Er-doped fiber,
It contributes about 70% as an amplifying function to the signal light, and a part of the remaining light passes through the optical isolator (in the optical isolator, the transmittance is reduced by about 20 to 30 dB), and returns to the optical fiber amplifier in the preceding stage. To go. This light enters from the output end of the optical fiber amplifier in the preceding stage, and is pumped by the optical branching device 6 into the pump light 1.4.
8 μm light will be split. This light is cut by the optical filter 7 and does not enter the light receiving element 8.
On the other hand, the weak reflected return light amount of the signal light reflected from the connection end of the transmission path or the optical passive component passes through the optical filter 7 and enters the light receiving element 8. When light larger than the weak reflected return light amount is detected, an abnormality in the transmission path is detected.

【0016】次に、伝送路に異常が生じた場合(光コネ
クタ外れ、光ファイバ断線など)、光ファイバ端面から
のフレネル反射光が信号光と逆方向に伝搬し、光分岐器
6で分岐され、光フィルタ−7を通過して受光素子8に
入射する。この時の入射光レベルは、伝送路正常時に比
べ大きくなっており、伝送路異常と判断され励起光源5
制御回路部9によって、励起光出力が遮断されることに
なる。
Next, when an abnormality occurs in the transmission line (such as disconnection of the optical connector or disconnection of the optical fiber), the Fresnel reflected light from the end face of the optical fiber propagates in the opposite direction to the signal light, and is branched by the optical branching device 6. Pass through the optical filter 7 and enter the light receiving element 8. At this time, the incident light level is higher than when the transmission path is normal, and it is determined that the transmission path is abnormal, and
The control circuit 9 cuts off the excitation light output.

【0017】光フィルタ−7が入っていない状態では図
2に示すように伝送路異常点の位置によっては、正常時
より小さくなって異常を検出できなくなる。
In the state where the optical filter 7 is not inserted, as shown in FIG. 2, depending on the position of the transmission path abnormal point, the transmission line becomes smaller than the normal state and the abnormality cannot be detected.

【0018】[0018]

【発明の効果】以上説明したように、本発明の伝送路異
常検出構成を用いることにより、伝送路異常時の反射戻
り光量と正常時の反射戻り光量の差を大きく取ることが
でき、検出誤動作をなくすことができる。
As described above, by using the transmission line abnormality detection structure of the present invention, a large difference between the reflected return light amount when the transmission line is abnormal and the reflected return light amount when the transmission line is normal can be obtained. Can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光増幅器の構成を示す図FIG. 1 is a diagram showing a configuration of an optical amplifier of the present invention.

【図2】本発明の光増幅器を用いた時の伝送路異常時の
反射戻り光量と正常時の反射戻り光量を示す図
FIG. 2 is a diagram showing the amount of reflected return light when the transmission path is abnormal and the amount of reflected return light when normal using the optical amplifier of the present invention.

【図3】従来の伝送路異常検出方法を用いた光増幅器の
構成を示す図
FIG. 3 is a diagram showing a configuration of an optical amplifier using a conventional transmission path abnormality detection method.

【符号の説明】[Explanation of symbols]

1、2 光アイソレ−タ 3 Erド−プファイバ 4 波長合波器 5 励起光源 6 光分岐器 7 光フィルタ− 8 受光素子 9 制御回路部 1, 2 Optical isolator 3 Er-doped fiber 4 Wavelength multiplexer 5 Excitation light source 6 Optical splitter 7 Optical filter 8 Light receiving element 9 Control circuit section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤川 和彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−291667(JP,A) 特開 平3−214936(JP,A) 特開 平5−292036(JP,A) 特開 平5−83201(JP,A) 特開 平4−324335(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01S 3/10 H01S 3/06 - 3/07 G02F 1/35 H04B 10/00 - 10/28 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Fujikawa 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-291667 (JP, A) JP-A-3- 214936 (JP, A) JP-A-5-292036 (JP, A) JP-A-5-83201 (JP, A) JP-A-4-324335 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01S 3/10 H01S 3/06-3/07 G02F 1/35 H04B 10/00-10/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】後方励起による光ファイバ増幅器を多段接
続して用いるシステムで、光ファイバ増幅後の出力伝送
路の一部に伝送路からの反射戻り光を分岐する光分岐器
と、分岐された光路に励起光源波長の光を遮断する光フ
ィルタ−と、前記光フィルタ−を通過した増幅信号の反
射戻り光を受信する受光素子と、前記受光素子の検出光
の受信レベルが伝送路異常レベルを越えた時に前段の励
起光の出力を遮断する制御回路とを備えた光ファイバ増
幅器。
An optical splitter for branching reflected return light from a transmission line to a part of an output transmission line after amplification of the optical fiber, wherein the optical branching device is a system using an optical fiber amplifier connected in multiple stages by backward pumping. An optical filter that blocks light having a wavelength of an excitation light source in an optical path; a light receiving element that receives reflected return light of an amplified signal that has passed through the optical filter; and a reception level of detection light of the light receiving element that indicates a transmission path abnormal level. An optical fiber amplifier comprising: a control circuit for shutting off the output of the pump light at the preceding stage when the output power exceeds the limit.
JP4095064A 1992-04-15 1992-04-15 Optical fiber amplifier Expired - Fee Related JP2988114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095064A JP2988114B2 (en) 1992-04-15 1992-04-15 Optical fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095064A JP2988114B2 (en) 1992-04-15 1992-04-15 Optical fiber amplifier

Publications (2)

Publication Number Publication Date
JPH05291668A JPH05291668A (en) 1993-11-05
JP2988114B2 true JP2988114B2 (en) 1999-12-06

Family

ID=14127585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095064A Expired - Fee Related JP2988114B2 (en) 1992-04-15 1992-04-15 Optical fiber amplifier

Country Status (1)

Country Link
JP (1) JP2988114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964446A (en) * 1995-08-25 1997-03-07 Furukawa Electric Co Ltd:The Optical amplifier and optical amplification apparatus using it
WO2003084007A1 (en) 2002-03-28 2003-10-09 Fujitsu Limited Optical device having loss compensation function and optical amplifier for loss compensation
JP5103908B2 (en) * 2007-01-04 2012-12-19 住友電気工業株式会社 Optical module
JP5173081B2 (en) * 2010-04-12 2013-03-27 三菱電機株式会社 Optical amplifier

Also Published As

Publication number Publication date
JPH05291668A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
EP1247355B1 (en) System and method for detecting imperfect connections in optical systems
US5875054A (en) Bidirectional optical amplifier circuit
US6317255B1 (en) Method and apparatus for controlling optical signal power in response to faults in an optical fiber path
JP2800715B2 (en) Optical fiber amplifier
EP0555973A1 (en) Hybrid pumping arrangement for doped fiber amplifiers
CA2094867A1 (en) Optical communication system with monitoring device for avoiding giant pulses
US6807001B1 (en) Auto shutdown for distributed raman amplifiers on optical communication systems
US5537244A (en) Light amplifier
EP0660468B1 (en) Bidirectional optical amplifier
JP3000948B2 (en) Optical amplifier
JP2988114B2 (en) Optical fiber amplifier
JPH05291667A (en) Optical fiber amplifier
JP4322714B2 (en) Optical fiber amplifier and method of detecting connector disconnection of transmission optical fiber connected thereto, optical fiber amplifier, optical fiber amplifier, and transmission optical fiber connected thereto
JP2546499B2 (en) Optical signal direct amplifier
JPH0918415A (en) Optical surge suppressing optical amplifier
JPH09200130A (en) Optical amplifier with disconnected connector detection circuit and optical amplification method
JPH09321373A (en) Optical signal monitor circuit and optical amplifier
JP3187071B2 (en) High optical output protection circuit of optical amplifier
JPH0583201A (en) Optical amplifier with output terminal open state detection circuit
EP0674404A1 (en) Optical repeater
JP2906858B2 (en) Optical fiber amplifier
JP3169885B2 (en) Optical fuse
EP0516363B1 (en) Optical amplifying apparatus
JPH1168201A (en) Optical processing equipment
JP3046180B2 (en) Optical fiber amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees