JP2986127B2 - Drawing method and drawing apparatus for fine pattern - Google Patents

Drawing method and drawing apparatus for fine pattern

Info

Publication number
JP2986127B2
JP2986127B2 JP3233046A JP23304691A JP2986127B2 JP 2986127 B2 JP2986127 B2 JP 2986127B2 JP 3233046 A JP3233046 A JP 3233046A JP 23304691 A JP23304691 A JP 23304691A JP 2986127 B2 JP2986127 B2 JP 2986127B2
Authority
JP
Japan
Prior art keywords
probe electrodes
resist
probe
elastic body
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3233046A
Other languages
Japanese (ja)
Other versions
JPH0574403A (en
Inventor
亮 黒田
清 ▲瀧▼本
俊彦 宮▲崎▼
邦裕 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3233046A priority Critical patent/JP2986127B2/en
Publication of JPH0574403A publication Critical patent/JPH0574403A/en
Application granted granted Critical
Publication of JP2986127B2 publication Critical patent/JP2986127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はナノメートル・オーダー
の線幅の微細パターンを作成する描画装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drawing apparatus for forming a fine pattern having a line width on the order of nanometers.

【0002】[0002]

【従来の技術】従来、電子線を用いた描画装置として
は、集積回路における微細加工用の装置として10nm
程度の径まで小さく収束した10kW程度のエネルギを
有する電子線を1μm程度の膜厚のレジストを塗布した
基板に入射してレジストを露光することによりパターン
を描画するものが一般的に用いられている。このような
装置では用いる電子線のエネルギが大きくレジスト膜厚
も厚いため、レジスト中でも電子の散乱や2次電子の飛
程などの影響を受け、10nm以下のパターンを描画す
ることは困難であった。
2. Description of the Related Art Conventionally, a drawing apparatus using an electron beam has been used as an apparatus for fine processing in an integrated circuit, which has a thickness of 10 nm.
In general, an electron beam having energy of about 10 kW, which is converged to a diameter of about 10 kW, is incident on a substrate coated with a resist having a thickness of about 1 μm, and the resist is exposed to thereby draw a pattern. . In such an apparatus, since the energy of the electron beam used is large and the resist film thickness is large, it is difficult to draw a pattern of 10 nm or less even in the resist due to the influence of electron scattering and secondary electron range. .

【0003】最近、走査型トンネル顕微鏡(STM)の
構成を用いてより細かいパターンを描画する方法が提案
されている。例えば米国特許公報4785189号には
STM構成の低エネルギ電子線リソグラフィ装置が提案
されている。これは基板上の導電性薄膜上の電子線感光
レジストに尖鋭な先端を有する電極を近づけ、低エネル
ギの電子線を照射してレジストを描画するものである。
又、特開平2−295050号公報には、マイクロST
Mを用いた回路パターン作成装置が提案されている。こ
れは半導体プロセスによりマイクロSTMのチップ電極
が配置された書込みヘッドを用い、それぞれのチップ電
極を基板に対向させてバイアス印加により有機金属ガス
中から金属をデポさせたり、マスクを形成してデポジッ
トやエッチングを施して基板上に回路パターンを形成す
るというものである。
Recently, a method of drawing a finer pattern using a configuration of a scanning tunneling microscope (STM) has been proposed. For example, U.S. Pat. No. 4,785,189 proposes a low energy electron beam lithography apparatus having an STM configuration. In this method, an electrode having a sharp tip is brought close to an electron beam photosensitive resist on a conductive thin film on a substrate, and a resist is drawn by irradiating a low energy electron beam.
Japanese Patent Application Laid-Open No. 2-295050 discloses a micro ST.
A circuit pattern creation device using M has been proposed. This uses a write head in which micro STM chip electrodes are arranged by a semiconductor process. Each chip electrode is opposed to a substrate, and a metal is deposited from an organic metal gas by applying a bias, or a mask is formed by depositing or depositing. That is, a circuit pattern is formed on a substrate by performing etching.

【0004】一方、原子間力顕微鏡(AFM)が開発さ
れ [Binnig et al., Phys.Rev.Lett. 56,930(1986)] 、
表面の凹凸情報を原子・分子オーダーで得ることができ
るようになった。AFMは試料表面に対して1nm以下
の距離まで接近させた探針を支持するカンチレバー(弾
性体)が、試料−探針間に働く力を受けて撓む量から逆
に力を検出し、この力を一定にするように試料−探針間
の距離を制御しながら試料表面に走査することにより、
表面の三次元形状をnm以下の分解能で観察するもので
ある。AFMではSTMのように試料が導電性を有する
必要がなく、絶縁性試料、特に半導体レジスト面や生体
高分子などを原子・分子オーダーで観察可能であるため
広い応用が期待されている。
On the other hand, an atomic force microscope (AFM) has been developed [Binnig et al., Phys. Rev. Lett. 56 , 930 (1986)].
Information on surface irregularities can now be obtained in atomic and molecular order. In the AFM, a cantilever (elastic body) that supports a probe approaching a distance of 1 nm or less with respect to a sample surface detects a force in reverse from the amount of deflection caused by the force applied between the sample and the probe. By scanning the sample surface while controlling the distance between the sample and the probe so as to keep the force constant,
This is for observing the three-dimensional shape of the surface with a resolution of nm or less. The AFM does not require the sample to have conductivity unlike the STM, and can be used to observe an insulating sample, particularly a semiconductor resist surface, a biopolymer, or the like in the order of atoms and molecules, and is expected to be widely applied.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
例では、探針電極をレジスト表面や基板表面に対して横
方向に走査する際に、電極先端やレジストの破壊を避け
るために、接触しないように両者の間隔を微細に制御す
る必要があり、このために電極−基板間にバイアス電圧
を印加し、両者間に流れる電流の値を一定にするように
電極の縦方向の位置を制御する方法をとる。しかしなが
らレジストの膜厚を3nm以上とすると現実的に検出可
能な値のトンネル電流はもはや流れなくなってしまう。
又、トンネル電流の代わりの電界放射電流を流すために
高電圧バイアスを印加すると、レジスト露光が起こって
しまうという問題があった。それゆえ検出可能なトンネ
ル電流が流れるためには、レジスト膜厚は実質3nm以
下の膜厚でなければならず、このような膜厚であっても
描画を行なわない場所でトンネル電流検出のための微弱
なバイアス電圧値ですら露光が起こってしまったり、露
光後のプロセス時にオーバーエッチングやレジスト剥れ
が起こったりしてしまい、実際には10nm以下のパタ
ーンを描画することは困難であった。
However, in the above-mentioned conventional example, when the probe electrode is scanned in the lateral direction with respect to the resist surface or the substrate surface, the probe electrode should be kept in contact with the resist surface or the substrate surface in order to avoid destruction of the resist or the resist. It is necessary to finely control the distance between the two. For this purpose, a method of applying a bias voltage between the electrode and the substrate and controlling the position of the electrode in the vertical direction so that the value of the current flowing between the two is kept constant. Take. However, if the thickness of the resist is 3 nm or more, a tunnel current having a value that can be practically detected no longer flows.
Further, when a high voltage bias is applied in order to flow a field emission current instead of a tunnel current, there has been a problem that resist exposure occurs. Therefore, in order for a detectable tunnel current to flow, the resist film thickness must be substantially equal to or less than 3 nm. Exposure occurs even with a weak bias voltage value, and over-etching or resist peeling occurs during the post-exposure process, making it difficult to actually draw a pattern of 10 nm or less.

【0006】又、描画用の探針電極が一本である場合に
は、一枚のウェハ基板の描画に長時間を要するため、ス
ループットが極めて低くなり実用上の限界があった。そ
のため複数の探針電極をアレイ化し、並列の描画による
時間の短縮が必須であった。ところが複数の探針電極間
にはプロセス上の誤差による形状、大きさのばらつきや
レジスト基板表面のうねりが存在するため、それらを補
正する機構無しでは複数の探針電極とレジスト表面・基
板表面の間隔がまちまちで、間隔が近過ぎて探針電極先
端がレジスト表面や基板表面と接触破壊を起こす部分が
あったり、逆に間隔が遠過ぎて露光が行なわれない部分
が生じたりする畏れがあり歩留が悪くなってしまう。
又、複数の探針電極の個別の位置制御を行なうため、探
針電極毎にアクチュエータを設け、個別の位置制御を行
なおうとしても、探針電極の数が100本、1000本
・・・・・ というオーダーになると、制御系のハードウェ
ア、ソフトウェアとも大規模かつ複雑なものとなってし
まう。
In addition, when a single probe electrode is used for drawing, it takes a long time to draw a single wafer substrate, so that the throughput is extremely low and there is a practical limit. Therefore, it was necessary to form a plurality of probe electrodes in an array and shorten the time by parallel drawing. However, because there are variations in shape and size due to process errors and undulations on the resist substrate surface between the multiple probe electrodes, the multiple probe electrodes and the resist surface / substrate surface can be used without a mechanism to correct them. There is a risk that the intervals may vary, and the tip of the probe electrode may cause contact destruction with the resist surface or the substrate surface if the interval is too close, or there may be portions where the exposure is not performed because the interval is too long. Yield becomes worse.
Also, in order to perform individual position control of a plurality of probe electrodes, even if an actuator is provided for each probe electrode to perform individual position control, the number of probe electrodes is 100, 1000,.・ ・ In this order, both control system hardware and software become large-scale and complicated.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
すべくなされたもので、その目的は複数の全ての探針電
極位置における描画を再現性良く且つ安定性高く行なう
ことができる微細パターン描画の手法の提供である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a fine pattern capable of performing writing at all of a plurality of probe electrode positions with good reproducibility and high stability. This is to provide a drawing method.

【0008】この目的を達成する本発明のある形態によ
れば、複数の探針電極の各々を取付ける部材として、小
さい弾性定数を有する弾性体を用いることにより、探針
電極先端をレジスト表面に対して10-8N程度の弱い作
用力(斥力)を作用させながら描画を行なうものであ
る。これによりレジスト中に電流を流す(電子を注入す
る)ことなく、又、探針電極先端やレジスト表面を破壊
することなく、パターン描画の横走査中に探針電極−レ
ジスト表面間の距離を一定に保つことが可能となる。本
発明ではレジスト膜厚は自由に選ぶことができるため、
1〜10nmという好ましい膜厚のレジストを用いるこ
とができる。
According to an embodiment of the present invention that achieves this object, an elastic body having a small elastic constant is used as a member for attaching each of the plurality of probe electrodes, so that the tip of the probe electrode is positioned with respect to the resist surface. The drawing is performed while applying a weak acting force (repulsive force) of about 10 −8 N. This allows the distance between the probe electrode and the resist surface to be constant during the horizontal scanning of the pattern drawing without causing a current to flow into the resist (injecting electrons) and without destroying the tip of the probe electrode or the resist surface. Can be maintained. In the present invention, since the resist film thickness can be freely selected,
A resist having a preferable thickness of 1 to 10 nm can be used.

【0009】又、本発明のある形態では、全探針電極を
一括でレジスト表面に接触させる際に、レジストと個々
の探針電極との間に働く作用力(斥力)による弾性体の
変形によってプロセス上の誤差による個々の探針電極間
の形状、大きさのばらつきを吸収するようにしたもので
ある。このことにより個々の探針電極の制御を行なうこ
となく、全探針電極を一定のレベル以下の力(〜10-8
N)でレジスト表面に対して一定の距離に近づけること
ができる。又、複数の探針電極の並びの一部にAFMの
原理を応用した弾性体の弾性変形量を検出することによ
り、全ての探針電極先端とレジスト表面との間に働く力
を一定の範囲に保つようにしたものである。
In one embodiment of the present invention, when all the probe electrodes are brought into contact with the resist surface at once, the elastic body is deformed by the acting force (repulsive force) acting between the resist and the individual probe electrodes. Variations in the shape and size between individual probe electrodes due to process errors are absorbed. As a result, without controlling the individual probe electrodes, all the probe electrodes can be controlled to a force below a certain level (~ 10 -8
In N), it is possible to approach a certain distance to the resist surface. Also, by detecting the amount of elastic deformation of an elastic body applying the principle of AFM to a part of the arrangement of a plurality of probe electrodes, the force acting between all the probe electrode tips and the resist surface is within a certain range. It is something to keep.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図1は実施例の装置の側方から見た断面図、
図2は上方から見た断面図である。図1において、筐体
111には弾性体支持部材101が固定され、弾性体支
持部材101は複数の探針電極106,107,10
8,109がそれぞれ取付けられている複数の弾性体1
02,103,104,105を支持する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the apparatus of the embodiment as viewed from the side,
FIG. 2 is a sectional view seen from above. In FIG. 1, an elastic support member 101 is fixed to a housing 111, and the elastic support member 101 includes a plurality of probe electrodes 106, 107, and 10.
Plural elastic bodies 1 to which 8, 109 are respectively attached
02, 103, 104 and 105 are supported.

【0011】ここで用いられる探針電極を有する弾性体
は以下のように作成される。Si基板を熱酸化により表
面に厚さ0.3μmのSiO2 膜を生成し、長さ100
0μm、幅20μmの複数の弾性体形状をパターニング
する。次に探針電極への電気信号配線パターンを形成
し、基板裏面からKOH液によって異方性エッチングを
行ない、複数の弾性体を形成する。続いて炭素等の電子
ビームデポジション法によって、弾性体先端に高さ5μ
mの探針電極電極を形成する。こうして作成された複数
の弾性体の先端の撓みに対する弾性定数は0.01N/
m程度となる。又、個々の弾性体のそり、探針電極の高
さのプロセス誤差等を考慮すると、弾性体支持部材10
1を基準にした探針電極の先端の高さ方向の位置のばら
つきは1μm程度となる。
The elastic body having the probe electrode used here is prepared as follows. A SiO 2 film having a thickness of 0.3 μm is formed on the surface of a Si substrate by thermal oxidation and has a length of 100 μm.
A plurality of elastic bodies having a thickness of 0 μm and a width of 20 μm are patterned. Next, an electric signal wiring pattern to the probe electrode is formed, and anisotropic etching is performed from the back surface of the substrate with a KOH solution to form a plurality of elastic bodies. Subsequently, the height of the elastic body is 5 μm by an electron beam deposition method of carbon or the like.
m probe electrodes are formed. The elastic constant with respect to the deflection of the tip of the plurality of elastic bodies thus created is 0.01 N /.
m. Also, considering the warpage of each elastic body, the process error of the height of the probe electrode, and the like, the elastic body supporting member 10
The variation in the position of the tip of the probe electrode in the height direction with reference to 1 is about 1 μm.

【0012】112は基板であり、その上に導電層11
3及びレジスト110が形成されて描画媒体を構成す
る。基板112はSiウェハ、ガラス基板、サファイア
基板、雲母劈開面など、広い面積に渡って平滑性を有す
ものが用いられ、基板112上に金、アルミ、白金など
の導電層113を10nm程度の膜厚で形成する。この
とき通常の蒸着法やスパッタ法のみでなく、プロセス中
に基板を数百度に加熱しながらエピタキシャル成長させ
たり、プロセス後に熱アニールを施すことにより、より
平滑な面を有する導電層であることが望ましい。このよ
うな導電層113の上にPMMA(ポリメタクリル酸メ
チル)、PIBM(ポリイソブチルメタクリレート)、
11/8AFAジアセチレン(ペンタコサ−10,12
−ジノイック酸)、ωトリコセン酸などの電子線感光レ
ジスト材料110を、LB法(ラングミュア・ブロジェ
ット法)やスピンコート法により1〜10nmの膜厚で
塗布する。この時、数nmという膜厚でしかも均一にレ
ジストを塗布するためには、LB法のように単分子膜を
積層して成膜する方法が望ましい。なお、前記弾性体の
弾性定数はレジスト110の弾性定数よりも小さくなっ
ている。
Reference numeral 112 denotes a substrate on which the conductive layer 11 is formed.
3 and the resist 110 are formed to form a drawing medium. As the substrate 112, a substrate having smoothness over a wide area such as a Si wafer, a glass substrate, a sapphire substrate, or a mica cleavage plane is used. A conductive layer 113 of gold, aluminum, platinum, or the like is formed on the substrate 112 to a thickness of about 10 nm. It is formed with a film thickness. At this time, not only a normal vapor deposition method and a sputtering method, but also a conductive layer having a smoother surface is preferably obtained by epitaxially growing the substrate while heating it to several hundred degrees during the process or performing thermal annealing after the process. . PMMA (polymethyl methacrylate), PIBM (polyisobutyl methacrylate),
11/8 AFA diacetylene (pentacosa-10,12
An electron beam photosensitive resist material 110 such as -dinoic acid) or ω-tricosenic acid is applied to a thickness of 1 to 10 nm by an LB method (Langmuir-Blodgett method) or a spin coating method. At this time, in order to uniformly apply the resist with a thickness of several nm, a method of laminating monomolecular films like the LB method is desirable. The elastic constant of the elastic body is smaller than the elastic constant of the resist 110.

【0013】レジスト110及び導電層113を設けた
基板112はステージ114上に固定され、このステー
ジをXYθ駆動機構115、及びZ駆動機構116,1
17,201,202(図2に記載)によって駆動し、
探針電極106,107,108,109に対してレジ
スト110上部の面上の所望の位置に接近させる。この
接近方法について詳細に説明する。図1、図2に示すよ
うに、規則的に並んだ複数の探針電極の四隅に位置する
探針電極106,109,203,204の裏面にレー
ザ光源118、205からのレーザ光をビームスプリッ
タ119,120,206,207を通して照射し、そ
の反射光のスポット位置をそれぞれ位置検出素子12
1,122,208,209によって検知する。その上
で、Z駆動機構116,117,201,202によ
り、図中Z方向に探針電極に対して基板112を徐々に
近づけていく。探針電極106,109,203,20
4のいずれかがレジスト110上部の面に接触(両者間
に斥力が働く程度に接近)すると、いま仮にに接触した
電極を106とすると、その探針電極106が取付けら
れている弾性体102に弾性変形(撓み)が生じるた
め、位置検出素子121上の反射光スポット位置に位置
ずれが生じ、その位置ずれ量に対応して大きさが変化す
る検出信号が制御コンピュータ123に送られる。ここ
で弾性体の長さをl、探針電極裏面から位置検出素子ま
での光路長をL、弾性体先端の弾性変形量をΔxとする
と、位置検出素子上での反射光スポットの位置ずれ量Δ
Xは、ΔX=2L・Δx/lと表わされる。実際にl=
100μm,L=50mm,位置検出素子上での位置ず
れ検出分解能を10nmとすると、弾性変形量Δxの検
出分解能は10pmとなり、探針電極とレジスト面が接
触した際に間に働く力が十分に小さい段階で接触を検知
することができる。前述のように、弾性体の先端の撓み
の弾性定数を0.01N/mの大きさ程度に作成すれ
ば、検出可能な作用力は10-13 Nとなる。
A substrate 112 provided with a resist 110 and a conductive layer 113 is fixed on a stage 114, and this stage is moved to an XYθ driving mechanism 115 and Z driving mechanisms 116, 1
17, 201, 202 (described in FIG. 2),
The probe electrodes 106, 107, 108, and 109 are brought closer to desired positions on the surface above the resist 110. This approach will be described in detail. As shown in FIGS. 1 and 2, the laser beams from the laser light sources 118 and 205 are provided on the back surfaces of the probe electrodes 106, 109, 203 and 204 located at the four corners of a plurality of regularly arranged probe electrodes. 119, 120, 206, and 207, and the spot positions of the reflected light are respectively detected by the position detecting elements 12
1, 122, 208 and 209. Then, the substrate 112 is gradually brought closer to the probe electrode in the Z direction in the drawing by the Z drive mechanisms 116, 117, 201, and 202. Probe electrodes 106, 109, 203, 20
4 comes into contact with the upper surface of the resist 110 (approaching to the extent that a repulsive force acts between them), and suppose that the electrode in contact is assumed to be 106, the elastic body 102 to which the probe electrode 106 is attached is attached. Since the elastic deformation (bending) occurs, the position of the reflected light spot on the position detecting element 121 is displaced, and a detection signal whose size changes in accordance with the amount of the displacement is sent to the control computer 123. Here, assuming that the length of the elastic body is l, the optical path length from the back surface of the probe electrode to the position detecting element is L, and the amount of elastic deformation of the tip of the elastic body is Δx, the positional deviation amount of the reflected light spot on the position detecting element Δ
X is represented by ΔX = 2L · Δx / l. Actually l =
Assuming that 100 μm, L = 50 mm, and the displacement detection resolution on the position detecting element is 10 nm, the detection resolution of the amount of elastic deformation Δx is 10 pm, and the force acting between the probe electrode and the resist surface is sufficient. Contact can be detected at a small stage. As described above, if the elastic constant of the deflection of the distal end of the elastic body is made to be about 0.01 N / m, the detectable acting force becomes 10 −13 N.

【0014】探針電極106がレジスト110面に接触
した信号が位置制御コンピュータ123に送られると、
Z位置制御回路124を通してZ駆動機構116にはそ
の位置を保持するための駆動信号が伝えられ、他の3つ
のZ駆動機構117,201,202には更にZ方向に
探針電極109,203,204に対して基板112を
近づけるよう信号が伝えられる。同様にして2番目に接
触した探針電極のZ駆動機構を保持制御する。更に同様
に残りの2つのZ駆動機構をZ方向に駆動し、3番目の
探針電極がレジスト110面に接触したことが検知され
たら、ここで4つの駆動機構116,117,201,
202を同時に更にΔZだけ探針電極に対して基板11
2を近づける。このようなステップで制御を行なうこと
により、製造プロセスで生ずる複数の探針電極のZ方向
の位置のばらつきやレジスト表面のうねりに影響を受け
ず、全ての探針電極をレジスト110面に接触させるこ
とができる。ΔZの大きさとしては、探針電極とレジス
ト面が接触した際に互いに破壊するような力が加わらな
いように選ぶ必要がある。本実施例にあげた有機薄膜の
レジスト材料の例においては、破壊の力の閾値は約1×
10-7N程度である。前述のように探針電極のZ方向の
位置のばらつきやレジスト表面のうねりは、約1μm程
度にすることは可能であるので、探針電極が取付けられ
ている弾性体の弾性定数を0.01N/mとすれば、全
ての探針電極とレジスト面との間に働く作用力をそれぞ
れ2×10-8N(=0.01N/m×1μm×2)程度
にすることができ、この程度の大きさの力であれば探針
電極とレジスト面との間での破壊を避けることができ
る。本発明では使用する弾性体の弾性定数は、探針電極
−レジスト間に働く力により破壊の起こる力の閾値を、
各探針電極のレジスト表面に対する距離のばらつき量の
最大値で割った値よりも小さくすることが前提となる。
本実施例であげた探針電極材料−レジスト材料では弾性
定数は1×10-7N/zμm=0.05N/mより小さ
くなくてはならない。
When a signal indicating that the probe electrode 106 has come into contact with the surface of the resist 110 is sent to the position control computer 123,
A drive signal for maintaining the position is transmitted to the Z drive mechanism 116 through the Z position control circuit 124, and further to the other three Z drive mechanisms 117, 201, and 202, the probe electrodes 109, 203, A signal is transmitted to bring substrate 112 closer to 204. In the same manner, the Z drive mechanism of the probe electrode that comes in second contact is held and controlled. Similarly, the remaining two Z drive mechanisms are driven in the Z direction, and when it is detected that the third probe electrode has contacted the surface of the resist 110, the four drive mechanisms 116, 117, 201,
At the same time, the substrate 11 is further moved by ΔZ to the probe electrode.
Bring 2 closer. By performing control in such a step, all the probe electrodes are brought into contact with the surface of the resist 110 without being affected by variations in the position of the plurality of probe electrodes in the Z direction and undulations of the resist surface caused by the manufacturing process. be able to. It is necessary to select the magnitude of ΔZ so that a force that breaks the probe electrode and the resist surface when they come into contact with each other is not applied. In the example of the resist material of the organic thin film described in this embodiment, the threshold value of the breaking force is about 1 ×
It is about 10 -7 N. As described above, the variation in the position of the probe electrode in the Z direction and the undulation of the resist surface can be reduced to about 1 μm. Therefore, the elastic constant of the elastic body to which the probe electrode is attached is 0.01 N. / M, the acting force acting between all the probe electrodes and the resist surface can be set to about 2 × 10 −8 N (= 0.01 N / m × 1 μm × 2). If the force is of the order of, the destruction between the probe electrode and the resist surface can be avoided. In the present invention, the elastic constant of the elastic body used is a threshold value of the force at which destruction occurs due to the force acting between the probe electrode and the resist,
It is presupposed that the value is smaller than the value obtained by dividing by the maximum value of the variation amount of the distance between each probe electrode and the resist surface.
In the probe electrode material-resist material described in this embodiment, the elastic constant must be smaller than 1 × 10 −7 N / z μm = 0.05 N / m.

【0015】以降、前述の3つの探針電極が取付けられ
ているそれぞれの弾性体の弾性変形量(=撓み量)が一
定になるように、位置検出素子からの信号をを基に位置
制御コンピュータ、Z位置制御回路によってそれぞれの
Z駆動機構を駆動しながらxyθ方向の位置合わせ動
作、描画動作を行なう。
Hereinafter, the position control computer based on the signal from the position detection element is used so that the elastic deformation (= bending amount) of each elastic body to which the above-mentioned three probe electrodes are attached becomes constant. , The Z-position control circuit drives the respective Z-drive mechanisms to perform the xyθ-direction positioning operation and the drawing operation.

【0016】ここでxyθ方向におけるレジスト110
と複数の各探針電極との間の位置合わせ方法について説
明する。前述のように全ての探針電極がレジスト110
面に(2×10-8N程度の)弱い作用力(斥力)で接触
した状態でxyθ駆動機構115によりステージ114
をxy方向の2次元走査を行なう。2次元走査に伴い3
つの探針電極(仮にa,b,cとする)がレジスト11
0表面の凹凸によって作用力の変化を受け、それらが各
探針電極に取付けられている弾性体a,b,cの弾性変
形量に変化を与える。この弾性変形量がそれぞれ一定に
なるように駆動するZ駆動機構の駆動量を2次元走査中
に探針電極の位置に対してマップ化することにより、レ
ジスト表面の探針電極走査領域の凹凸情報を得ることが
できる。探針電極a,b,cのそれぞれに対応するレジ
スト表面の凹凸情報の例を図3に示す。図中、”イ”で
示すマークはプロセスのまだ行なわれていないバージン
基板上にある位置合わせ用マークである。このマークと
してはもともと基板上に存在するキズや凹凸パターン等
の特徴的な形状を用いても良いし、探針電極と導電層間
にパルス電圧を印加することによって作成した凹凸形状
を用いても良い。図3では”イ”で示すマークが3つの
探針電極a,b,cの走査範囲の中心に位置するように
描いているが、中心からずれたところにある形状をマー
クとして用いても良い。
Here, the resist 110 in the xyθ directions
A method of positioning between the probe electrode and each of the plurality of probe electrodes will be described. As described above, all the probe electrodes are
The stage 114 is driven by the xyθ driving mechanism 115 in a state where the surface is in contact with a weak acting force (repulsive force) (about 2 × 10 −8 N).
Is subjected to two-dimensional scanning in the xy directions. 3 with 2D scanning
One probe electrode (tentatively a, b, and c) is a resist 11
A change in the acting force due to the unevenness of the zero surface causes a change in the amount of elastic deformation of the elastic bodies a, b, and c attached to each probe electrode. By mapping the drive amount of the Z drive mechanism for driving the elastic deformation amount to be constant with respect to the position of the probe electrode during the two-dimensional scanning, the unevenness information of the probe electrode scanning area on the resist surface is obtained. Can be obtained. FIG. 3 shows an example of the unevenness information on the resist surface corresponding to each of the probe electrodes a, b, and c. In the figure, the mark indicated by "A" is a positioning mark on the virgin substrate that has not been processed yet. As the mark, a characteristic shape such as a scratch or a concavo-convex pattern originally present on the substrate may be used, or a concavo-convex shape created by applying a pulse voltage between the probe electrode and the conductive layer may be used. . In FIG. 3, the mark indicated by “A” is drawn so as to be located at the center of the scanning range of the three probe electrodes a, b, and c, but a shape deviated from the center may be used as the mark. .

【0017】パターン描画後、リフトオフ、エッチング
等のプロセスを経た基板は、歪みや再セッティング時の
誤差等により、各々の探針電極に対してプロセス前と同
じ位置を再現しない。従って探針電極a,b,cのそれ
ぞれに対応するレジスト表面の凹凸情報を再び得ると、
例えば図3中に示した”ニ”の位置にずれてしまう。こ
のときのそれぞれのプロセス前からの位置ずれ量を(x
a,ya )(xb,yb )(xc,yc )とする。これらのず
れの要因としては、再セッティング時のx、y方向のず
れΔx1,Δy1 、回転ずれΔθ、プロセス時の歪みΔx
2,Δy2 があり位置ずれ量との間には以下の関係があ
る。
A substrate which has been subjected to processes such as lift-off and etching after pattern writing does not reproduce the same position as before the process for each probe electrode due to distortion, an error at the time of resetting, and the like. Therefore, when the unevenness information of the resist surface corresponding to each of the probe electrodes a, b, and c is obtained again,
For example, the position is shifted to the position "d" shown in FIG. At this time, the amount of displacement from before each process is (x
a, y a) (x b , y b) (x c, and y c). The causes of these shifts include the shifts Δx 1, Δy 1 in the x and y directions during resetting, the rotational shift Δθ, and the distortion Δx during the process.
2 and Δy 2 , and the following relationship exists between the displacement and the displacement amount.

【0018】[0018]

【外1】 [Outside 1]

【0019】これらの関係式を用いて、Δx1 ,Δy
1 ,Δx2 ,Δy2 ,Δθを算出し、xyθ位置制御回
路125によってxyθ駆動機構115を駆動し、再セ
ッティング時の位置ずれを補正する。なおここでプロセ
ス時の歪みΔx2 ,Δy2 については完全には補正でき
ないので、全体の位置ずれ量が小さくなるように(例え
ば位置ずれの偏差が最小になるように)補正を行なう。
Using these relational expressions, Δx 1 , Δy
1 , Δx 2 , Δy 2 , Δθ are calculated, and the xyθ driving mechanism 115 is driven by the xyθ position control circuit 125 to correct the positional deviation at the time of resetting. Here, since the distortions Δx 2 and Δy 2 at the time of the process cannot be completely corrected, the correction is performed so as to reduce the entire amount of positional deviation (for example, to minimize the deviation of the positional deviation).

【0020】次にパターン描画の方法について説明す
る。描画制御コンピュータ126からの信号を基に複数
の探針電極に対する描画速度をxyθ位置制御回路12
5、xyθ駆動機構115を用いて選択し、同時に描画
パターン信号を描画用電圧印加回路127、切替回路1
28を経て複数の各探針電極と導電層113との間に与
える。このとき全ての探針電極に対して同じパターンを
描画するときには切替回路128において全ての回路を
同時にONにすれば良いし、異なるパターンを描画する
ときには描画パターン信号に同期した切替信号によって
回路を切替えていけば良い。
Next, a method of pattern drawing will be described. Based on the signal from the drawing control computer 126, the drawing speed for the plurality of probe electrodes is set to the xyθ position control circuit 12.
5. Select using the xyθ drive mechanism 115, and at the same time, apply the drawing pattern signal to the drawing voltage application circuit 127 and the switching circuit 1.
This is applied between the plurality of probe electrodes and the conductive layer 113 via. At this time, when drawing the same pattern for all the probe electrodes, all the circuits may be turned on simultaneously in the switching circuit 128. When drawing a different pattern, the circuits are switched by a switching signal synchronized with the drawing pattern signal. I hope you go.

【0021】図4に上記描画装置を用いたパターン描画
のプロセスの一例を示す。10-8N程度の斥力が作用し
ている探針電極402と導電層403との間に描画用電
圧印加回路405により−10V程度の電圧を印加す
る。これを探針電極402に対して基板404をx,y
2次元方向に走査しながら描画を行なうべき位置に来た
時に電圧を印加することにより、例えば図中、斜線で示
した描画部分406が得られる。なお本装置の特徴とし
て探針電極402と導電層403との間に電圧を印加す
る必要なしに、探針電極402とレジスト401とのZ
方向位置関係が保たれるための描画を行なわない位置に
おいてレジストを露光することがない。
FIG. 4 shows an example of a pattern drawing process using the drawing apparatus. A voltage of about −10 V is applied between the probe electrode 402 on which a repulsive force of about 10 −8 N acts and the conductive layer 403 by the drawing voltage application circuit 405. The substrate 404 is moved to the probe electrode 402 by x, y
By applying a voltage when a position to be drawn is reached while scanning in the two-dimensional direction, a drawn portion 406 indicated by oblique lines in the figure is obtained, for example. Note that a feature of the present apparatus is that Z voltage between the probe electrode 402 and the resist 401 does not need to be applied between the probe electrode 402 and the conductive layer 403.
The resist is not exposed at a position where drawing is not performed to maintain the directional positional relationship.

【0022】次に、現像、エッチング、レジスト除去の
各プロセスを行なって図4の最後に示した所望のパター
ンを得る。本実施例で示した方法では、レジストは現像
のプロセスに耐え得る程度であって且つできるだけ薄く
することが望ましい。具体的にはレジスト膜厚1〜10
nm程度に選び、しかも低エネルギパターン描画である
ため散乱2次電子によるパターンの広がりを避けること
ができるため、精度の及び再現性が良く、絶縁性基板の
上に1〜10nm程度の幅の導電性細線を同程度の間隔
で2次元方向に自由に作成することができる。
Next, the respective processes of development, etching, and resist removal are performed to obtain a desired pattern shown at the end of FIG. In the method described in this embodiment, it is desirable that the resist is as thin as possible and can withstand the development process. Specifically, the resist film thickness is 1 to 10
It is selected to be about nm, and since it is a low-energy pattern drawing, it is possible to avoid the spread of the pattern due to the scattered secondary electrons, so that the accuracy and reproducibility are good, and the conductive film having a width of about 1 to 10 nm is formed on the insulating substrate. The fine thin lines can be freely created in the two-dimensional direction at the same intervals.

【0023】次に図5にパターン描画プロセスの別の例
を示す。基板501上に例えば図5に示すような導電層
502パターンを設け、電子線照射によって導電性化す
るようなレジスト材料、例えばジアセチレン誘導体(1
1/8AFAジアセチレン)503を塗布後、10-8
程度の斥力が作用している探針電極504−導電層50
2間に、描画用電圧印加回路506により−10V程度
の電圧を印加する。この状態のまま探針電極504に対
して基板501を所望のパターンに沿って走査していく
と、走査後のレジスト材料は導電性化(本実施例ではジ
アセチレン誘導体のポリマー化による導電性化)が連続
的に進み、図中に示したような導電同502のパターン
間に連続的な導電性パターンを描くことができる。本実
施例の方法によれば、前記実施例と同様、精度及び再現
性良く絶縁性基板の上に1〜10nm程度の幅の導電性
細線を同程度の間隔で2次元方向に連続的に直接描画に
より作成することができる。なお図5は描画途中の説明
図であるが、描画完成後は図中の導電性細線aとbをそ
れぞれ通る電子波信号がcの部分で互いに量子的な干渉
を起こすような量子効果デバイスの一例を示したもので
ある。
FIG. 5 shows another example of the pattern drawing process. For example, a conductive layer 502 pattern as shown in FIG. 5 is provided on a substrate 501, and a resist material which becomes conductive by electron beam irradiation, for example, a diacetylene derivative (1
After applying 1/8 AFA diacetylene) 503, 10 -8 N
Probe electrode 504-conductive layer 50 on which a repulsion of a certain degree acts
Between the two, a voltage of about −10 V is applied by the drawing voltage application circuit 506. When the substrate 501 is scanned along the desired pattern with respect to the probe electrode 504 in this state, the resist material after scanning becomes conductive (in this embodiment, the conductive material is made conductive by polymerizing a diacetylene derivative). ) Proceeds continuously, and a continuous conductive pattern can be drawn between the patterns of the conductive layer 502 as shown in the figure. According to the method of the present embodiment, similarly to the above-described embodiment, conductive thin wires having a width of about 1 to 10 nm are directly and continuously formed in the two-dimensional direction at the same intervals on the insulating substrate with high accuracy and reproducibility. It can be created by drawing. FIG. 5 is an explanatory view during drawing, but after drawing is completed, a quantum effect device in which electron wave signals passing through the conductive thin wires a and b in the drawing cause quantum interference with each other at a portion c. An example is shown.

【0024】図6はパターン描画プロセスの更なる実施
例を示す。半導電性を有する基板601上に例えば図に
示すような導電層602パターンを設け、電子線照射に
よって導電性化するようなレジスト材料(前記実施例と
同様)603を塗布後、10-8N程度の斥力が作用して
いる探針電極604−半導電性基板601間に、描画用
電圧印加回路606により−10V程度の電圧を印加す
る。これを探針電極604に対して半導電性基板601
をx,y2次元方向に走査しながら描画を行なうべき位
置に来た時に電圧を印加することにより、その部分のレ
ジスト材料603の導電性化(本実施例ではポリマー
化)が進む。本実施例の方法によれば前記実施例と同
様、図中に示したパターンを始め、任意のパターンを精
度及び再現性良く、半導電性基板の上に1〜10nm程
度の幅の導電性細線を同程度の間隔で2次元方向に直接
描画により作成することができる。なお本実施例の図は
描画途中の説明図であるが、描画完成後は図中、導電層
aからcへと伝わる電子波信号がbに示す周期的構造の
部分で量子的な干渉を起こすような量子効果デバイスの
一例を示したものである。
FIG. 6 shows a further embodiment of the pattern drawing process. For example, a conductive layer 602 pattern as shown in the figure is provided on a semiconductive substrate 601 and a resist material (similar to the above embodiment) 603 which is made conductive by electron beam irradiation is applied, and then 10 -8 N A voltage of about −10 V is applied by the drawing voltage application circuit 606 between the probe electrode 604 and the semiconductive substrate 601 on which a repulsion of about a degree acts. This is applied to the probe electrode 604 with respect to the semiconductive substrate 601.
When a voltage is applied to a position where drawing should be performed while scanning in the x and y two-dimensional directions, the resist material 603 in that portion is made conductive (polymerization in this embodiment). According to the method of the present embodiment, similar to the above-described embodiment, an arbitrary pattern including a pattern shown in the drawing, with high accuracy and reproducibility, is formed on a semiconductive substrate with a conductive fine wire having a width of about 1 to 10 nm. Can be directly drawn in two-dimensional directions at approximately the same intervals. Although the drawing of this embodiment is an explanatory diagram during drawing, after drawing is completed, the electron wave signal transmitted from the conductive layers a to c causes quantum interference in a portion of the periodic structure shown by b in the drawing. An example of such a quantum effect device is shown.

【0025】以上示したような複数の探針電極を有する
低エネルギ電子線描画装置と、従来の描画装置や光ステ
ッパやX線ステッパ等と組み合わせることにより、超L
SI等の半導体素子中に種々の量子効果機能を有する部
分を作り込むことが可能である。又、このような微細構
造を複数の探針電極で同時に作成することができるので
スループット(生産性)も向上する。
By combining a low-energy electron beam lithography system having a plurality of probe electrodes as described above with a conventional lithography system, an optical stepper, an X-ray stepper or the like, the
It is possible to form portions having various quantum effect functions in a semiconductor device such as SI. Further, since such a fine structure can be simultaneously formed with a plurality of probe electrodes, the throughput (productivity) is improved.

【0026】[0026]

【発明の効果】以上説明したように、個々の探針電極を
取付ける部材として小さい弾性定数を有する弾性体を用
い、全探針電極を一括でレジスト表面との間に非常に弱
い力(斥力)を作用させながら位置制御を行なうことに
より、全ての探針電極位置におけるパターン描画を再現
性良く且つ安定性高く行なうことが可能になった。又、
描画を行なわない位置におけるレジストの露光を避ける
ことができ、個々の探針電極の制御なしでも走査中の探
針電極やレジスト表面の破壊を避けることができる。こ
のため複数の描画ヘッド(探針電極)を有する描画装置
において、探針電極の位置制御系のハード、ソフトを大
幅に簡素化することが可能となり同時に生産性も大幅に
向上した。
As described above, an elastic body having a small elastic constant is used as a member for mounting each probe electrode, and a very weak force (repulsive force) is applied between all the probe electrodes and the resist surface at once. By performing the position control while acting, the pattern drawing at all the probe electrode positions can be performed with good reproducibility and high stability. or,
Exposure of the resist at a position where writing is not performed can be avoided, and destruction of the probe electrode and the resist surface during scanning can be avoided without controlling individual probe electrodes. Therefore, in a drawing apparatus having a plurality of drawing heads (probe electrodes), the hardware and software of the position control system of the probe electrodes can be greatly simplified, and the productivity has been greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】描画装置の装置構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view illustrating a device configuration of a drawing apparatus.

【図2】描画装置の装置構成を示す横断面図である。FIG. 2 is a cross-sectional view showing the configuration of the drawing apparatus.

【図3】基板再セッティング時のxyθ方向の位置合わ
せ法の説明図である。
FIG. 3 is an explanatory diagram of a positioning method in the xyθ direction at the time of substrate resetting.

【図4】描画方法の第1の実施例の説明図である。FIG. 4 is an explanatory diagram of a first embodiment of a drawing method.

【図5】描画方法の第2の実施例の説明図である。FIG. 5 is an explanatory diagram of a second embodiment of the drawing method.

【図6】描画方法の第3の実施例の説明図である。FIG. 6 is an explanatory diagram of a third embodiment of the drawing method.

【符号の説明】[Explanation of symbols]

101 弾性体支持部材 102〜105 弾性体 106〜109 探針電極 110 レジスト 111 筐体 112 基板 113 導電層 114 ステージ 115 xyθ駆動機構 116、117、118 Z駆動機構 119、120 ビームスプリッタ 121、122 位置検出素子 123 位置制御コンピュータ 124 Z位置制御回路 125 xyθ位置制御回路 126 描画制御コンピュータ 127 描画用電圧印加回路 128 切替え回路 101 Elastic support member 102-105 Elastic body 106-109 Probe electrode 110 Resist 111 Housing 112 Substrate 113 Conductive layer 114 Stage 115 xyθ drive mechanism 116, 117, 118 Z drive mechanism 119, 120 Beam splitter 121, 122 Position detection Element 123 Position control computer 124 Z position control circuit 125 xyθ position control circuit 126 Drawing control computer 127 Drawing voltage application circuit 128 Switching circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 邦裕 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (56)参考文献 特開 平3−12504(JP,A) 特開 平4−264203(JP,A) 特開 平4−249704(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01J 37/30 G01B 7/34 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Kunihiro Sakai, Incorporated Canon Inc. 3- 30-2 Shimomaruko, Ota-ku, Tokyo (56) References JP-A-3-12504 (JP, A) JP-A-4 -264203 (JP, A) JP-A-4-249704 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01J 37/30 G01B 7/34

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 描画媒体に複数の探針電極を介して微細
パターンの描画を行なう方法で、複数の探針電極おのお
のを弾性体により支持し、前記複数の探針電極おのおの
と前記描画媒体との間に発生する斥力によって前記弾性
体を変形させることにより、前記複数の探針電極の前記
描画媒体に対する位置調整を行なうことを特徴とする微
細パターンの描画方法。
1. A method for drawing a fine pattern on a drawing medium via a plurality of probe electrodes, wherein each of the plurality of probe electrodes is supported by an elastic body, and each of the plurality of probe electrodes and the drawing medium are Wherein the position of the plurality of probe electrodes with respect to the drawing medium is adjusted by deforming the elastic body by a repulsive force generated during the drawing.
【請求項2】 描画媒体に複数の探針電極を介して微細
パターンの描画を行なう装置で、複数の探針電極おのお
のを支持する弾性体と、前記複数の探針電極おのおのと
前記描画媒体との間に斥力が発生するまで近接させるた
めの駆動手段とを有し、該斥力によって前記弾性体を変
形させることにより、前記複数の探針電極の前記描画媒
体に対する位置調整を行なうことを特徴とする微細パタ
ーンの描画装置。
2. An apparatus for drawing a fine pattern on a drawing medium via a plurality of probe electrodes, comprising: an elastic body supporting each of the plurality of probe electrodes; and a plurality of the plurality of probe electrodes, and the drawing medium. And a driving unit for causing the resilient body to approach until a repulsive force is generated, and adjusting the positions of the plurality of probe electrodes with respect to the drawing medium by deforming the elastic body by the repulsive force. Device for drawing fine patterns.
【請求項3】 前記弾性体を変形させる際に前記複数の
探針電極のうちの特定のものの位置を検出し、該検出位
置から前記複数の探針電極全体と記録媒体との相対位置
関係を算出し、該算出結果より前記複数の探針電極全体
と描画媒体とを相対駆動することを特徴とする請求項1
記載の描画方法または請求項2記載の描画装置。
3. A method for detecting a position of a specific one of the plurality of probe electrodes when deforming the elastic body, and determining a relative positional relationship between the entire plurality of probe electrodes and a recording medium from the detected position. 2. The method according to claim 1, wherein the calculation is performed, and the whole of the plurality of probe electrodes and the drawing medium are relatively driven based on the calculation result.
3. The drawing method according to claim 1 or the drawing apparatus according to claim 2.
【請求項4】 前記弾性体は一端が支持体に固定され、
他端に探針電極を配置した梁である請求項1記載の描画
方法または請求項2記載の描画装置。
4. The elastic body has one end fixed to a support,
The drawing method according to claim 1 or a drawing apparatus according to claim 2, wherein the drawing method is a beam having a probe electrode disposed at the other end.
【請求項5】 前記弾性体の弾性定数は0.05N/m
以下であり、1×10-7N以下の斥力が作用するように
した請求項1記載の描画方法または請求項2記載の描画
装置。
5. The elastic constant of the elastic body is 0.05 N / m.
3. The drawing method according to claim 1, wherein the repulsive force of 1 × 10 −7 N or less is applied.
【請求項6】 前記描画媒体はレジスト材料である請求
項1記載の描画方法または請求項2記載の描画装置。
6. The drawing method according to claim 1, wherein the drawing medium is a resist material.
【請求項7】 前記レジストは1〜10nmの膜厚を有
する請求項6記載の描画方法又は装置。
7. The drawing method or apparatus according to claim 6, wherein the resist has a thickness of 1 to 10 nm.
JP3233046A 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern Expired - Fee Related JP2986127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233046A JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233046A JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Publications (2)

Publication Number Publication Date
JPH0574403A JPH0574403A (en) 1993-03-26
JP2986127B2 true JP2986127B2 (en) 1999-12-06

Family

ID=16948954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233046A Expired - Fee Related JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Country Status (1)

Country Link
JP (1) JP2986127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313008A (en) * 1997-05-13 1998-11-24 Canon Inc Forming method of fine pattern and electric element having the same

Also Published As

Publication number Publication date
JPH0574403A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
JP3618896B2 (en) Manufacturing method of probe having minute aperture, probe thereby, combined apparatus of scanning near-field light microscope and scanning tunneling microscope using the probe, and recording / reproducing apparatus using the probe
US6313905B1 (en) Apparatus and method for defining a pattern on a substrate
JP2741629B2 (en) Cantilever probe, scanning tunneling microscope and information processing apparatus using the same
JPH05284765A (en) Cantilever type displacement element, cantilever type probe using the same, scan type tunnel microscope using the same probe and information processor
US5412597A (en) Slope detection method, and information detection/writing apparatus using the method
US6376833B2 (en) Projection having a micro-aperture, probe or multi-probe having such a projection and surface scanner, aligner or information processor comprising such a probe
JP3135779B2 (en) Information processing device
US4785189A (en) Method and apparatus for low-energy scanning electron beam lithography
US20020101573A1 (en) Electron exposure apparatus
US5216254A (en) Circuit pattern forming apparatus using mu-stm
JP2986127B2 (en) Drawing method and drawing apparatus for fine pattern
US6640433B1 (en) Method for forming a micro-pattern
JP3224174B2 (en) Micro displacement element, optical deflector, scanning probe microscope, and information processing device
GB2267997A (en) Atomic scale devices
JP3189451B2 (en) Substrate alignment method
EP0200083B1 (en) Apparatus for low-energy scanning electron beam lithography
JPH04263142A (en) Probe device, information processor using the probe device and information processing method
JP3234722B2 (en) Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe
JPH06333276A (en) Recording medium and its production and information processor using this recording medium
JP3005077B2 (en) Recording and / or reproducing method and apparatus
JP2949651B2 (en) Method of manufacturing electrode substrate and recording medium
JPH0528545A (en) Device and method for information processing and face fitting method, using scanning probe microscope
JP2994833B2 (en) Recording and / or reproducing apparatus, method and information detecting apparatus
JP2605621B2 (en) Semiconductor whisker probe and method of manufacturing the same
JP2942011B2 (en) Information storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees