JP2986029B2 - Wavelength demultiplexed light detector - Google Patents

Wavelength demultiplexed light detector

Info

Publication number
JP2986029B2
JP2986029B2 JP3285502A JP28550291A JP2986029B2 JP 2986029 B2 JP2986029 B2 JP 2986029B2 JP 3285502 A JP3285502 A JP 3285502A JP 28550291 A JP28550291 A JP 28550291A JP 2986029 B2 JP2986029 B2 JP 2986029B2
Authority
JP
Japan
Prior art keywords
waveguide
photodetector
layer
light
slab waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3285502A
Other languages
Japanese (ja)
Other versions
JPH05100255A (en
Inventor
秀穂 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3285502A priority Critical patent/JP2986029B2/en
Publication of JPH05100255A publication Critical patent/JPH05100255A/en
Application granted granted Critical
Publication of JP2986029B2 publication Critical patent/JP2986029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、周波数分割多重光伝送
方式において、周波数多重で伝送されてくる光信号を分
波して光検出する機能をもった波長分波光検出器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing optical detector having a function of demultiplexing an optical signal transmitted by frequency multiplexing and detecting light in a frequency division multiplexing optical transmission system.

【0002】[0002]

【従来の技術】従来、垂直回折格子と導波路が一体に形
成された光部品によって波長1.48〜1.56μmの
光を分光するものがあった。〔Appl.Phys.L
ett.58(1991)pp.1949〜1951〕
2. Description of the Related Art Heretofore, there has been an optical device in which a vertical diffraction grating and a waveguide are integrally formed to separate light having a wavelength of 1.48 to 1.56 μm. [Appl. Phys. L
ett. 58 (1991) pp. 1949-1951]

【0003】図4は従来の波長分波器を表わす平面図で
あって、1はスラブ導波路部、2はリッジ導波路、3は
垂直回折格子、4は入力光(λ1 ,λ2 ……λn )、5
は出力光である。周波数多重された入力光は、リッジ導
波路1に入り、スラブ導波路部1で拡がり、垂直回折格
子3で分光され、それぞれ異なったリッジ導波路2に集
光する。垂直回折格子3はローランド円上にあり、リッ
ジ導波路2の入力部は1/2ローランド円上にあるか
ら、焦点ずれなしにそれぞれの波長の光は異なったリッ
ジ導波路2に集光する。
FIG. 4 is a plan view showing a conventional wavelength demultiplexer, wherein 1 is a slab waveguide, 2 is a ridge waveguide, 3 is a vertical diffraction grating, and 4 is input light (λ 1 , λ 2 ...). ... λ n ), 5
Is output light. The frequency-multiplexed input light enters the ridge waveguide 1, spreads in the slab waveguide section 1, is split by the vertical diffraction grating 3, and condenses on different ridge waveguides 2. Since the vertical diffraction grating 3 is on the Rowland circle and the input portion of the ridge waveguide 2 is on the 1/2 Rowland circle, light of each wavelength is focused on a different ridge waveguide 2 without defocus.

【0004】[0004]

【発明が解決しようとする課題】しかし、この従来例で
は、スラブ導波路部1の屈折率が固定であるので、分波
角度の微調機能がないという欠点、また光検出器も集積
されてないので、別の光検出器との光軸調整が必要にな
るという欠点があった。
However, in this conventional example, since the refractive index of the slab waveguide section 1 is fixed, there is no disadvantage that there is no fine adjustment function of the demultiplexing angle, and no photodetector is integrated. Therefore, there is a disadvantage that the optical axis needs to be adjusted with another photodetector.

【0005】本発明の目的は、光検出器をモノリシック
に一体化していないという欠点と波長分波角度の微調が
できないという欠点を解決し、周波数多重で光伝送され
ている光を分波してそれぞれの波長の光を光検出する機
能を持ち、かつ、各々の光検出器に適合する光波長を微
調整することができる機能を持ち、モノリシックに一体
化された波長分波光検出器を提供することにある。
An object of the present invention is to solve the disadvantage that the photodetector is not monolithically integrated and the disadvantage that the wavelength demultiplexing angle cannot be finely adjusted. Provide a monolithically integrated wavelength demultiplexing photodetector that has the function of optically detecting light of each wavelength and the function of fine-tuning the light wavelength suitable for each photodetector. It is in.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明による波長分波光検出器は、スラブ導波上と
基板裏面に電極を設け、スラブ導波路に電圧を印加で
き、かつスラブ導波路の一端面に円弧状の垂直回折格子
が形成してあり、かつスラブ導波路の他端面に、複数個
のリッジ導波路の如き導波路を設け、かつ該導波路の端
部に光検出器が設けてあり、あるいはスラブ導波路の他
端面に、直接複数個の光検出器を設けてあるが、かつ該
回折格子の溝の方向が、前記スラブ導波路の基板に垂直
であることを第1の特徴とし、導波路と光検出器あるい
は、光検出器相互がエッチング溝により、あるいは絶縁
層のバット接合により、電気的に分離してあることを第
2の特徴とする。
In order to achieve this object, a wavelength demultiplexing photodetector according to the present invention is provided with electrodes on a slab waveguide and on a back surface of a substrate so that a voltage can be applied to the slab waveguide, and An arc-shaped vertical diffraction grating is formed at one end of the waveguide, and a plurality of waveguides such as ridge waveguides are provided at the other end of the slab waveguide, and light is detected at the end of the waveguide. A detector is provided, or a plurality of photodetectors are provided directly on the other end surface of the slab waveguide, and the direction of the groove of the diffraction grating is perpendicular to the substrate of the slab waveguide. As a first feature, a second feature is that the waveguide and the photodetector or the photodetector are electrically separated from each other by an etching groove or a butt joint of an insulating layer.

【0007】従来の技術とは、光検出器がモノリシック
に一体化されている点あるいは、スラブ導波路に逆バイ
アス電圧を印加して、電気光学効果によりスラブ導波路
の実効屈折率および光の分波角度を微調整することがで
きる点、すなわち各々の光検出器に適合する光の波長を
微調整することができる点が異なる。
The conventional technique is that the photodetector is monolithically integrated, or a reverse bias voltage is applied to the slab waveguide, and the effective refractive index of the slab waveguide and the light distribution are measured by the electro-optic effect. The difference is that the wave angle can be finely adjusted, that is, the wavelength of light suitable for each photodetector can be finely adjusted.

【0008】[0008]

【実施例】図1は本発明の第1の実施例を説明する斜視
図であって、11はn−InP基板、12は垂直回折格
子、13はスラブ導波路部、14はリッジ導波路、15
は光検出器、16は入力リッジ導波路、17はp−電
極、18はn−電極である。スラブ導波路部およびリッ
ジ導波路の層構造、および高反射膜は簡単のため省略し
てある。入力リッジ導波路16に入射した周波数多重さ
れた光λ1 ,λ2 ……λn は、スラブ導波路部13で横
に拡がり、ローランド円の円弧上にある垂直回折格子1
2で分波され、各々の波長に従い、リッジ導波路14に
集光し、光検出器15で電気信号に変換される。垂直回
折格子がローランド円上にあり、かつリッジ導波路の入
力端が1/2ローランド円上にあると、各々の波長の光
は焦点ずれを起こすことなく、分波集光され、リッジ導
波路14に入る。次に、スラブ導波路13に逆バイアス
を印加することにより、分波角を微調整するメカニズム
について述べる。
FIG. 1 is a perspective view for explaining a first embodiment of the present invention, wherein 11 is an n-InP substrate, 12 is a vertical diffraction grating, 13 is a slab waveguide portion, 14 is a ridge waveguide, Fifteen
Is a photodetector, 16 is an input ridge waveguide, 17 is a p-electrode, and 18 is an n-electrode. The layer structures of the slab waveguide portion and the ridge waveguide, and the high reflection film are omitted for simplicity. The multiplexed light λ 1 , λ 2, ... Λ n incident on the input ridge waveguide 16 spreads laterally in the slab waveguide section 13 and the vertical diffraction grating 1 on the arc of the Rowland circle.
The light is demultiplexed by 2 and condensed on the ridge waveguide 14 according to each wavelength, and is converted into an electric signal by the photodetector 15. When the vertical diffraction grating is on the Rowland circle and the input end of the ridge waveguide is on the 1/2 Rowland circle, light of each wavelength is demultiplexed and condensed without causing defocus, and the ridge waveguide is Enter 14. Next, a mechanism for finely adjusting the branching angle by applying a reverse bias to the slab waveguide 13 will be described.

【0009】電気光学効果による屈折率変化は次式で与
えられる。 ここで、Δnは屈折率変化、nは屈折率、Eは印加され
る電界、r41は電気光学係数でほぼ1.6×10-12
/V程度である。アンドープ層のトータル厚さを0.5
μm=5×10-7mとすると、50V印加した時にE=
108 V/mとなる。n≒3.3とすると、Δn≒2.
9×10-3となり、1.55μm帯では光検出器に適合
する光波長のシフトはΔλ≒14Å程度となる。また回
折格子の分解能は次式で与えられる。 Δλ=λ/(hNnett ) ………(2) ここでhは回折の次数、Nは回折格子の本数、nett
実効屈折率、λは波長である。スラブ導波路部を充分長
くとると、回折格子の本数Nは大きくなり、充分周波数
分割多重方式に使用することができる。また回折格子の
形状を鋸状にすることおよび高反射膜を付加することに
より、回折効率を85〜95%程度にすることができ
る。
The change in the refractive index due to the electro-optic effect is given by the following equation. Here, Δn is a change in refractive index, n is a refractive index, E is an applied electric field, and r 41 is an electro-optic coefficient of approximately 1.6 × 10 −12 m.
/ V. 0.5 total thickness of undoped layer
If μm = 5 × 10 −7 m, E =
It becomes 10 8 V / m. Assuming that n ≒ 3.3, Δn ≒ 2.
9 × 10 -3, and the shift of the compatible optical wavelength to an optical detector is 1.55μm band is about [Delta] [lambda] ≒ 14 Å. The resolution of the diffraction grating is given by the following equation. Δλ = λ / (hNn ett ) (2) where h is the order of diffraction, N is the number of diffraction gratings, nett is the effective refractive index, and λ is the wavelength. If the slab waveguide portion is made sufficiently long, the number N of the diffraction gratings becomes large, and the slab waveguide portion can be used sufficiently for the frequency division multiplexing system. Further, by making the shape of the diffraction grating into a saw shape and adding a high reflection film, the diffraction efficiency can be made about 85 to 95%.

【0010】図2は第1の実施例の波長分波検出器の光
検出器とリッジ導波路との結合部を表わす断面図であっ
て、21はn−InP基板、22はn−InP層、23
はアンドープのInGaAsP層(λg=1.3μ
m)、24はアンドープInP層、25はp−InP
層、26はp−InGaAsP層、27はn電極、28
はp電極、29はn−InP層、30はn−InGaA
s層、31はアンドープInGaAs層、32はp−I
nP層、33はp−InGaAsP層、34は無反射
膜、35はエッチング溝、36はリッジ導波路部、37
は光検出器部である。このような構造になっているか
ら、逆バイアスを印加するスラブ導波路部13と光検出
器は電気的に分離されている。
FIG. 2 is a sectional view showing a coupling portion between the photodetector and the ridge waveguide of the wavelength demultiplexing detector according to the first embodiment, wherein 21 is an n-InP substrate and 22 is an n-InP layer. , 23
Represents an undoped InGaAsP layer (λg = 1.3 μm).
m), 24 is an undoped InP layer, 25 is p-InP
Layer, 26 is a p-InGaAsP layer, 27 is an n-electrode, 28
Is a p-electrode, 29 is an n-InP layer, 30 is n-InGaAs
s layer, 31 is an undoped InGaAs layer, 32 is p-I
nP layer, 33 is a p-InGaAsP layer, 34 is a non-reflective film, 35 is an etching groove, 36 is a ridge waveguide portion, 37
Denotes a photodetector unit. With such a structure, the slab waveguide section 13 for applying a reverse bias and the photodetector are electrically separated.

【0011】図3は第2の実施例の波長分光光検出器の
光検出器とリッジ導波路の結合部を説明する断面図であ
る。41はn−InP層、42はn−InP層、43は
アンドープInGaAsP層(λg=1.3μm)、4
4はアンドープInP層、45はp−InP層、46は
p−InGaAsP層、47はn−InP層、48はn
−InGaAs層、49はアンドープInGaAs層、
50はp−InP層、51はp−InGaAsP層、5
2は絶縁性Si−InP層、53は絶縁性Si−InG
aAsP層(λg=1.3μm)、54は絶縁性Si−
InP、57はリッジ導波路部、58は光検出器部、5
9は絶縁層部である。絶縁層部は、バット接合により形
成している。このような構造になっているから、逆バイ
アスを印加するスラブ導波路部と光検出器部は電気的に
分離されている。
FIG. 3 is a sectional view for explaining a coupling portion between the photodetector and the ridge waveguide of the wavelength spectrophotometer of the second embodiment. 41 is an n-InP layer, 42 is an n-InP layer, 43 is an undoped InGaAsP layer (λg = 1.3 μm), 4
4 is an undoped InP layer; 45 is a p-InP layer; 46 is a p-InGaAsP layer; 47 is an n-InP layer;
-InGaAs layer, 49 is an undoped InGaAs layer,
50 is a p-InP layer, 51 is a p-InGaAsP layer, 5
2 is an insulating Si-InP layer, 53 is an insulating Si-InG
aAsP layer (λg = 1.3 μm), 54 is insulating Si—
InP, 57 is a ridge waveguide portion, 58 is a photodetector portion, 5
9 is an insulating layer part. The insulating layer portion is formed by butt bonding. With such a structure, the slab waveguide section for applying a reverse bias and the photodetector section are electrically separated.

【0012】また、光検出器とスラブ導波路部との電気
的分離にプロトン(H+ )注入を用いることもできる。
また、実施例はInGaAsP/InP系結晶について
述べたが、AlGaAs/GaAs系結晶で製作しても
良い。またスラブ導波路のコア層に例えばアンドープI
nGaAs/InAlAsの超格子層を使用しても良
い。このような超格子層を用いた場合には、電気光学係
数を高くすることができる。この結果から明らかなよう
に、従来の技術に比べ、光検出器がモノリシックに集積
化されている点および分波角度、すなわち各々の光検出
器に適合する光波長を微調整することができる点の改善
があった。
Also, proton (H + ) injection can be used for electrical separation between the photodetector and the slab waveguide.
Further, although the embodiment has described the InGaAsP / InP-based crystal, it may be made of an AlGaAs / GaAs-based crystal. Also, for example, undoped I
A superlattice layer of nGaAs / InAlAs may be used. When such a superlattice layer is used, the electro-optic coefficient can be increased. As is apparent from this result, the point that the photodetector is monolithically integrated and the demultiplexing angle, that is, the light wavelength suitable for each photodetector can be finely adjusted, as compared with the conventional technology. There was an improvement.

【0013】[0013]

【発明の効果】以上説明したように、本発明では、スラ
ブ導波路上と基板裏面に電極が設けてあり、かつスラブ
導波路の一端にローランド円の円弧状の垂直回折効果が
設けてあり、かつ、スラブ導波路の他端面に、複数個の
リッジ導波路等の導波路が設けてあり、かつ該同波路の
端部に光検出器が設けてあるか、あるいは、直接複数個
の光検出器が設けてあり、かつ導波路と光検出器あるい
は光検出器相互が電気的に分離してあるから、周波数分
割多重で光伝送されてきた光を、分波して光検出するこ
とができる利点と、スラブ導波路に逆バイアスを印加す
ることにより、電気光学効果により、実効屈折率,波長
分波角、すなわち各々の光検出器に適合する波長を微調
整することができる利点がある。
As described above, according to the present invention, the electrodes are provided on the slab waveguide and on the back surface of the substrate, and one end of the slab waveguide has a vertical diffraction effect in the form of an arc of a Rowland circle. In addition, a waveguide such as a plurality of ridge waveguides is provided on the other end surface of the slab waveguide, and a photodetector is provided at an end of the same waveguide, or a plurality of photodetectors are directly provided. Since the waveguide is provided and the waveguide and the photodetector or the photodetector are electrically separated from each other, the light transmitted by frequency division multiplexing can be separated and detected. By applying a reverse bias to the slab waveguide, there is an advantage that the electro-optic effect allows fine adjustment of the effective refractive index and the wavelength demultiplexing angle, that is, the wavelength suitable for each photodetector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の波長分波光検出器の斜
視図である。
FIG. 1 is a perspective view of a wavelength splitter photodetector according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の波長分波光検出器の光
検出器とリッジ導波路の結合部の断面図である。
FIG. 2 is a sectional view of a coupling portion between a photodetector and a ridge waveguide of the wavelength division photodetector according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の波長分波光検出器の光
検出器とリッジ導波路の結合部の断面図である。
FIG. 3 is a sectional view of a coupling portion between a photodetector and a ridge waveguide of a wavelength division photodetector according to a second embodiment of the present invention.

【図4】従来の波長分波器の平面図である。FIG. 4 is a plan view of a conventional wavelength demultiplexer.

【符号の説明】[Explanation of symbols]

1 スラブ導波路部 2 リッジ導波路部 3 垂直回折格子 4 入力光(λ1 ,λ2 ……λn ) 5 出力光 11 n−InP基板 12 垂直回折格子 13 スラブ導波路部 14 リッジ導波路(受光側導波路) 15 光検出器 16 入力リッジ導波路 17 p電極 18 n電極 21 n−InP基板 22 n−InP 23 u−InGaAsP(λg=1.3μm) 24 u−InP 25 p−InP 26 p−InGaAsP 27 n電極 28 p電極 29 n−InP 30 n−InGaAs 31 u−InGaAs 32 p−InP 33 p−InGaAsP 34 無反射膜 35 エッチング溝 36 リッジ導波路(受光側導波路) 37 光検出器部 41 n−InP基板 42 n−InP 43 u−InGaAsP(λg=1.3μm) 44 u−InP 45 p−InP 46 p−InGaAsP 47 n−InP 48 n−InGaAs 49 u−InGaAs 50 p−InP 51 p−InGaAsP 52 Si−InP 53 Si−InGaAsP(λg=1.3μm) 54 Si−InP 55 n電極 56 p電極 57 リッジ導波路部(受光側導波路) 58 光検出部 59 絶縁層部REFERENCE SIGNS LIST 1 slab waveguide section 2 ridge waveguide section 3 vertical diffraction grating 4 input light (λ 1 , λ 2 ... Λ n ) 5 output light 11 n-InP substrate 12 vertical diffraction grating 13 slab waveguide section 14 ridge waveguide ( (Light receiving side waveguide) 15 Photodetector 16 Input ridge waveguide 17 p electrode 18 n electrode 21 n-InP substrate 22 n-InP 23 u-InGaAsP (λg = 1.3 μm) 24 u-InP 25 p-InP 26 p -InGaAsP 27 n-electrode 28 p-electrode 29 n-InP 30 n-InGaAs 31 u-InGaAs 32 p-InP 33 p-InGaAsP 34 Antireflection film 35 Etching groove 36 Ridge waveguide (light receiving side waveguide) 37 Photodetector section 41 n-InP substrate 42 n-InP 43 u-InGaAsP (λg = 1.3 μm) 44 u-InP 45 p- nP 46 p-InGaAsP 47 n-InP 48 n-InGaAs 49 u-InGaAs 50 p-InP 51 p-InGaAsP 52 Si-InP 53 Si-InGaAsP (λg = 1.3 μm) 54 Si-InP 55 n electrode 56 n 57 Ridge waveguide part (light receiving side waveguide) 58 Light detection part 59 Insulating layer part

フロントページの続き (56)参考文献 特開 平3−171115(JP,A) 特開 平4−367819(JP,A) 特表 平3−501065(JP,A) Appl.Phys.Lett.,V ol.58 No.18 pp.1949−1951 (6 May 1991) Electronics Lette rs,Vol.27 No.2 pp. 132−134(17th January 1991) (58)調査した分野(Int.Cl.6,DB名) H01L 31/10 G02F 1/00 - 1/055 505 G02F 1/29 - 1/313 G02B 6/12 - 6/14 Continuation of the front page (56) References JP-A-3-171115 (JP, A) JP-A-4-367819 (JP, A) Japanese Translation of PCT Publication No. 3-50101065 (JP, A) Appl. Phys. Lett. , Vol. 58 No. 18 pp. 1949-1951 (6 May 1991) Electronics Letters, Vol. 27 No. 2 pp. 132-134 (17th January 1991) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31/10 G02F 1/00-1/055 505 G02F 1/29-1/313 G02B 6 / 12-6/14

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スラブ導波路上と基板裏面に電極を備
え、該スラブ導波路の一端面に円弧状の垂直回折格子が
形成され、かつ該スラブ導波路の他端面に複数個の受光
側導波路を備えるとともに該受光側導波路の端部に光検
出器が設けられるか又は前記スラブ導波路の他端面に直
接複数個の光検出器が設けられ、さらに前記回折格子の
溝の方向が前記スラブ導波路の基板に垂直であり、前記
導波路と光検出器又は複数の光検出器相互がエッチング
溝もしくは絶縁層のバット接合により電気的に分離して
あり、前記円弧状の垂直回折効果がローランド円上にあ
り、かつ、前記受光側導波路あるいは前記光検出器の入
射部が1/2ローランド円上にあるように構成され波長
分波光検出器。
An electrode is provided on the slab waveguide and on the back surface of the substrate, an arc-shaped vertical diffraction grating is formed on one end face of the slab waveguide, and a plurality of light-receiving side guides are provided on the other end face of the slab waveguide. A light detector is provided at the end of the light-receiving side waveguide with a waveguide, or a plurality of light detectors are provided directly on the other end surface of the slab waveguide, and the direction of the groove of the diffraction grating is The waveguide is perpendicular to the substrate of the slab waveguide, and the waveguide and the photodetector or the plurality of photodetectors are electrically separated from each other by a butt junction of an etching groove or an insulating layer. A wavelength demultiplexed photodetector configured to be on a Rowland circle and the light receiving side waveguide or the incident portion of the photodetector be on a 1/2 Rowland circle.
【請求項2】 回折効率を高めるために前記垂直回折格
子の形状を鋸状にして、入射光と回折光とが該回折格子
の溝の面に対して略正反射の関係になるように形成され
ていることを特徴とする請求項1に記載の波長分波光検
出器。
2. The vertical diffraction grating is formed in a saw-tooth shape so as to increase diffraction efficiency, so that incident light and diffracted light have a substantially regular reflection relationship with respect to a groove surface of the diffraction grating. The wavelength demultiplexed photodetector according to claim 1, wherein:
【請求項3】 回折効率を高めるために前記垂直回折格
子の端面に絶縁膜と金属膜とからなる高反射膜が形成さ
れていることを特徴とする請求項1又は2に記載の波長
分波光検出器。
3. The wavelength-demultiplexed light according to claim 1, wherein a high-reflection film made of an insulating film and a metal film is formed on an end face of the vertical diffraction grating in order to increase diffraction efficiency. Detector.
【請求項4】 前記スラブ導波路がn型InP基板,n
型InPクラッド層,アンドープInGaAsPコア
層,アンドープInP層,p型InP層,p型InGa
AsP層からなり、逆バイアス電圧が印加できるように
構成されていることを特徴とする請求項1,2,3のい
ずれかに記載の波長分波光検出器。
4. The slab waveguide is an n-type InP substrate, n
-Type InP cladding layer, undoped InGaAsP core layer, undoped InP layer, p-type InP layer, p-type InGa
4. The wavelength demultiplexed photodetector according to claim 1, wherein the photodetector is made of an AsP layer and configured to apply a reverse bias voltage.
【請求項5】 前記スラブ導波路がn型InP基板,n
型InPクラッド層,アンドープInGaAs/InA
lAs超格子コア層、アンドープInP層,p型InP
層,p型InGaAsP層からなり、逆バイアス電圧が
印加できるように構成されていることを特徴とする請求
項1,2,3のいずれかに記載の波長分波光検出器。
5. The slab waveguide is an n-type InP substrate, n
Type InP cladding layer, undoped InGaAs / InA
lAs superlattice core layer, undoped InP layer, p-type InP
4. The wavelength demultiplexed photodetector according to claim 1, wherein the photodetector is composed of a p-type InGaAsP layer and a reverse bias voltage.
JP3285502A 1991-10-07 1991-10-07 Wavelength demultiplexed light detector Expired - Fee Related JP2986029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285502A JP2986029B2 (en) 1991-10-07 1991-10-07 Wavelength demultiplexed light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285502A JP2986029B2 (en) 1991-10-07 1991-10-07 Wavelength demultiplexed light detector

Publications (2)

Publication Number Publication Date
JPH05100255A JPH05100255A (en) 1993-04-23
JP2986029B2 true JP2986029B2 (en) 1999-12-06

Family

ID=17692362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285502A Expired - Fee Related JP2986029B2 (en) 1991-10-07 1991-10-07 Wavelength demultiplexed light detector

Country Status (1)

Country Link
JP (1) JP2986029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253519A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Optical connector
JP4409860B2 (en) * 2003-05-28 2010-02-03 浜松ホトニクス株式会社 Spectrometer using photodetector
JP4777623B2 (en) * 2004-08-04 2011-09-21 日本電信電話株式会社 Biosensor and measurement method
CN110186563A (en) * 2019-06-13 2019-08-30 浙江溯源光科技有限公司 Light splitting light guide module and integrated spectrometer and production method based on cylindrical grating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.58 No.18 pp.1949−1951(6 May 1991)
Electronics Letters,Vol.27 No.2 pp.132−134(17th January 1991)

Also Published As

Publication number Publication date
JPH05100255A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4720468A (en) Process for the production of a monolithic integrated optical device incorporating a semiconductor laser and device obtained by this process
US5416866A (en) Optical waveguide/grating device for filtering optical wavelengths
Cremer et al. Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP
JP2587761B2 (en) Polarization dependent and polarization changing optoelectronic devices using strained quantum wells
US5838854A (en) Integrated optical control element and a method for fabricating the same and optical integrated circuit element and optical integrated circuit device using the same
JPH04254380A (en) Monolithic integrated photoamplifier and photodetector
US9025241B2 (en) Gain medium providing laser and amplifier functionality to optical device
US5054871A (en) Semiconductor waveguide and impedance-matched detector
US6282345B1 (en) Device for coupling waveguides to one another
US5796883A (en) Optical integrated circuit and method for fabricating the same
EP0386797B1 (en) Photodetector using wavelength selective optical coupler
US5396365A (en) Polarization-independent optical device and method for polarization-independent processing of a signal
JP4762834B2 (en) Optical integrated circuit
Gini et al. Polarization independent InP WDM multiplexer/demultiplexer module
JP3023942B2 (en) Wavelength tuning type compact spectrometer
JP2019008179A (en) Semiconductor optical element
JP2986029B2 (en) Wavelength demultiplexed light detector
US20070172185A1 (en) Optical waveguide with mode shape for high efficiency modulation
JP2002151728A (en) Semiconductor photodetector
JP2986031B2 (en) Spectral switch
US6453105B1 (en) Optoelectronic device with power monitoring tap
JP2986032B2 (en) Wavelength tuning type compact spectrometer
EP0369706B1 (en) Optical intensity modulator
JP3023941B2 (en) Spectral switch
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees